

スーパーミニタイプ RHシリーズ

技術 資料

● RH-5A、8D、11D、14D

RHシリーズ、HSシリーズ

サーボシステムを安全に お使いいただくために

告:取扱を誤った場合、死亡又は重傷を負う可能性が想定される内容を示してます。

注意:取扱を誤った場合、傷害を負う可能性が想定される内容及び物的損害の発生が予

想される内容を示しています。

用途の限定:本製品は、次の用途には使用できません。

*宇宙用機器 *航空機用機器 *原子力用機器

*家庭内で使用する機器、器具

* 真空用機器 * 自動車用機器

* 遊戯用機器 *人体に直接作用する機器

*人の輸送を目的とする機器

*特殊環境用機器

上記のような用途にご使用の際には、あらかじめ弊社にご相談ください。

本製品の、人命にかかわるような設備および重大な損失が予想される設備への適用に際しては、 破壊によって出力が制御不能になっても、事故にならないように安全装置を設置してください。

アクチュエータご使用の際に注意していただきたいこと

設計上の注意 設計される場合には技術資料を必ずお読みください。

注意

決められた環境でご使用くだ

●アクチュエータは屋内使用を対象としていま す。次の条件を守ってください。

*周囲温度:0~40℃

*周囲温度:35~80%RH(結露しないこと)

*振動: 24.5m/s²以下

*水、油がかからないこと

*腐食性、爆発性ガスのないこと

注意

決められた精度で取り付けて ください。

- ●アクチュエータ軸と相手機械の心出しを技術 資料に基づいて正確に行ってください。
- ●心ずれがあると振動や出力軸の破壊につなが ります。

ご使用上の注意 運転される場合は取扱説明書及び技術資料を必ずお読みください。

許容トルクを越えないでくだ さい。

注意

- ●最大トルク以上のトルクが加わらないように してください。
- ●出力軸にアームなどが直接つく場合、アーム をぶつけると出力軸が制御不能になることが

アクチュエータをたたかない でください。

- ●アクチュエータはエンコーダが直結されてい ますので木づちなどでたたかないでください。
- ●エンコーダが破壊するとアクチュエータが暴 走することがあります。

注意

コンセントに直接接続しない でください。

- ●アクチュエータは専用のコントロールユニッ トに接続しないと運転できません。
- ●直接商用電源をつなぐことは絶対にさけてく ださい。アクチュエータが壊れ、火災になる ことがあります。

リード線は引っ張らないでく ださい。

●リード線を強く引っ張ると接続部が損傷し、 アクチュエータが暴走することがあります。

廃棄について アクチュエータ及びコントロールユニットの廃棄

注意

産業廃棄物として処理してく ださい。

●廃棄する場合は、産業廃棄物として処理して ください。

```
はじめに 将長・・・・・・・・
  想式と記号・・・・・・しゃ
  法 任 榛 十二
  回板方面。
          . エータ 化 🕏
  サーボアクチ
4.
  特集曲線・・・
≅ .
6.
                             6
  石真なデューティナ
             イクル
  憷 械 的 特 性 •
         . .
7.
       許容ラジアル有重、許容スラスト育重
     ı
       輔 猫 括 渡
     2
       庭 衡 繁 性
     3
    4
       放扳性
       翠镜
     5
       ラチュッティングトルク (機動的関係トルク)
  ï
    6
       一方向价值换的特度、 無り返し位置決的特度,
    7
       反転位置決め特度
  Ŧ
   - ප
       双性方向
   - 9
       ブラシの力命と交換
  Ŧ
      バリエ
       標準オプション
      ネカルエンコ・ダ
  オプチ
Э.
  9
     1
       型式と分解的
     2
       任母
  9
       出力政形
  ç:
     Я
       出力阻落
  8
   リート思の色
     ā
10. Dミタコジェネレータ仕様・・・・・・
   設計上および取り扱い上の作品・・・・・・
ΙΙ.
        使用劣明泵
  ] ]
      1
        衝撃を与えない
      2
  1 1
        ij
           下線の扱い
  1 1
      خ
        ケーブル配験
      4
  1 i - 5
        モータの配線
        タコジェネレータの配数
      6
        ニンコーダの配場
  1 1
      7
        分解
   - 1
      Şi.
1 2. 外形寸法図 ・・・・・・・・・・ G
  农炸智料
 1. J[8 B 820] - による粘度表示と測定方法 ・・2 3
   エンローダ信号の征送阻離収集・・・・・24
  ひけん サンコレクタ出力
   エンドッグ機械側
   ケップルストレーキャバシタスによるまみ
   ノイズ波用
   ツィストシールドゲーブルの使用
  ぴつティンドライハ出力
   エンコータの消費電力
   ツィストシェルドケーブルの他用
   エンコーダインターフェイス回路側・・・・28
   C NOSゲートに直接接続する方法
   フィトカプラを用いる方法
   ラインドライバを用いる方法:
   ひじり、ポセッタ単体解析・・・・・・・31
 IV.
```

ı

■は じめた

ハイティドライブ。RIIシリーズは、精密減速機として数多くの伝統を持つ「ハーモニックドライブ」と希土類でグネットを採用したDCサーボモータを組み合わせた。低速 島トルクDCサーボアクチュエータです。

本技術資料は、特にマイクロタイプのRE 5A、スーパーミニタイプのRH 6D、 11D、14D用として作成いたしました。設計の際には、カタログと併せて本資料を 参照ください

■特 長

■高出力、小型、軽量、

衛上額マグネットを採用したDCサーボモーを占権密議連載・パーモニックドライブ を組み合わせることにより、高出力、小型、軽量のアクチュニーをが実現しました。

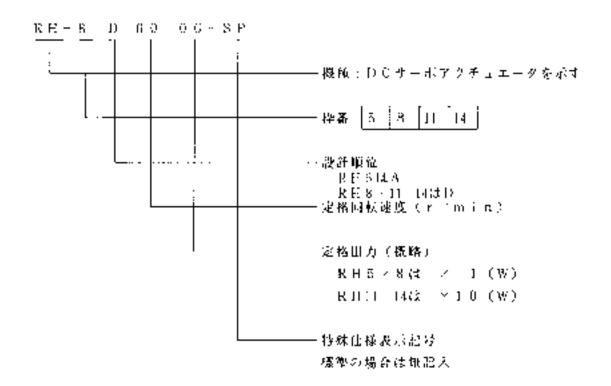
■高い位置決め特度と回転構成

減速部の、ハーモニックドライブ」は高橋度なお牛装置として高い評価を受けています。 サーボ系を構成するアクチョエータとして、鳥い位置決め精度と同転精度を可能にしまし した。

■考れた財政境性

拘累構造を基本とした構造となっています。

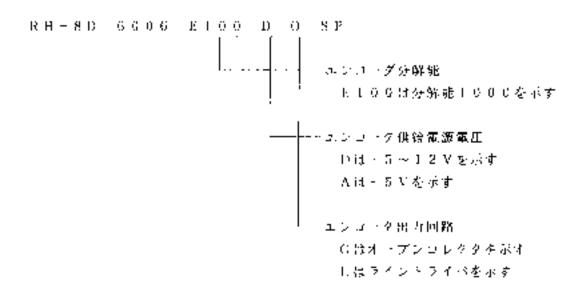
■保守が容易


減速部はメンデナンスフリーで、モータブラシの交換が容易に行える構造になっています。また、性能低下の原因となるブラン圏抵抗もキャップを取り外すだけで簡単に掃除ができます。

■信頼性の高いエンコーダ、タコジェネレータを採用

エンコーダ、タコンスネレータなどのセンサーは、浄風構造とし、特にFA用として常 種種を向上させています。

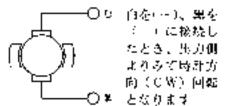
1. 型式と記号


●アクチョニ、タボ休(オブション取し)

●タコジェネ付き (オアション)

R II
$$= 8\,\mathrm{D} + 6\,9\,0\,6 = \frac{\mathrm{T} + 8\,\mathrm{P}}{\frac{1}{1}}$$
 タロジェネ付きを示す

■エンコーダ付き(オプション)


2. 主仕様

3. 回転方面

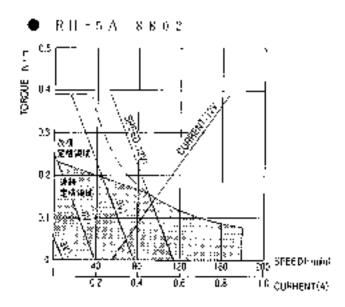
定 格;連続 回転方向:正通回転 頻磁方式:永久磁行 捞 透:全閉

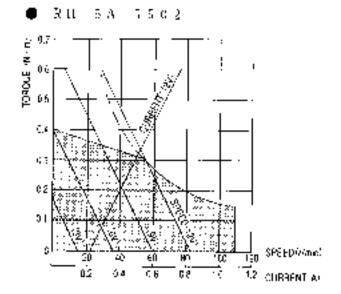
・ 額:B種 掲 滑:ケリ・ボーロッケラーがはつ。

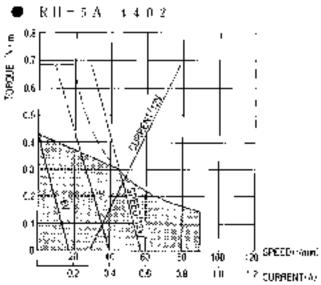
種報耐力・AC509V/1分開 - 微 装 色:思 種釋現就 100M公以上(DC500V/1) 期間温度:0~-10℃

4. サーボアクチュエータ仕様

●特 件 表

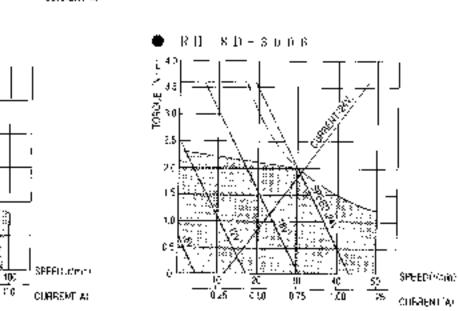

●特 件 表									
74441	-9-	3H-5A		Ed:	-3D	RH	-11D	RIE	110
項 日	3802	5 5702	4402	6006	3335	5000	l 3001	6002	3003
建度田力 * 5	1.5	1	: 4	8, 6	6.3	13. 6	12.3	200.0	18. 5
延特推进 * *	'	12] 2	И	:	9	j 2	1
定格電流 ・ 3	_	3.5		1.5	0.2	: :	3	I.	ë
定格トルク * * V-m	0, 16	0.20	1 (0.29)	1 4	3.0	2.2	3. 9	3.2	5.9
į sam	- 1.5	3.0	3, 0	14	- 39	• 22	-14	- 83	- 131
定指问题:速度 * 5.10	inSE	55	R	(4)	ட்ல	60)	30] s(]	33
最大連続 サ/ナナ ハーウ	0.31	0.36	0.43	j 1.5	2.0	2.5	4.4	5.4	7.8
ストールトルグ <u>kg/s</u>	m 24	1.0	4.4	.5	! 33 =	25	45	59	80
膦啉最大稳液 1/44 //	0.81	0.73	0.77	1.6	1.1	2.4	2	5.4	[11:T]
野時最大 Style + ** New	3 39	0.59	0.69	2.7	3.5	4.9	1.8	16	20
k//m		6.0	7.6	27	36	50	80	140	200
最大回転速度 × r/m	s. 180	110	90	100	50	1:11:	50	100	50
「トルク定数 × <u>Xes</u> 」	0.69	<u> 1.1:</u>	1.38	2.10	1 28	2,40	4.91	2 92	5.7ri
kgfm	1. No. 1 7.06	11.3	14-1	21.4	42 9	35.L	50. T	29, 8	(8.8)
誘起電話定数 * 5/3	i f hat. ∤ 0.08 i	0.12	0.45	6 22	0.54	0.26	0,30	0.30	0.60
僧性 モーメント kg/m	6.2 × 10°	¹⁵ 16×10° <u>1</u>	[25 × 10 ^{-1]}	37.KI0 ⁻¹	150×10^{-3}	110 x 30m	430×10^{-4}	200 X R0 Tf	830×10^{-1}
2,914:	6.5g 0.1905	0.006	0.026	(0.0)	0.35	U II	0.44	0.20	0.83
機味的時定數 es		13.3		8.	E	8.	ī	7.	ņ 1
定格パワーレイト * 677/	as (1.329)	0.066	0 (34	<u> 1 g 5</u> 1 .	0, 29	0.42	0.36	0.51	0.42
熱時定數 * mm.		5.2		. ') 		:	1	<u>l</u> į
熱扶抗 医代心	<u>'</u>	ii -		-1	2	:1.	3	2	8
減速比 × LE	1.50	1.80	1.100	1:30	1:000	1:50	1.100	T-50	1:100
許答ラシアル対重	1	(9		19	<u>6</u>	24	5	<u> :0</u>	2
I	L	ń U		2	0	2	5	40	i
許済スラスト荷重 A		26			5	IN.	— · · · I	39	2
įša:		3.0		1	າ	3	j '	·II.	:
(モータ定権出力) ※ (等)		(2, 6)			11	(2	_ · · · · I	(30	
(モータ定語改要) - ★ (n/b	na ·	14500)		(3)	337	(3)	JU)	(30)	
電機子抵抗 ②		8.5		_	()		- j	2.	7
『竜龍子イングタタンス 生物出し]	2.7		2.		I.	(<u> </u>	1.	1]
献赞的陈定数 - 5		C 31		<u> </u>	22	0.)	ši i	D :	
興食荷ランニング電流 *** A	, 0, 2°	0.21	0 28	0.38	0.76	0.61	0.55	0.89	. j aj

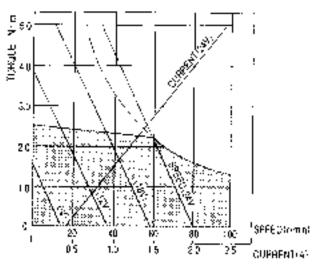

- (注) 1. * の値は、温便上界段和時、その他の依は20でのときの値です。
 - 2、**の流は、最大許容値を示していますので、この傾映でに制御してください。
 - 3. *** は定路回転速度時の値です。
 - 4. わたニータ 仕様は、全て出力鯖に於ける値を示していますので、いじの口可との効率を含んだ値です。
 - 5. 機性ビフルは、E 5 軸に於けるやすといわられての貨物にあるのでは作りの合計値を、出力側に換算したものです。
 - 5 アババーを仕様は、次に示す例に収熱板に収り付けられたときの値です。


BH 5A $\pm 100 \times 100 \times 3 \text{ (mm)}$

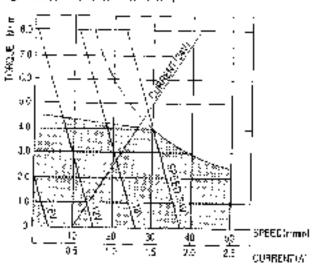
80 80, 100, 140, 11, 150 × 150 × 6 (mr)

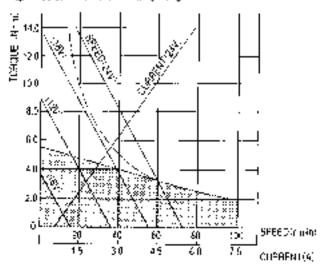
5. 特性曲線

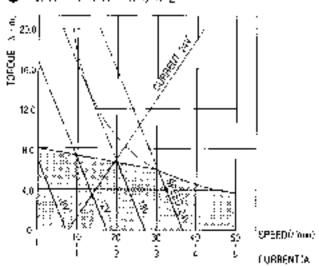



RH 8D 6006

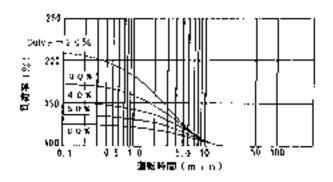
30 04 °€C O &

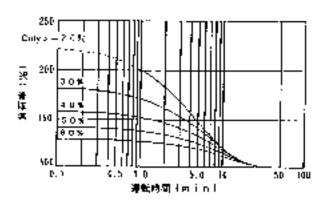

60 12


D. RH. IID~€oor


RH=11D=3441

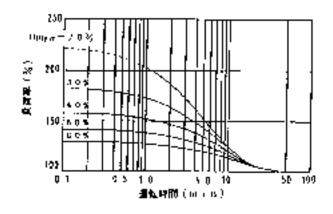
RH = 1 4 D = 8 € 0 €

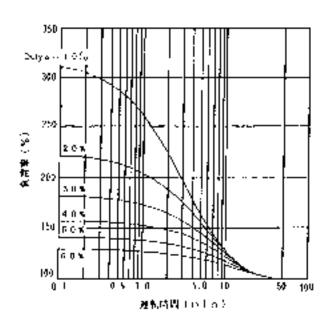

RH+14D+3002

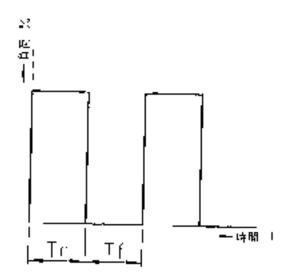


6. 過負荷デューティサイクル

R II - 5 A


■RH 80




● R II + 1 1 D

■ R : L = 1.4 D.

(注)図中町一定の食荷率を超えて、破線で示されている部分は、アクチュエータの 最大トルクをオー・・していますので、この負荷率部分では使用できません。 アクテュエータを過貨貨で反復的に駆動する場合、運転可能な時間半では次の式から採出できます。

% Duty
$$a = \frac{Tr}{Tr + Tf} + x + 0.0$$

水流算例 RH 11C 6002≫

1 5 0 %負債率で、%D b () を3 0 % とすると、過負荷デューティサイクル特性 曲線から、運転時間半す。(サナが求められます。

定格トルクに対し150%の過り荷で4分運転した場合、

従って、9.3分間の休止時間が必要です。

7. 機械的特性

7. 1 許容立ジアル荷重、赤沼スラスト荷重

出力輸資省ラジアル・スラスト荷重は下記のようになります。必ず資客採収下でご使 知ください。

●産客ラジアル資重、許容スラスト荷重

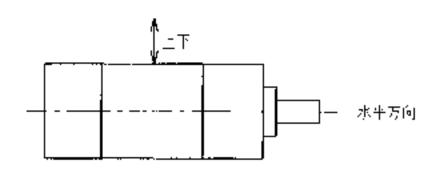
,		11 0 2 0 1	········
有旅	許 容 ラジアル 荷 重	許 - 淳 スラスト 荷 - 重	****
	Fr(N)	FistN)	
2H+5A	59	29	
311-30	196	98	l VF :=:/2
RH-11D	245	196	
RH-(41)	39%	392	

(注)下記荷重は、回転数と荷重よりベアリングの寿命を考慮して設定したものです。 ラジアル荷取の動作点が異なる場合は、表の許容ラジアル荷乗も異なりますので、お問い合わせください。

3 2 動器指度

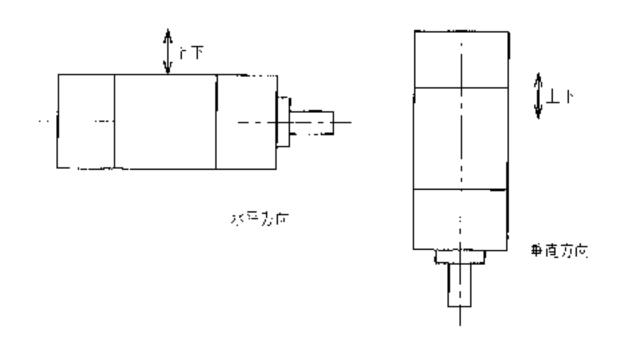
出力体および取り付けまわりの特度を下記に示します。

உக்கி ஊர்க்க ம


•	無特額	l lik				19 17 : m m
			ŧ,ï	夏 (1.)	7. R.)	**** (で) (で)
			フラング値	クラングの	出力推構の	^~~ r®j @=.
ì	<i>5</i> 7	Æ:	の出力値に	ほめあい外	数 む].
			対する	隆の偏心	l	▎ ├ <u>ॏ──★</u> ┆ │ │
i			新海線 (4)	(3)	(0)	
ſ	811- 5).i	0.04	Ո, Ոֆ	0.03	
	3H - 5	D.	0.04	0.04	0.03	│
	201-1.	,l)	0.34	0.04	0.53	/// L
	RH+1i	υŢ	C. 114	0. 04	0.03	

(在) T. E. A. Clotal Empirator (cading)

7 - 3 - 化微整性


アクチョエータ軸を水平方面に取り付け、上下方向の衝撃を加えたさき、衝撃加速度 $245\,\mathrm{m}$ $-\mathrm{g}^{\pm}$ (25 G) 、衝撃回数3回に耐えます。

出力相方向に衝撃を加えることは、絶対に避けてください。

7 4 5H48 N.

アクチュエータ軸を水平方向・垂直方向に取り付け、上下方向の複数を加えたときの根動加速度 2 4 . 5 m \mathbb{Z} s \mathbb{Z} に耐えます。

7 5 環 境

11. アクチュエータの使用および保存は以下の環境内としてください。

現版 動作時 : 有ペーオリング

保存時: 20~160°C

湿度 動作時 3ラー80MRH(結構なきこと)

保存時:「10~80%RH(結繁なきまご)

2) 状のような環境では使用できませんのでご注意ください。

- 、水や油等に触れる場合。
- ・薬品や塩水等の腐蝕性液に触れる場合。
- ・塩素ガス、水素ガス、酸素ガス等の腐蝕性および爆発性ガス中で使用する場合
- 不活性カスおよび食室中で使用する場合。

7 6 ラチェッティングドルク (機械的限界トルク)。

運転中に過火なトルクがかかると、ハーモニックドライブの街のかみあいが正常に行われなくなら、機関的に歯がずれてしまう場合があります。これをラチェッティング 現象、そのときのトルクをラチェッティングトルクと称しています。どのような場合でも、表に示す値を超える衝撃負荷が、かからないようにしてください。

●ラチェッティングトルク

模棱名	グチェッテ (N⋅m:)	<u>(シグトルク部)</u> (kgt・cm)
BH - 5A -8802	14_70	14 P.L.
RH - 5A 5602	3.1 _ 1% [5	21 - 2 <u>1</u>
RH 5A 4402	2.1 48.3:	21 <u> A</u> CC 38 ICE
RH <u>8D</u> 806 RH- 8D 306	$\begin{bmatrix} -3.7 & 13.45 \\ -4.9 & 13.45 \end{bmatrix}$	50 Sec.
KIF111048051	n,t PUE	65 PG.
RH-110-3002	103 <u>R</u> F	105 JULI
RH-14D-9002	16.7 - 15.1	170 J.J. J.
kH+84D+0002	29.4 以下	500 J.J.F.

<u> 7 7 方向位置決め精度、</u>

繰り返し位置決疫請度、反似位置決め請度。

予 L S → B 6201 reszt 工作機械の試験方法通則)による一方向位置供め、繰り返し位置決め構度。反転位置決め構度を下表に示します。この値は代表値を示します。 (定義については、p 23 参考資料 F をご参照ください:

●報 10

特度	- 方向位置:	火が特度	繰 り返し位置	決め特度	反極位置決め精度		
21/16	rad	are min	!"red	ang man	ræd '	are inin	
KH5A	1.31×10^{7}	4.5	$\pm 4.36 \times 10^{-9}$	415	ן געי מנ×757	25# F	
RH-8D	727×10^{12}	25	$\pm 2.91 \times 10^{-1}$	± 1	2.91 + 1079以下	1.3% F	
RH-111)	5.82×10^{14}	2	± 2.91×10 ⁻¹	4.7	291× 6"12 F	ነዴፑ	
RH (41)	582×10 ⁷	3	± 2.94 × 10 ⁻¹	±:	$2.91\times10^{74})\%~\mathrm{F}$	1.00 %	

(新定条件) 负 荷:無負荷

回転進度;完格值

7 8 取り付け方向

繊速部(ハーモニックドライブ)には、専用グリースを使用しているため、全方向の 織り付けが可能です。

但し、思力動士向きでは、モータ内にグリースが終入する恐れがありますので、ご正 意ください。

7 9 ブラシ寿命と交換

ブラシの寿命は使用環境や使用状況等により大きく変化しますが、おおむれ下記条件 を交換の目安としてください

ビーク電流が頻繁に加わり負荷変動の激しい円途 : 530~3040時間 数の可変速運動または定格運動で負荷変動の少ない用途:3000~5000時間

プラシの点検と交換およびプラシ摩耗粉の清掃要領は取機説明書をご参照ください。

8. バリエーション

<u>操御オプシュン</u>

アクチュエータには標準オブションとしてオプティカルエンコーダとDCタコジェネルータが用意されています。型器により、取り付け不可能なものもありますので次に示す表をご参照ください。

●オブション

19.1 AF	エンコ・ダ付	タコジェネ付
R51- 5A	0 -	
30- SD	_	<u>. </u>
= RILHD		
KH+14D	O	

○:標準 >:対応不可

9. オプティカルエンコーダ

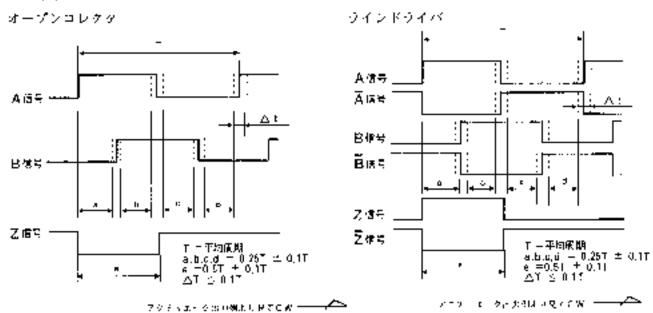
9 1 聖式と分解能

● 型式と分解能

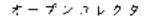
分解能 型器	200	364	500	1040
R91-5A	_^		Λ	7
RE-80-110-110	2	^		.;

○○:標準 △:準標準 ×:対応不可

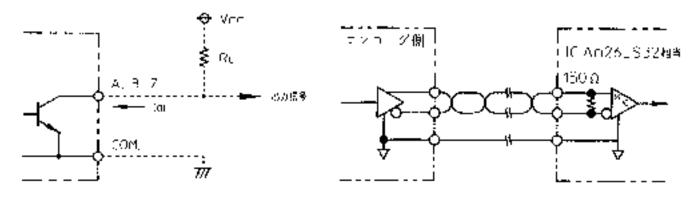
本エンコーダはモータ側に装着されますので、アクチュエータ出力和での分解能は、 繊速比を考慮する必要があります。


例えば、1:100の減速比を持ちエンコーダの分解が 1,000の場合は、出力確認の分解 能は、1,000×100×100,000 となります。

9 - 2 付 検

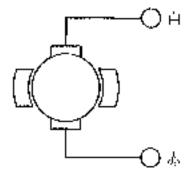

●エンコーダ仕様

■ > > = > 1 18k					
_ 型番	Ri F 5A	R21-80, 1	Ti. 4D		
ガス		メンタル			
那万回路	\$177 /31/99 379 F 340	aーア ^ヘ ンフレフタ	54VF15461		
電線電圧 (10)	-5V U58 ₀	+4.75~12.6V	±57±596		
滑雪電流	KOnA max. 170mA max.	686A max.	§70mA max.		
分解能	200, 360, 500	200, 360,	500.1000		
取力量等	3 チャンネルコ	А. D. Z)			
出力波形	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35			
出力億和電圧	V et = 0 5V max.				
115.75 YEAR	1 ct. 20a3	max.	_		
出力許容赦人電圧	36V DC max. —	36V DU mark.	<u> </u>		
信号立上り時間	$\frac{1}{\mu} = \frac{\pi}{2} \text{ max.}$ $0.1 \mu \times \text{max.}$	lges man.	0.]дз пах.		
信号立下り時間	$i \mu = n \omega x$ $0.1 \mu s max$	Line max.	0 Lμ s πωx.		
最大吃苦胃波数	100kffg	125%F2			
うたは色	L s	D			
許容於大回転數	∂5, DOBer∠min	6. 000 r	nin		
似性モーメント	0,0[96×20 °g + gr	4), 29d z 10°	1 K = 101		
W 90	258	103	í		


9-3 图为波形

<u>9 4 用力函数</u>

ラインドライバ



<u> 男王方。リード線の色</u>

10000000000000000000000000000000000000	R[[-5A	RH-8D, (1D, 14D)		
線色	オープンコレクタ	ラインドライバ	オープンコレクタ	- タイントライバー	
茶	信りA	(a ViA	据學A	€ VA	
H H	-	宿り A	сом .	信券A	
#		福罗B	信提下	福号 B	
A)A		信导B	COM	168B	
! # _	<u></u> 1752	位置と	G9/2	保导2	
棉		48500	СОМ	位号 <u>2</u>	
H	4500	電源	電源	2000	
# '	グランド(COM)	<u>グラント</u> (COM)	グラント(COM)	グランド(COM)	
シールド	フローティング	プローティング	フローティング !	フローティング	

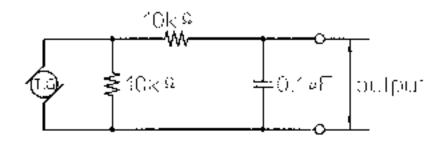
10. DCタコジェネレータ仕様

RE 90、RE LLD、RE 14D は速度検出組としてD 0 クロジェネレータをオプションとして用意しております。(RH-5Aにはありませんのでご注意ください。)

リード線:耐熱ビニール電線

 (0.4 m/m^2)

極 性:出力側より見て


時計方向問極のとき

白(-)、か(-)

●特格表

# TYT I T 4 C		
出力電圧	39 ± 10% − 10%0 i fm.	Ŋ
リップル (実効値)	1 %	$(230 \sim 5000 \mathrm{r/min})$
ሃቃፖቱ (₽ ⋅₽)	3 %	$(230\sim 5000 \mathrm{tr/min})$
直線性	1 %	$(200 \sim 500 ({\rm tr/min}))$
万何桶效	1 %	$(200 \sim 5000 \text{r/min})$
湿度係数	0.02% 1°U max	
ロータイナーシャ	11.8×10 (g + m)	
超機子與抗	45Ω ± 10%	(20°C)
電機手インダクタンス	7πH ± 20%	
最大回転数	5380 r/sin	
- 経療トルク	3. 9 × 10 °N + m	
股小貨荷抵抗	10 kΩ	
绝緣抵抗	100 MΩ	(D.C. 500V X #)
élic	A C 500 V 1 6F W	<u> </u>
は 代	17. 98 kg	

- (注) 1. 表の確はモータ軸におけるタコシェネレーを単体の値です。
 - 2. 特性は、次のフィルタ回路を通じて測定した値です。

11. 設計上および取扱上の注意

上 1 上 使用多恶気

●動性ガスやオイルミストの中での使用または、各種の油や水等が直接アクチュエークに満下するような環境での使用はできません。そのような場合は、保護カバーを付ける等の対策が必要です。

11 2 衝撃を与えない

アクチュエータを取扱う際、それらに過人な衝撃が加わらないよう注意してください。 特に出力軸への変撃はハーモニックドライブ部やエンコーダ等に損傷を招きます。据 え付け時にハンマー等でたたかない、落下させない等の注意が必要です。

1-1 3 リード線の扱い

各リード線には、9.8N $(1\log t)$ 、RH-5以4.9N $(0.5\log t)$ 以上の振力を加えないよう注意してください、抑え付け時、リード線には、必ず金良を持たせ、規定以上に張力がかからないよう配慮してください。

リード線が展測運動するような使用方法の場合には、断率半層を抑動以上としてくた。 さい。

11 4 ケーブル配線

フイズようブルを助止するために、各ケーブルはフイス発生機器や、フィズ誘導源となる他の配線等から、できるかぎり難して配線することが収収です。モータのパワーラインおよびタコシェネレータ信号ラインとエンコーダ信号ラインを、同じ一本のケーブルを用いて配線することは禁物です。また、他の機器の信号ラインと共通ケーブルにする場合にも、それらのラインとフイズ的に下述しないが等の考慮が必要です。

1.1 5 モータの配線

モータの配線は、導体断値格がUrbun[®]以上の線射を用いてください。周囲の信号回路へのフィス誘導を特に難う場合には、シェルドケップルで、金属電線資を用いて配線してください。

<u> 1 1 - 6 - タコジェネレ・タの配線</u>

タコジェネシータの配線は、模体動血粉が 0.4mm² 以上の信号伝送用のシールドケーブルを推奨します。伝送距離が長い (概ね1元以上の) 場合や、フィズ環境が悪い場合にはフィストペアケーブルを製出してください。

11 - 7<u>コンコーダの配線</u>

(1) 伝送ケーブル

エンコーダの電源および信号の伝送には、なるべく信号伝送用のツイストペアシールトケーブル線を使用してくたさい。伝送距離が約1~2m以内でノイズ環境が良好であれば、シールドケーブルの使用も可能です。ケーブルの距離が長くなると、ノイズの影響を受け易くなると同時に、ケーブルの持つストレーキャパンタンスの影響で信号パルスの立ち上かりに遅れを生じ、受信側での信号伝送ミスの原因となります。ケーブル長さはできるかぎり短く設置することが必要です。

Tp. 24参考資料 IL 参照。

(2) 電源供給

次のような場合には、エンコーダの内部回路が破損し、使用不能となりますのでご注意くたさい。

- (イ) 電源の極性ミス
- (中) 過電圧の印施
- (ハ) 過人なサージやスパイク電圧の印加

(3)エンコ・ダケーブルボ圧降下に対する配慮

電源集給ケーブルが長い場合には、ケーブルの削減抵抗による電圧抵抗を考慮する必要があります。あくまでもエンコータ目出ケーブル端部での電圧が規定値にある事が必要です。特にオープンコレクタ出力方式のCOMラインは電源電流と信号電流のトータルが流れます。このトータル電流に対する電圧降下を検討し、場合によっては、COM.ラインを電源用と信号用に分ける等の対策が必要です。

一般的なケーブル(直流抵抗率0.15Ω m程度)を用い、伝送印象が約10m以下の条件では、実明上電圧降下を考慮しなくとも問題ありません。

(4) 信号インターフェース

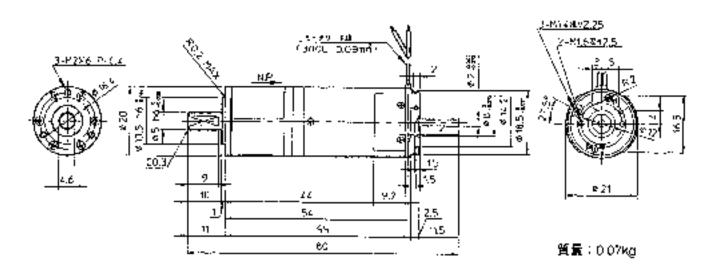
エンコーダのフィストラブルを訪くために、信号のインターフェースには充分注意し 適切な設計を行う必要があります。

インターフェース回路例については、6.28 参考資料 面を参照してください。

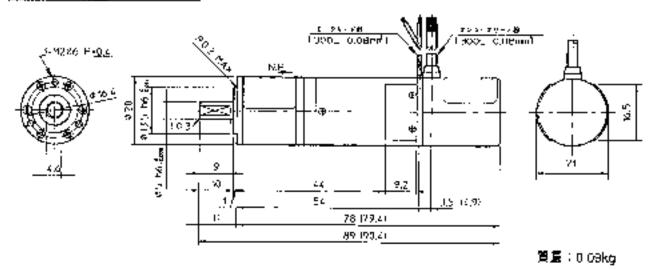
(5) 出力段素子の破壊防止

次のような場合には、エンコーダ信号関力段素子が数値することがありますので、注意してくたさい。

- (イ)過鑑法(電源への知銘等)
- (ロ)過滤圧や過失なサージ、スパイク電圧の印加 (田力許容最大電圧を一瞬だりとちオーバーしないよう作箋してください。)(ハ) 液電圧の印加

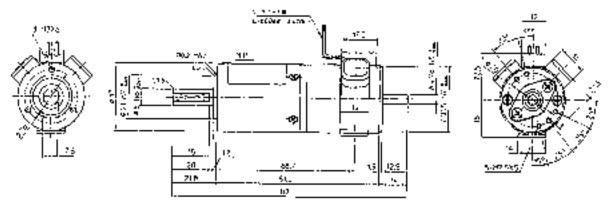

11 8 分 船

アクチュエータは絶対に分解しないでください。分解すると、取扱いミスを異物等の 役人により、再使用時のトラブルの原因となります。

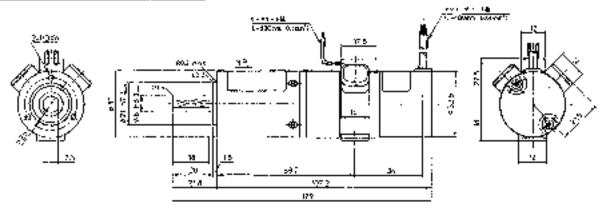

12. 外形寸法図

· RH-5A

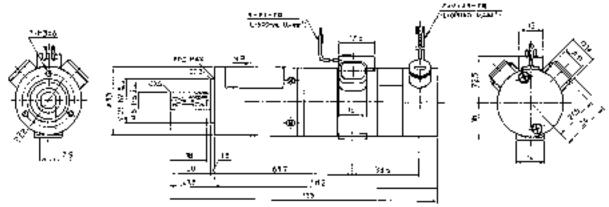
アクチュエータ本体(オブションなし)


エンコーダ付き(オブション)

は 500 polse, rotation の場合を示す

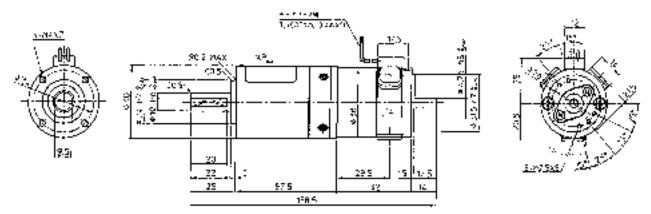

·RH-8D-XX06

アクチュエータ本体 (オブションなし)

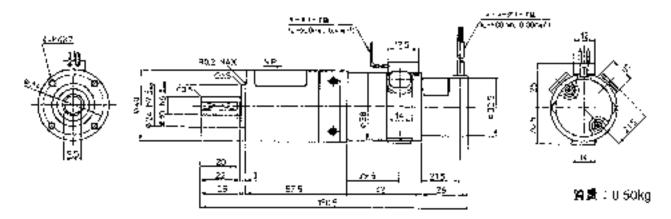

罗尼: 0.26kg

エンコーダ付き(オブション)

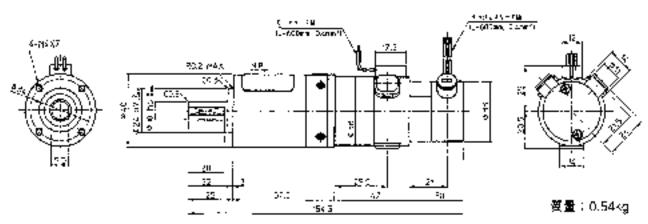
質量: 0.30kg


<u>タコ</u>ジェネ付き(オプション)

消退: 0.34kg

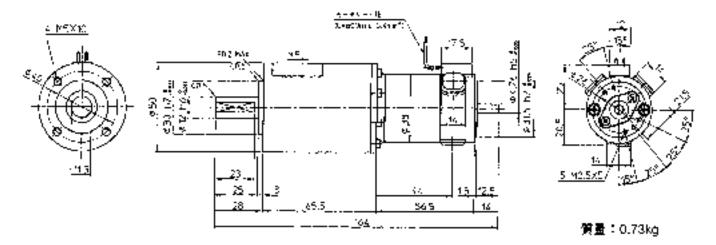

· RH-11D-XX01

<u>アクチュエータ本体(オプションなし)</u>

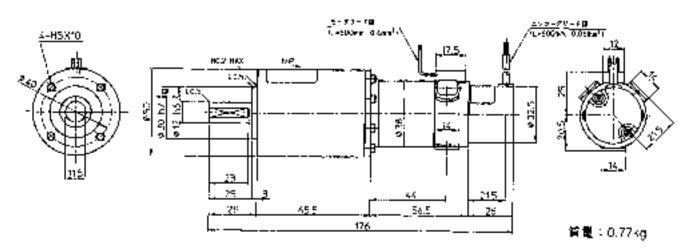


質題 : 0.46kg

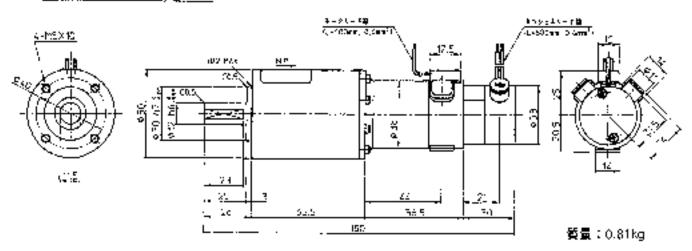
エンコーダ付き(オプション)



タコジュネ付き(オブション)



· RH-14D XX02


<u>アクチェエータ本体(オブションなし)</u>

<u>エンコーダ付き(オブション)</u>

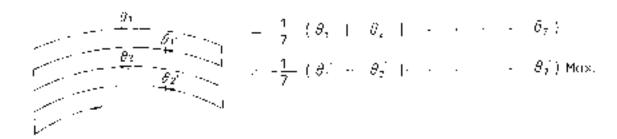
タコジェネ付き(オプション)

■参考資料

1. J18 B 620 Ligwによる精度表示と測定方法

■阿無難運動の一方向位置決め

まず、定の向きで適当な1つの位置に位置決めし、これを基準位置とします。次に同じ向きへ順永極微熱めを行い、それぞれの位置で、基準位置から実際に回転した向腹と同転すべき角度との差を測定します。これらの他の1回転中における最大点を測定値とします。可促運動の連続位置決め機能を基備するものの創定は原則として回転範囲の全域にわたり、301 ごとまたは12ヶ所について行います。

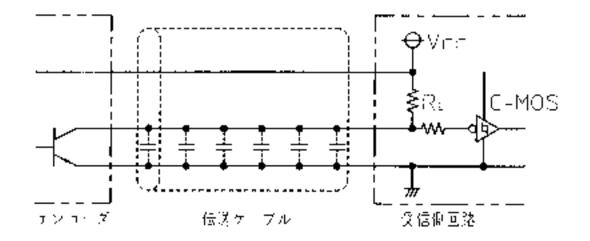

●回報運動の母返し位置決め

任意の一板に同じ向きからの位置決めを7回線返して停止位置を測定し、読みの数大差。の1/2 を求めます。回転運動の連続位置決め機能を共備するものの測定は、回転網距の 任意の3ケ所のそれぞれの位置で行い、求めた質のうちの最大のものを測定値とします。 制定値は角度で表し、表示は最大差の1/2 に(=)を付けて表します。

●に転進動の反転位置決め

まず一つの位置について正の向きでの位置決めを行いるの位置を測定します。 (図のり、) 次に同じ向きに指令を与えて回転させ、その位置から負の向きに同一の指令を与えて回転させ、負の向きでの位置決めを行いその位置から正の向きに同一の指令を与え回転させ、その位置から正の向きに同一の指令を与え回転させ、正の位置決めを行いるの位置を測定します。 (図のロッ) 以下この動作および測定を繰返し、正および負の向きでの、それぞれ7回の位置決めの停止位置の差を求めます。この測定を同転範囲の任意の3ヶ所のそれぞれの位置で行い、求めた値のうちの投入のものを測定値とします。

反転位置法の特度の測定値


U. エンコーダ信号の伝送距離限界

(1) オープンコレクタ出力。

オープンコレクを出力タイプのエンコーを借りを一般的な信号を一プルを思いて、伝達する場合は次の事を考慮ください。

- a. ケープルのストレーキャパシタンスによる波形主みの影響
- b. ケーブルのノイズ誘導の影響

●エンコーダ接続例

●ケーブルストレーキャパシタンスによる重み

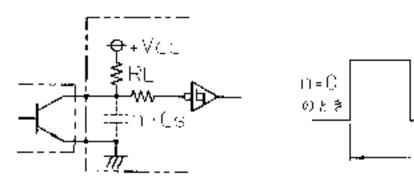
ケーブルの導線級抗を無視するとすると、促進回路は零価的に図りのように表すこと ができます。

ストレーキャパシタンスじょの影響で、理想的な信号波形。図2に対して図3のよう に、立上けに遅れる生じます。この立上がり45間1 r が大きくなり、

$$t : \exists \frac{T}{8} \qquad \forall = \frac{1}{1}$$

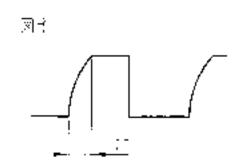
となると、信号伝達に支障をきたします。

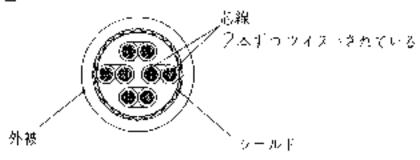
t in (5 kg

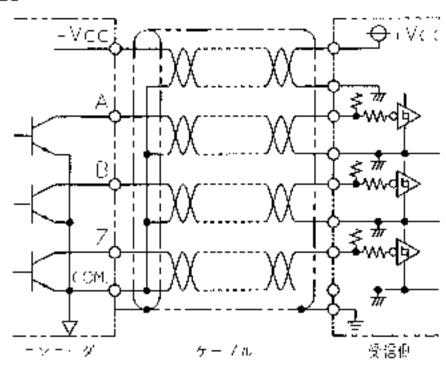

となるので、いきエンコーダ信号速度が子びルス。真白の場合のケーブル観異距離は、

$$n = \frac{1}{18 \cdot 4} \cdot \frac{1}{C_{s} \cdot R} \cdot R \cdot r$$

実際にはマージンを考慮する必要があります。


网工




Cs:ケーブルのストンーキャパンタンス ドア mil

n:ケーブル袋(m

25

●ノイズ誘導

フィス誘導に対する法送距離陰界は、フィズ環境や回路条件等によって考しく異なり、 一律には規定できません。フィズ誘導の要因から推奨できる最大長さは「±mとしましま。 す。

(注) ストレーキャパシタンスによる波形である要因から決めた、伝送地離が10m以上となる場合でもノイズ環境や受信回路条件から10m以上は好ましくありません。

設計にあたっては、実際の使用条件とそのシステムに必要な信頼度とを考慮して、値 載にケーブル長さを選択し、必要最小限の長さとすべきです。

●ツイストシールトケーブルの使用

信号伝送ケーブルとして、図りに示すようなツイストシールドケーブルを使用することによって、例フィブ性を向上することができます。フィス環境が悪い場合、および伝送距離が長めになる場合に、当ケーブルの採用を推奨いたします。可対のケーブルを用い、図るのように接続してください。ケーブルのシールドは、便同側でPif が後休に接続してください。

(2) ラインドライバ出力

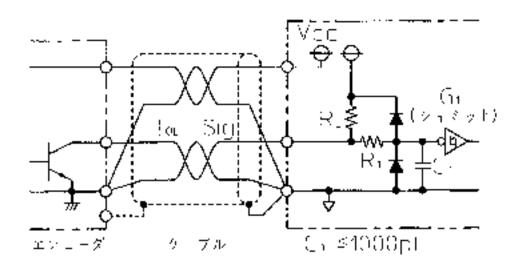
ラインドゥイバ出力タイプのエンコーダ信号を一般的な信号ケーブルを用いて信送する場合、次の事を考慮してください。

- a.エンコーダの消費電力(鼉流値)と鼉線抵抗による電圧降下
- b. ケーブルのフィズ誘導の影響。

●エンコーダの消費電力(電流位)と電券抵抗による違圧除下

ラインドライバの電源の仕様規格は5 V + 5 %(4.75V > 5.25V)です。エンコーダ電源用電線の抵抗値(伝送距離の 2 倍で計算する)とエンコーダ消費電力から電線による選用格子がこの規格以内になる様にして(たさい。

また、ラインドライベの信号伝送距離限界はノイブ環境や回路条件等によって著しく 質なり、一種には規定できません。ノイズ誘導の要因から推奨できる最大反当は20 mとします。設計にあたっては、支際の使用条件方そのシステムに必要な資額度方を 考慮して、領重にケーブル長さを選択し、必要最小限の長さとすべきです。


●ツイストシールトケーブルの使用

依号伝送ケーブルとして4対のツイストシールドケーブルを使用することを推奨いた します。ケーブルのシールドは受信側でド、ほか恒体に検疑してください。

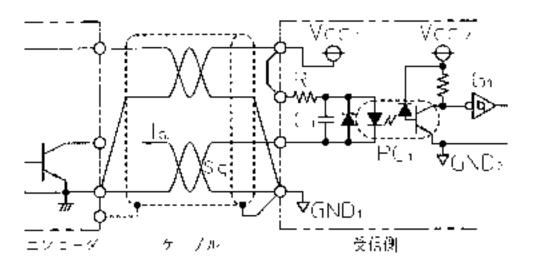
Ⅲ、エンコーダインターフェース回路例

オープンコレクタ(またはその類似)出力タイプのベルスエンコーダを使用するとき の、宿号インターフェース回路について、その代表例を示します。

●C 408 ゲートに直接接続する方法

- 数m以内の比較的類距離でノイズ環境の良い場所に適します。
- ・ブルマップ抵抗R。は155が 5~30m程度となるよう適定します。

$$I(x) = -\frac{V(x)}{R(x)} \quad (A)$$

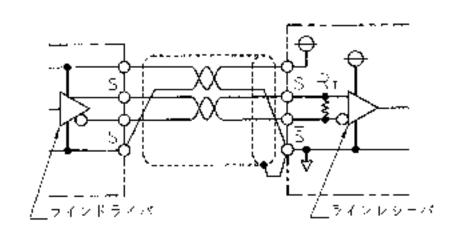

・フィルタ・定数R1、C1は、伝送パルスの最大周波数に対して、カットオフト制波数ト/か約2、8倍以上となるように遊びます。

$$f_{\sigma} := \frac{1}{2\pi C_{\pi}(R_{T})} (H\sigma).$$

- ・シールドは同路SND または領体に接続します。
- ケーブルはできるだけツイストケーブルを使用してください。

(電源および信号機をそれぞれGND に対してツイストペアさせます。)

●フォトカプラを用いる方法。


- 伝送距離しμ備程度までの使用に適します。
- PC+:例えばTLP550 (Max. 50kHz 程度の用金)
- ・1 mが10~20mxとなるようにRこを選びます。

$$\Gamma_{SF} = \frac{-|V| \sin \frac{1}{|R|}}{|R|} e^{|V| \theta} + -|Q|^{\alpha}$$

Virit フォトカプラの入力順鑑圧(約 1×14課程度)

- ・ C: を挿入して、R: 、C: によるフィルタ・効果を持たせることができます。(C: の選定は前項と同様)。
- ・ケーブルはできるだけウイストケーブルを使用してくたさい。
- ・シール下はエンコーダ電源 UND (GMD)が簡体に接続します。

●ラインドライバを用いる方法

- ・伝統距離が長くノイズ環境が悪い場合に適します。
- + ラインドライバ・RIT 5 用: AM26LS31, RII-8~14川: SN75ALS192
- ・Roは伝送線路の終端振記で、通常150…300Ωを用います。
- ・ラインレシーバーAM261.832, SN75173, MC3486, SN75175等, R9422準拠品
- (注)ここに記載した例はあくまで一般例です。其体的に設計する場合には、その使用条件に合わせた回路設計と定数選定が必要です。不明事項につきましては、弊社にご相談ください。

N. D C サーボモータ単体特性

アクチョエークにハーチニックトライフ記とマーカモータとで見り立っています。 ことが水するは、トークを作りな性をです。

● 医抗棒

定 整十重机 法磁力式。 医外趾征

悠 频、吊桶 **通量图为 32 3007** 。 : 55 W

建胶板位:170 分景长(90 7904 (V):

四辐光向:电路图片

微 一次:分别

46, 16 (A.) N

- 別別温度 · 05 4000

15 ft /k

• 1' H K						
		- 根 人	MIDPOSTICE	! - MDD08-2D2	All: Bust ZDZ	Mmpayapa
明 1		<u> </u>	8 H - 5 A	K22 (81)	SH 115	! ##:5#:5
変数出力	~	l w	3.3	_	" " . , "	3.0
1 -		L Sam	1 a.55 × 10 × 1		6.37 / 10	8.51 × 10 × 1
選絡下の *	×	kg Comp	3.977	8,00	9.55	11 11 11 11
岩格四転法度	×	c mis	1500	3000	3000	3 0 0 0
SEM 3B F	*	1	3	2.4	7.1	2.1
混粉液液	×	Α	0.00	րերի	1.3	2.11
(3) R		Nem	11,55 × 1.0	Nugs 16 (7 85 × 10 2	10.75 × 10
3 5 - 4 5 A 2	*	kar rem	0.056	0.36	0.73	<u> </u>
進級・ディーエイト	*	kw s	0.1	p.s?	1,1	1 84 _
<u>例如</u> X4股(2) J)	+		28 × 10 °	87 37 161	2003 8 197	19.5 × 18.5
加速定数	*	. ms	:5-8	11.1	15.5	1 <u>_6 , 2</u>
翰马黎大国勤死度 1 1 位/	*	r III. II	13000	<u> </u>	1000	5 11 11 11
蘇政教大士カラー(1765)	*	Non.	0.25 (10.00)	20 54× 10	00-18-100-1	61 71 8 10 7
2017/18/2017	٠.	kgf-:m	9 1.1	2.1	4.1	<u>1: . :1</u>
解除最大確認 (14年)	‡	<u></u>	7.4	a 0	A 3	
無 0 多 銀 銭.	•	A	0.12	- 11 13	0_11	<u> </u>
無負荷的報道度	+	. r II · II	. <u>. 1</u> 200	5000	1300	3809
16 11 12 · X > 3		, kg m ^e	0.003210.	II 002/8 10 3	9.931 × 18 ⁴	#.510 × [H 1]
		<u>∦f - cm rac</u>	0.003	3.0 /	0,002	<u> </u>
20 例 (15 D		υ	8.6	10	- "; ;	2.7
電視でイングタチンス		:nl:	. 4 7		: li	
126 NO 202 NO 400 AV		mV to acint	1 43	1.75	a 1a	11.11:
Not a set 80		Non-A	1.35 (26.5	4.218 (0.2	1 ob x 10 3	_ 3 Y 8 × 3 0 · 1
		kgf cm A	11 14	0.43	6.50	<u>a 55</u>
. 浄化・レク		N · ni	0.08 / [d 3	0.20 - 100	0.58 × 30 °	0.78 8 (0)
		F. 1 - 1 - 1 - 1 - 1 - 1 - 1	11.1118	0.01		
集型初勤保险		$\frac{N}{2}$ multiplication $\frac{N}{2}$	I	0.5418 ' .	: 3 <u>5 10 7 9</u>	30 × 10 ° ·
		of an house	1 ~ 13 .	5 - 1011	1 5 × ' 11 · '	4.0
教授的库定数		968	9.9	0.23	H 3.4	—
定 気 的 界定 数 系 大 器 機 子 編 學		30 S	130	10	130	1311
然時完數			3	5.0		7.5
数 机 tu		(C. W.	18	4.9	lı	— i . i — i
671 TOC 136		V		19.6	39.2	39.2
新存みタイルロース		hgf	1	2		
20.000 10.000 10.000		N.	7.5	4.8		19.6
製造 スタストの・1cm		hat	9.5	1	2	2
ጉ — ይ ጥ 🕸		kg	0.015	E 14	9.24) 3 h
M 8 0 75 3 7 L 7 ()	^	kg		0.22	9.29	9,08
150-945		No.	0.05	6.18	7 00	()
The state of the s	i		It	. 10. 1	L. F. ac. all ad als	

- 前1.1. 中の調理、製度主角整相所に終ける作です。その株のBidonである多の様です
 - 2、 毛发的静脉、中潜炎直流温光层映射多名为尽病的变体。
 - 本者の簡は、改になるという資格助は取り付けられだらたらのです。

保証期間と保証範囲 _____

保証期間および保証範囲は、次の通りとさせていただきます。

■保証期間

技術資料および取扱説明書に記載された、各項を遵守してご使用頂く事を条件に、納入後1年間、または当該品につき運転時間2,000時間のどちらか早い到達時期とさせていただきます。

■保証範囲

上記保証期間内において、弊社の製造上の不具合により故障した場合は、当該品の修理、または交換を弊社側の責任において行います。

ただし、次に該当する場合は、保証対象範囲から除外させていただきます。

- ①お客様の不適当な取り扱いまたは使用による場合。
- ②弊社以外による改造、または修理による場合。
- ③故障の原因が当該品以外の事由による場合。
- ④その他、天災など弊社側に責任がない場合。

なお、ここでいう保証とは、当該品についての保証を意味するものです。

当該品の故障により誘発される他の損害、実機よりの取りはずし及び取付に関する工数、費用等については弊社負担範囲外とさせていただきます。

Registered Trademark in Japan

■緊急時の修理・技術お問い合わせ窓口【緊急の修理依頼および技術的な相談窓口です】

TEL: CS部 0263(83)6812

受付時間: 月~金曜日 9:00~12:00 13:00~17:00(土曜、日曜、祝日、弊社指定休日を除く)

ISO14001/ISO9001 認証取得 (TÜV SÜD Management Service GmbH)

本技術資料に記載されている仕様・寸法などは予告なく変更することがあります。

https://www.hds.co.jp

不及所負付に比較されているには、 引及なとは「日なく交叉」のこ		Tittps://www.nds.co.jp
	本 社/ 東京都品川区南大井6-25	
		71) 7800(代) FAX. 03 (5471) 7811
	東 京 営 業 所/ 東京都品川区南大井6-25	
		71) 7830(代) FAX. 03 (5471) 7836
	東京営業所北関東チーム / 東京都品川区南大井6-25	j-3 いちご大森ビル ┃
	〒140−0013 TEL. 03 (64	10) 8485(代) FAX. 03 (6410) 8486
	甲 信 営 業 所/ 長野県安曇野市穂高有明	1 5103-1
	〒399−8301 TEL. 0263 (81) 5940(代) FAX. 0263 (50) 5010
	中 部 営 業 所/ 愛知県名古屋市名東区照	₹が丘21 TM21-2F
	〒465−0042 TEL. 052 (7	73) 7451(代) FAX. 052 (773) 7462
	関 西 営 業 所/ 大阪府大阪市淀川区西中	1島7-4-17 新大阪上野東洋ビル3F
	〒532-0011 TEL. 06 (68	85) 5720(代) FAX. 06 (6885) 5725
	九 州 営 業 所/ 福岡県福岡市博多区博多	-駅前1-15-20 NMF 博多駅前ビル7F
	〒812-0011 TEL. 092 (4	51) 7208代) FAX. 092 (481) 2493
	海 外 営 業 本 部 / 長野県安曇野市穂高有明	3 5103-1
	〒399−8301 TEL. 0263 (81) 5950(代) FAX. 0263 (50) 5010
	穂 高 エ 場/ 長野県安曇野市穂高牧18	356-1
	₹399-8305 TEL. 0263 (83) 6800(代) FAX. 0263 (83) 6901
	, i	