
HarmonicDrive 新产品速报 Vol.46

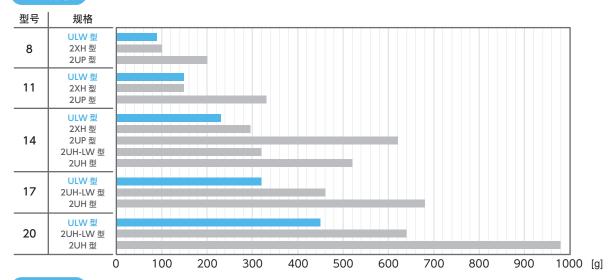
HarmonicDrive 超轻量·扁平^{*}组合型 CSF-ULW系列

全部产品种类

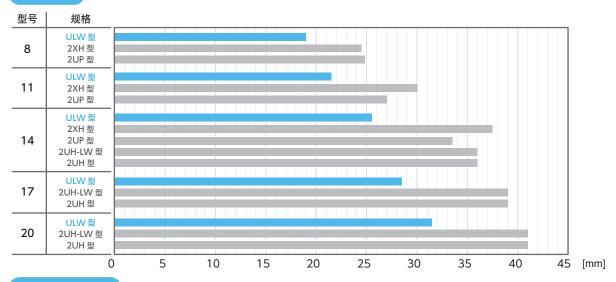
实现史无前例的轻量化和扁平形状

HarmonicDrive组合产品新增了追求轻量化和扁平形状的新系列。

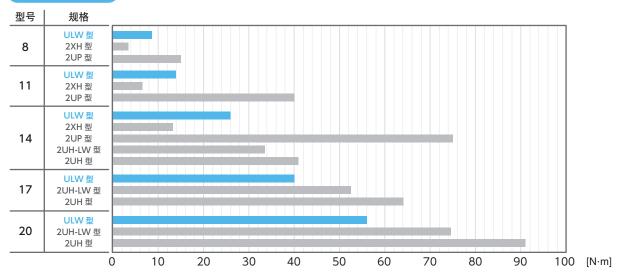
升级了组合产品的主力CSF-2UH型的构造和设计,实现了史无前例的轻量化和扁平化。


通过采用到机械手末端轴及各种机械装置,实现了机械手及装置的轻量化和小型化、有助于进一步提高性能。

全部5个型号,通过丰富的产品种类,可选择最适合的规格。


特点

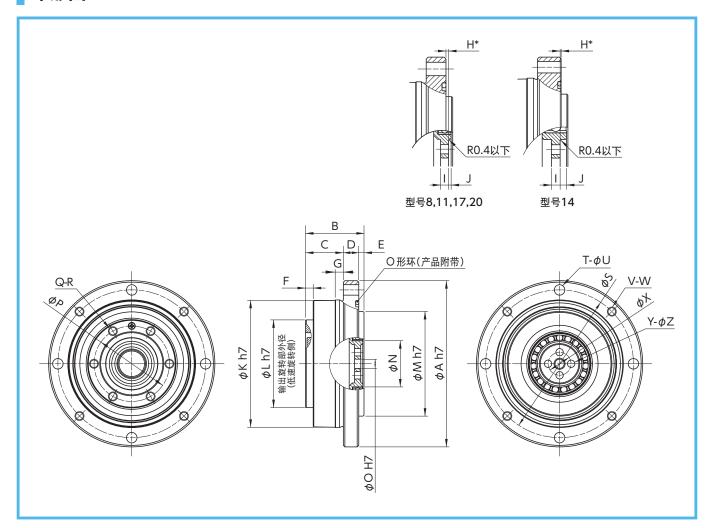
- 全部5个型号的产品种类
- 实现与原有系列相同的性能(主轴承性能除外)


重量比较

全长比较

容许静力矩比较

型号和符号


CSF - 8 - 50 - 2UH - ULW - 规格

• • • •	和刑名称 刑 是							•			
机型名称	型 号			减i	恵比			型 号	规格1	特殊规格	
	8	30	50	-	100	-	-				
	11	30	50	-	100	-	-	- 2UH: - 组合型		- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	
CSF系列	14	-	50	80	100	-	-		ULW : 超轻量型	无记录=标准品 SP=形状及性能等的特殊规格	
	17	-	50	80	100	120	-	和日主	起红里主	0. 为水类压带44343%%14	
	20	-	50	80	100	120	160				

额定表

型号	减速比		Or/min时的 E转矩		起动/停止时的 容许峰值转矩		平均负载转矩的 容许最大值		最大转矩	容许最高输入 转速	容许平均输入 转速	转动惯量 (1/4GD²)
		N·m	kgf⋅m	N·m	kgf∙m	N·m	kgf⋅m	N·m	kgf∙m	r/min	r/min	kg·m²
	30	0.9	0.09	1.8	0.18	1.4	0.14	3.3	0.34			
8	50	1.8	0.18	3.3	0.34	2.3	0.24	6.6	0.67	8500	3500	1.7×10^{-7}
	100	2.4	0.25	4.8	0.49	3.3	0.34	9.0	0.92			
	30	2.2	0.22	4.5	0.46	3.4	0.35	8.5	0.87			
11	50	3.5	0.36	8.3	0.85	5.5	0.56	17	1.7	8500	3500	8.6×10^{-7}
	100	5.0	0.51	11	1.1	8.9	0.91	25	2.6			
	50	5.4	0.55	18	1.8	6.9	0.7	35	3.6	_		
14	80	7.8	0.80	23	2.4	11	1.1	47	4.8	8500	3500	2.2×10^{-6}
	100	7.8	0.80	28	2.9	11	1.1	54	5.5			
	50	16	1.6	34	3.5	26	2.6	70	7.1			
17	80	22	2.2	43	4.4	27	2.7	87	8.9	- 7300	3500	5.5×10 ⁻⁶
17	100	24	2.4	54	5.5	39	4.0	108	11	- 7300	3300	3.5 × 10
	120	24	2.4	54	5.5	39	4.0	86	8.8	_		
	50	25	2.5	56	5.7	34	3.5	98	10			
	80	34	3.5	74	7.5	47	4.8	127	13	_		
20	100	40	4.1	82	8.4	49	5.0	147	15	6500	3500	1.1×10 ⁻⁵
	120	40	4.1	87	8.9	49	5.0	147	15	_		
	160	40	4.1	92	9.4	49	5.0	147	15			

外形图

■ 尺寸表 [单位: mm]

符号 型号	φ A h7	В	С	D	Е	F	G	Н*	1	J	φ K h7	φLh7	φ M h7	φΝ
8	54	19.0	12.3	5.0	1.7	2.5	2.5	0.65 0	2.0	0.7	41.5	28.5	34	12.5
11	63	21.5	13.0	6.5	2.0	2.5	3.3	0.35 0	2.4	1.3	50.5	36.5	42	18.2
14	71	25.5	16.5	7.0	2.0	2.5	3.0	0.30 +0.8	2.6	1.88	58.5	43.5	49	22.0
17	81	28.5	18.0	8.0	2.5	2.5	3.0	0.20 0	2.7	2.0	67.5	52.0	57	26.5
20	93	31.5	20.5	8.0	3.0	2.5	3.0	0.30 0 -1.0	3.1	2.6	77.0	60.5	63	31.5

符号 型号	фОН7	φР	Q	R	φS	Т	U	V	W	Х	Υ	z	重量(g)
8	3	24.5	6	M3×4.0	48.0	4	3.4	4	M3	7.5	4	2.4	90
11	7	32.0	8	M3×4.5	57.0	4	3.4	4	M3	12.0	4	2.9	150
14	11	39.0	10	M3×4.5	65.0	6	3.4	6	M3	16.0	4	2.9	230
17	13	47.5	16	M3×4.5	74.5	10	3.4	10	МЗ	19.5	4	3.4	320
20	19	56.0	18	M3×4.5	84.5	12	3.4	12	M3	25.5	4	3.4	450

^{*}H尺寸是指构成谐波驱动的3个部件(波发生器、柔轮、刚轮)的轴向调节位置及容许公差。由于影响其性能、强度,请务必遵守该尺寸。

角度传达精度

减速比	<u></u>	8	11	14	17	20
30	×10⁻⁴rad	5.8	5.8	-	-	-
30	arc-min	2.0	2.0	_	_	_
EON F	×10-⁴rad	5.8	4.4	4.4	4.4	2.9
50以上 -	arc-min	2.0	1.5	1.5	1.5	1.0

滞后损失

减速比	<u></u>	8	11	14	17	20
30	×10⁴rad	8.7	8.7	-	-	_
	arc-min	3.0	3.0	_	-	_
50	×10 ⁻⁴ rad	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.0	2.0	2.0	2.0	2.0
80以上	×10⁴rad	5.8	5.8	2.9	2.9	2.9
80以上	arc-min	2.0	2.0	1.0	1.0	1.0

刚性(弹簧常数)

 符号		型号	8	11	14	17	20
T-		N∙m	0.29	0.8	2.0	3.9	7.0
		kgf⋅m	0.03	0.082	0.2	0.4	0.7
Τ/		N·m	0.75	2.0	6.9	12.0	25.0
T2	<u> </u>	kgf⋅m	0.077	0.2	0.7	1.2	2.5
	1/4	×10⁴N·m/rad	0.034	0.084	_	_	_
	K1 ·	kgf·m/arc-min	0.010	0.025	_	_	_
-	140	×10⁴N·m/rad	0.044	0.130	_	_	_
	K2 ·	kgf·m/arc-min	0.013	0.037	_	_	_
减速比	1/0	×10⁴N·m/rad	0.054	0.160	_	_	_
30	K3 ·	kgf·m/arc-min	0.016	0.047	_	_	_
-	θ1	×10⁴rad	8.5	9.5	_	_	_
	<i>B</i> 1	arc-min	3.0	3.3	_	_	_
-	θ2	×10⁴rad	19	19	_	_	_
_	82	arc-min	6.6	6.5	_	_	_
	1/4	×10⁴N·m/rad	0.044	0.22	0.34	0.81	1.3
	K1	kgf·m/arc-min	0.013	0.066	0.1	0.24	0.38
	1/0	×10⁴N·m/rad	0.067	0.30	0.47	1.1	1.8
	K2	kgf·m/arc-min	0.02	0.09	0.14	0.32	0.52
减速比	I/O	×10⁴N·m/rad	0.084	0.32	0.57	1.3	2.3
50	K3 -	kgf·m/arc-min	0.025	0.096	0.17	0.4	0.67
-	0.4	×10-⁴rad	6.6	3.6	5.8	4.9	5.2
	θ1	arc-min	2.3	1.2	2.0	1.7	1.8
-	0.0	×10-⁴rad	13	8	16	12	15.4
	θ2	arc-min	4.7	2.6	5.6	4.2	5.3
	174	×10⁴N·m/rad	0.091	0.27	0.47	1	1.6
	K1 ·	kgf·m/arc-min	0.027	0.08	0.14	0.3	0.47
-	1/0	×10⁴N·m/rad	0.1	0.34	0.61	1.4	2.5
	K2 -	kgf·m/arc-min	0.031	0.10	0.18	0.4	0.75
减速比	140	×10⁴N·m/rad	0.12	0.44	0.71	1.6	2.9
80以上	K3 -	kgf·m/arc-min	0.036	0.13	0.21	0.46	0.85
-	0.4	×10-⁴rad	3.2	3.0	4.1	3.9	4.4
	θ1	arc-min	1.1	1.0	1.4	1.3	1.5
-	0.0	×10⁴rad	8.0	6.0	12	9.7	11.3
	θ2 -	arc-min	2.6	2.2	4.2	3.3	3.9

※本表的值为参考值。下限值大概为显示值的80%。

起动转矩

(单位:cN·m)

型号 减速比	8	11	14	17	20
30	1.5	3	-	_	-
50	0.9	1.8	3.6	5.5	7.2
80	_	_	2.6	3.6	4.5
100	0.7	1.2	2.3	3.1	4.0
120	_	_	_	2.9	3.6
160	_	_	_	_	3.1

增速起动转矩

(单位: N·m)

型号 减速比	8	11	14	17	20
30	0.7	1.4	-	-	-
50	0.55	1.1	1.6	2.7	4.3
80	-	_	1.6	2.7	4.5
100	0.75	1.5	1.9	3.0	4.8
120	-	_	_	3.3	5.2
160	-	-	-	-	6.1

正输入破坏转矩

施加超过使用领域的过大转矩时,会因为一次负载而产生棘轮效应及连接部破损等不法继续使用的损伤。 这种产生破损的最小转矩定义为正输入破坏转矩。

(单位: N·m)

型号 减速比	8	11	14	17	20
30	15	40	_	-	_
50	16	47	88	150	220
80	_	_	110	200	350
100	19	60	84	160	260
120	-	_	_	120	240
160	_	_	_	_	220

屈曲转矩

(单位: N·m)

越 芽		11	14	17	20
全减速比	35	90	190	330	510

空载运行转矩

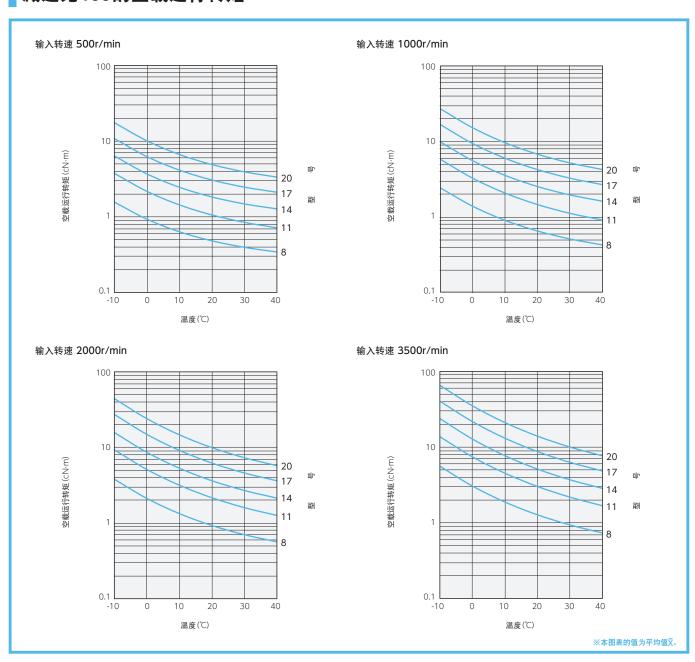
空载运行转矩, 是指在空载状态下旋转谐波驱动所需的输入侧(高速轴侧)转矩。

※详细数值, 请洽询本公司客户咨询中心。

测量条件

润滑条件	减速机部(8,11,14,17)	减速机部(20)	主轴承部
川	Harmonic Grease® SK-2	Harmonic Grease® SK-1A	MULTEMP HL-D*
	转矩值是指在输入车	专速2000r/min的条件下磨合运	行2小时以上后的值

※"MULTEMP"是协同油脂株式会社的注册商标。


空载运行转矩修正量

(单位:cN·m)

型号 减速比	8	11	14	17	20
30	0.54	1.05	_	-	_
50	0.23	0.43	0.63	1.01	1.54
80	-	-	0.11	0.17	0.27
120	-	-	-	-0.13	-0.19
160	-	-	-	-	-0.45

※型号8,11的修正量是润滑油温度为30℃左右时的平均值。

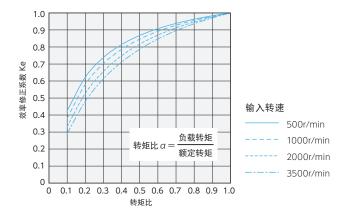
减速比100的空载运行转矩

效率特性

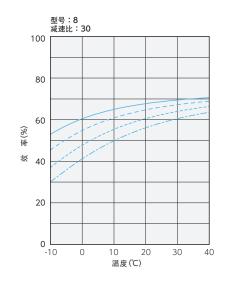
根据负载转矩, 会导致效率改变。 请根据图表计算修正系数 Ke, 并通过下面的计算式进行确认。

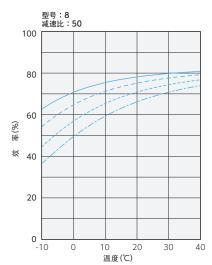
※1 效率修正系数是润滑油温度为30℃左右时的平均值。

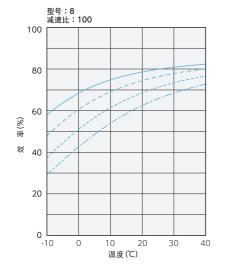
※2 负载转矩大于额定转矩时的效率修正系数为Ke=1。


效率修正系数:Ke 额定转矩时的效率:ηR 与负载转矩相应的效率:η

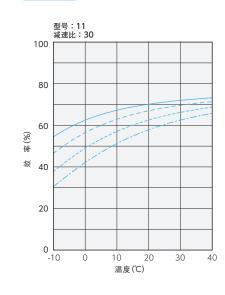
 $\eta = \text{Ke } \times \eta R$

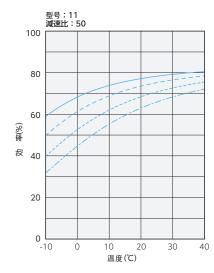

※ "MULTEMP"是协同油脂株式会社的注册商标。

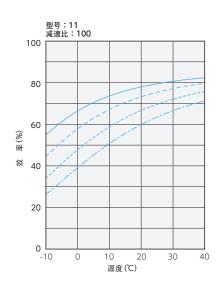

效率修正系数



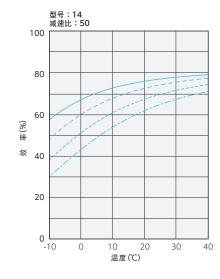
额定转矩时的效率

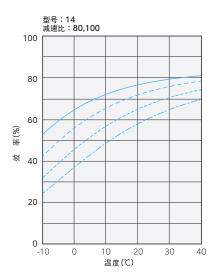


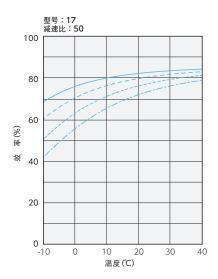


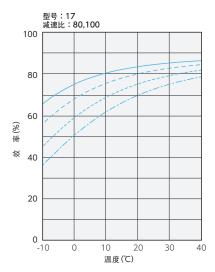


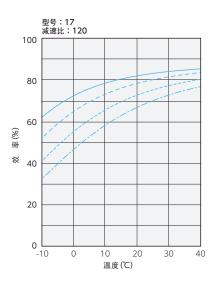
型号 11



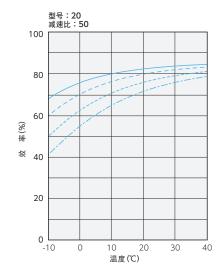


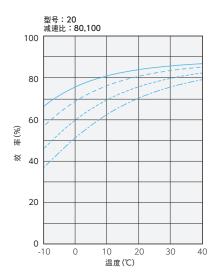

※本图表的值为平均值X。

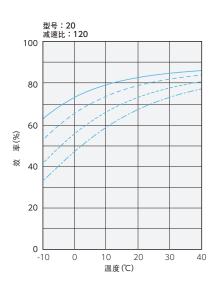

型号 14

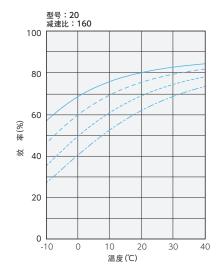


型号 17








※本グラフの値は平均値Xです。

型号 20

※本グラフの値は平均値Xです。

主轴承规格

CSF-ULW系列组装有小型4点接触滚珠轴承用于直接支撑外部负载(输出部)。 为充分发挥CSF-ULW系列的性能,请确认最大负载静力矩、4点接触滚珠轴承的使用寿命以及静态安全系数。

■ 确认步骤

※确认方法的详细情况,请参照HarmonicDrive综合目录"技术资料"页的"主轴承的确认"。

①最大负载静力矩(M max)确认

计算最大负载静力矩(M max) 最大负载静力矩(M max) 容许静力矩(Mc)

②使用寿命确认

计算平均径向负载(Frav)、平均轴向负载(Faav) 计算径向负载系数(X)、轴向负载系数(Y)

计算使用寿命,进行确认

③静态安全系数确认

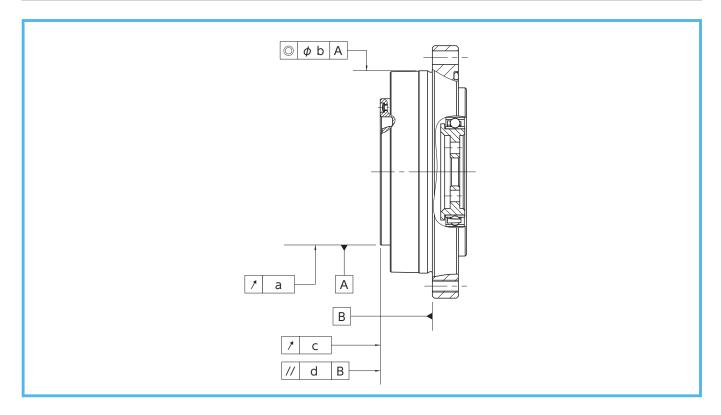
计算径向当量静负荷(Po) 确认静态安全系数(fs)

主轴承规格

THE STATE OF THE S								
	滚子的节圆直径	偏置量	基本额	定负荷	容许静力矩	力矩刚性		
型号		R	基本额定动负荷C	基本额定静负荷C0	Мс	Km		
						N∙m/rad		
8	29	7.9	1.8×10^{3}	2.2×10^{3}	8.7	1.0×10 ⁴		
11	37.1	8.15	2.8×10 ³	3.5×10 ³	14	1.7×10 ⁴		
14	44.3	8.4	3.9×10^{3}	5.0×10 ³	26	3.0×10 ⁴		
17	52.7	9.2	5.2×10 ³	7.0×10^{3}	40	4.6×10 ⁴		
20	61.4	9.7	6.7×10 ³	9.4×10 ³	56	6.5×10 ⁴		

[※]所谓基本额定动负荷,是指轴承的基本动态额定寿命达到100万转的固定静止径向负载。

[※]所谓基本额定静负荷,是指在承受最大负载的转动体与轨道的接触部中央施加固定等级接触应力(4.2kN/mm²)的静负载。

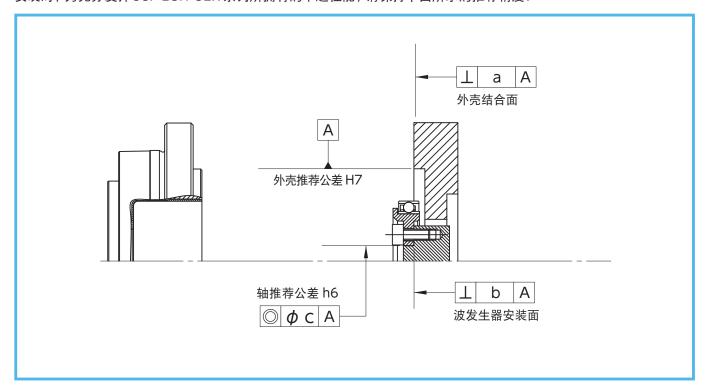

[※]所谓容许静力矩,是指施加到输出轴上的最大静力矩,只要处于该范围,就能够保持基本性能,正常动作的值。

[※]力矩刚性的值为参考值。下限值大概为显示值的80%。

机械精度

CSF-2UH-UL系列主轴承采用了高精度、高刚性的4点接触滚珠轴承,实现了输出部的高机械精度。 输出轴的机械精度如下所示。

符号	维 克茨目	型묵						
	精度项目	8	11	14	17	20		
а	输出轴偏摆	0.010	0.010	0.010	0.010	0.010		
b	安装凹窝部的同轴度	0.050	0.050	0.060	0.060	0.070		
С	输出法兰偏差	0.010	0.010	0.010	0.010	0.010		
d	安装面和输出法兰面的平行度	0.025	0.025	0.025	0.025	0.025		


润滑

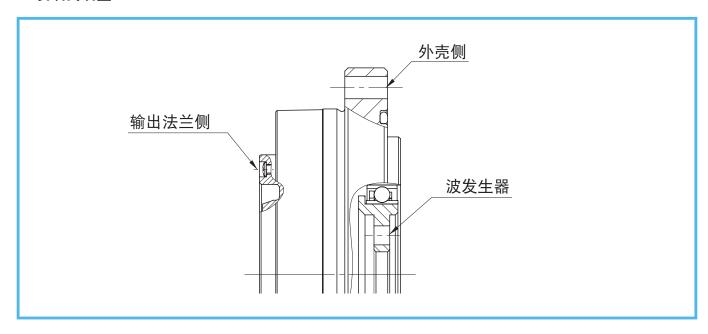
CSF-2UH-ULW系列的标准润滑方法为润滑油润滑。 出厂时已预涂润滑油,组装时无需再注入、涂抹。 而且,润滑剂请选用以下润滑油。

润滑部	减速机部(型号8,11,14,17)	减速机部(型号20)	主轴承部
使用润滑剂名	Harmonic Grease [®] SK-2	Harmonic Grease® SK-1A	MULTEMP HL-D
制造商	HarmonicDrive Systems Inc.	HarmonicDrive Systems Inc.	协同油脂
基础油	精制矿物油	精制矿物油	合成碳化
增稠剂	锂基脂	锂基脂	锂基脂
工作针入度(25℃)	295	295	280
滴点	198℃	197℃	210℃
外观	绿色粘稠状	黄色粘稠状	白色粘稠状

组装精度

安装时,为充分发挥CSF-2UH-ULW系列所拥有的卓越性能,请保持下面所示的推荐精度。

	か.ロ.	精度项目		型묵			
	符号	情 及坝日	8	11	14	17	20
	а	外壳结合面垂直度	0.010	0.011	0.011	0.015	0.017
	b	波发生器安装面垂直度	0.006	0.007	0.008	0.010	0.010
_	С	输入轴同轴度	0.006	0.007	0.016	0.018	0.019


安装和传动转矩

■ 组装注意事项

组装设计时, 如果存在安装面变形等异常及野蛮组装现象, 会降低产品性能。 为充分发挥组合型的性能, 请注意以下几点。

- ●安装面歪斜、 变形
- ●异物噬入
- ●安装孔的周围毛边, 隆起或位置异常
- ●安装凹窝部倒角不足
- ●安装凹窝部圆度异常

■ 安装到装置

输出法兰侧的安装和传动转矩

项目	型号	8	11	14	17	20
螺栓个数		6	8	10	16	18
螺栓尺寸		M3	M3	M3	M3	M3
安装P.C.D	mm	24.5	32.0	39.0	47.5	56.0
螺栓紧固转矩	N·m	2.0	2.0	2.0	2.0	2.0
	kgf∙m	0.20	0.20	0.20	0.20	0.20
螺栓传动转矩	N·m	30.6	53.3	81.2	158	210
	kgf∙m	3.12	5.43	8.28	16.1	21.4

外壳侧的安装和传动转矩

项目	型号	8	11	14	17	20
螺栓个数		4	4	6	10	12
螺栓尺寸		M3	M3	M3	M3	M3
安装P.C.D	mm	48.0	57.0	65.0	74.5	84.5
螺栓紧固转矩	N·m	1.4	1.4	1.4	1.4	1.4
	kgf⋅m	0.14	0.14	0.14	0.14	0.14
螺栓传动转矩	N∙m	28	33.2	56.8	108	147
	kgf∙m	2.85	3.38	5.79	11.0	14.9

波发生器侧的安装和传动转矩

项目	型号	8	11	14	17	20
螺栓个数		4	4	4	4	4
螺栓尺寸		M2	M2.5	M2.5	M3	M3
安装P.C.D	mm	7.5	12	16	19.5	25.5
螺栓紧固转矩	N·m	0.54	1.08	1.08	2.0	2.0
	kgf∙m	0.055	0.110	0.110	0.20	0.20
螺栓传动转矩	N·m	2.53	6.48	8.64	16.2	21.2
	kgf∙m	0.25	0.66	0.88	1.6	2.1

使用注意事项

■请在规定环境下使用。

使用HarmonicDrive时, 请遵守以下条件。

●环境温度: 0~40℃

●不溅到水、 油等

●无腐蚀性、 爆炸性气体

●无金属粉等尘埃

※其他注意事项,请参照"HarmonicDrive综合目录"。

哈默纳科(上海)商贸有限公司

上海市长宁区天山路 641 号上海慧谷白猫科技园 1 号楼 206 室邮编: 200336

电话: 021-6237-5656 传真: 021-3250-7268

http://www.harmonicdrive.net.cn/

以下商标在中国国内已注册。

HarmonicPlanetary* AccuDrive* HarmonicLinear*
哈默纳科 HARMONIC HARMONIC DRIVE SYSTEMS*

以下商标在日本国内已注册。

HarmonicDriveⁿ
HarmonicDlanetaryⁿ
HarmonicGearheadⁿ
HarmonicLinetaryⁿ
HarmonicSearheadⁿ
HarmonicLinetaryⁿ
HarmonicSearheadⁿ
HarmonicLinetaryⁿ
HarmonicSearheadⁿ
Harmonic

本公司保留在不预先通知的情况下更改本产品目录中记载的规格、尺寸等的权利。 "HarmonicDrive" 的学术、一般名称为"谐波齿轮传动"。