FINE MECHANICS & TOTAL Motion CONTROL

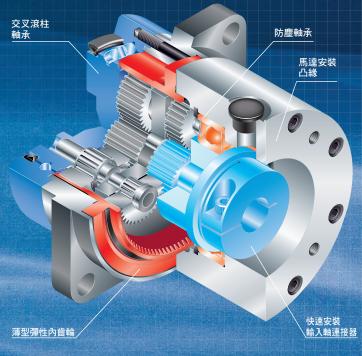
Harmonic Planetary R Harmonic Drive R

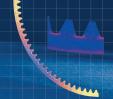
伺服馬達用高性能減速機系列

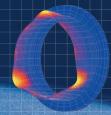
高精度、高剛性、高定位精度確立派速機系列

伺服馬達用高性能減速機系列

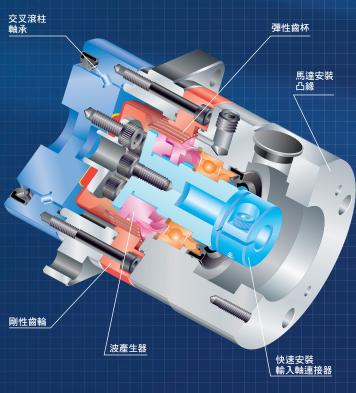
此為透過精密行星齒輪減速機HarmonicPlanetary (註冊商標) 及諧波齒輪傳動機構 Harmonic Drive (註冊商標) 獲得低減速比至高減速比的豐富速比、轉矩容量寬廣的伺服 馬達用高性能減速機。


可透過交叉滾柱軸承的主軸承一體型結構直接支撐外部負載。快速安裝高精度致動器,滿足廣大領域的多樣需求。


Harmonic Planetary ® HPGP/HPG系列



此為將薄型彈性齒輪技術應用至行星齒輪減速機內齒輪的行星齒輪減速裝置。 利用內齒輪的彈性變形,可以在沒有調整機構的狀態下達到低背隙。


實機的變形狀態

行星齒輪減速機為太陽齒輪與行星齒輪、行星齒輪與內齒輪同時相互咬合的結 構。因此,若僅以零件的尺寸精度縮小背隙,則尺寸誤差的影響可能造成咬合部衝 突,並發生旋轉轉矩的波動及噪音。為了解決此類問題,開發能夠緩和咬合部的衝 並且具備充分強度的「薄型彈性內齒輪」,產生了劃時代結構的行星齒輪減速 機HarmonicPlanetary[®]。HarmonicPlanetary[®]在減速機壽命範圍內幾乎沒有背隙變 化。

- ◆背隙3分以下(特殊品1分以下)
- ◆低減速比:1/3~1/50
- ◆高效率90%以上(型號11、14為85%)
- ◆交叉滾柱軸承一體結構的高負載容量
- ◆高轉矩容量

HarmonicDrive[®] csg/csf-gh系列

諧波齒輪傳動機構Harmonic Drive®應用金屬彈性力學的獨創動作原理·為僅由3種基本零件組成的精密控制用減速裝置,可達到高旋轉精度 及高定位精度。

本零件是將薄型滾珠軸承組 合進橢圓狀凸輪外圈內的零 件。軸承的內輪雖固定在凸 輪上, 但外輪可透渦滾珠產 生彈性變形。一般來說,本 零件會安裝在輸入軸上。

本零件為薄型杯狀的彈性金 屬零件。在開口部的外圈刻 有齒槽。彈性齒杯的底部 (杯狀底部)稱之為隔板,

-般來說會安裝在輸出軸

本零件為剛性環狀零件。在 內圈刻有齒槽,齒輪數較彈 性齒杯多2個。一般會固定 在護殼上。

Harmonic Drive®的最大特徵,在於僅由3種基本零件所組成,易於小型化及輕量 化。此外,由於齒槽的嚙合數量高,因此能夠產生更強的轉矩並進行更準確的 定位。改善獨特的IH齒型後,提高了產品的強度及性能。

- ◆無背隙
- ◆高減速比:1/50~1/160
- ◆高定位精度(反覆定位±4~ ±10arc-sec)
- ◆交叉滾柱軸承一體結構的高負載容量
- ◆高轉矩容量

Harmonic Planetary[®]

HPGP/HPG系列(行星齒輪減速機)

型 號:11、14、20、32、50、65(6個型號)

適用馬達容量:10W~15kW

容許峰值轉矩:3.9N·m~2920N·m

凸緣軸型

Harmonic Drive®

CSG/CSF-GH系列 (Harmonic Drive®減速機)

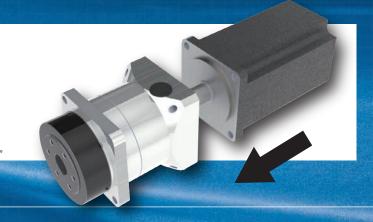
型 號:14、20、32、45、65(5個型號)

適用馬達容量:30W~5kW

容許峰值轉矩:18N·m~3419N·m

附輸出軸型

輕鬆安裝於各公司的伺服馬達!


完成高精度致動器。

適用伺服馬達製造商

亦適用於下述以外的伺服馬達。請洽詢最近的

安川電機/三菱電機/FANUC/Panasonic/山洋電氣/多摩川精機/富士電機/OMRON/東芝機械/Keyence/其他

(註)各公司伺服馬達的匹配型式請使用首頁的型式選擇工具(URL:https://hds-tech.jp/)

陣容

减速機系列

HPGP系列 高轉矩型 (容許峰值轉矩10N·m~2920N·m 壽命:20,000小時

HarmonicPlanetary*

)	型 號	交期 (5台以下) ^{(註) 1}	外觀尺寸	減速比	背隙 標準3分	<u> </u>	靜音規格 NR6 (6分)	對應的馬達 小容量、中容量
′		(201/2)	(mm)		惊华3万	付加了	INKO (O.D.)	小 位里 一 个 但 里
	11		□40	5,21,37,45	0		- 1	10W~200W
Ċ	14,20,32	A PE	□60 \ □90 \ □120	E 11 15 01 00 45	0	0	0	30W~4kW
	50	4週	□170	5,11,15,21,33,45	0	0	0	500W~10kW
	65		□230	4,5,12,15,20,25	0	0	-	1.3kW~15kW

(註)1 此為背隙3分型錄標準品的交期。訂購特殊品(背隙1分等)及6台以上請洽詢。

(註)2 反覆定位精度、角傳動精度的細節請參閱017頁HPGP性能表。

HPG系列 螺旋齒輪型 (容許峰值轉矩5N·m~400N·m) 壽命:20,000小時

New Harmonic Planetary

파네 916	交 期	外觀尺寸	觀尺寸		"隙 ^{(註)2}	對應的馬達
型號	(5台以下)(註)1	(mm)	減速比	標準3分	特殊1分	小容量、中容量
11		□40	4,5,6,7,8,9,10	0		50W~150W
14	43⊞	□60	3,4,5,6,7,8,9,10	0	0	100W~400W
20	1週	□90		0	0	200W~1kW
32		□120		0	0	750W~5kW

(註)1 此為背隙3分型錄標準品的交期。訂購特殊品(背隙1分等)及6台以上請洽詢。

(註)2 反覆定位精度、角傳動精度的細節請參閱027頁HPG性能表

HPG系列 標準型 (容許峰值轉矩3.9N·m~2200N·m) 壽命:20,000小時

HarmonicPlanetary®

#II 9#5	交 期	外觀尺寸	 減速比	背隙 ^{(註)2}		靜音規格		
型號	(5台以下)(註)1	(mm)	減迷比	標準3分	特殊1分	NR6 (6分)	小容量、中容量	
11	1週	□40	5,9,21,37,45	0			10W~100W	
14,20,32	1週	□60、□90、□120	2 5 11 15 01 22 45	0	0	0	30W~3.5kW	
50	2週	□170	3,5,11,15,21,33,45	0	0	0	500W~10kW	
65	4週	□230	4,5,12,15,20,25,40,50	0	0	_	1.3kW~15kW	

(註)1 此為背隙3分型錄標準品的交期。訂購特殊品(背隙1分等)及6台以上請洽詢。

(註)2 反覆定位精度、角傳動精度的細節請參閱035頁HPG性能表。

CSG-GH系列 高轉矩型 (容許峰值轉矩23N·m~3419N·m) 壽命:10,000小時

HarmonicDrive*

)	型號	交 期	外觀尺寸 (mm)	減速比	反覆定位精度 (arc-sec) ^{(註)1}	角傳動精度 (arc-min) ^{(註)1}	對應的馬達 小容量、中容量
	14		□60	50,80,100	±10	1.5	30W~100W
	20		□90		±8		100W~400W
	32	接單生產	□120	50,80,100,120,160	±6		300W~1.5kW
	45		□170		±5	1.0	450W~2kW
	65		□230	80,100,120,160	±4		850W~5kW

種類〔型號/減速比〕

	Harmonic	Harmon	icDrive®		
HPGP/HPG型號		减退	東比		CSG/CSF-GH型號
【型號/口尺寸(mm)】	HPGP 系列 (高轉矩型)	HPG系列 (螺旋齒輪型)	HP G系列 (標準型)	CSG/CSF-GH系列 (高轉矩/標準型)	【型號/口尺寸 (mm)】
11 / □40	5,21,37,45	4,5,6,7,8,9,10	5,9,21,37,45	-	-
14 / □60	5,11,15,21,33,45	3,4,5,6,7,8,9,10	3,5,11,15,21,33,45	50,80,100	14 ∕ □60
20 / □90	5,11,15,21,33,45	3,4,5,6,7,8,9,10	3,5,11,15,21,33,45	50,80,100,120,160	20 / □90
32 / □120	5,11,15,21,33,45	3,4,5,6,7,8,9,10	3,5,11,15,21,33,45	50,80,100,120,160	32 ∕ □120
50 / □170	5,11,15,21,33,45	-	3,5,11,15,21,33,45	50,80,100,120,160	45 / □170
65 / □230	4,5,12,15,20,25	-	4,5,12,15,20,25,40,50	80,100,120,160	65 ∕ □230

CSF-GH系列 標準型 (容許峰值轉矩18N·m~2630N·m) 壽命:7,000小時

HarmonicDrive*

	型號	交 期	外觀尺寸 (mm)	減速比	反覆定位精度 (arc-sec) ^(註) 1	角傳動精度 (arc-min) ^{〔註〕1}	對應的馬達 小容量、中容量
	14		□60	50,80,100	±10	1.5	30W~100W
di	20	□90	±8		100W~200W		
8	32	接單生產	□ 120 50,80,100,120,160	±6		300W~1kW	
	45		□170	±5	1.0	450W~2kW	
	65		□230	80,100,120,160	±4		850W~5kW

(註)1 反覆定位精度、角傳動精度的細節請參閱059頁CSF-GH性能表。

HPG系列 直交軸型 (容許峰值轉矩150N·m~2200N·m) 壽命: 20,000小時

HarmonicPlanetary*

#II 9-6	去 # (註) 1	外觀尺寸	2世3世 U.	背隙 ^{(註)2}		對應的馬達
型號	交 期(註)1	(mm)	減速比	標準3分	特殊1分	小容量、中容量
32,50	2週	□120 \ □170	5,11,15,21,33,45	0		500W~8kW
65	4週	□230	5,12,15,20,25,40,50	0	_	2kW~8kW

- (註)1 此為型錄標準品的交期。
- (註)2 反覆定位精度、角傳動精度的細節請參閱071頁HPG直交軸型性能表。

HarmonicPlanetary® 模組型

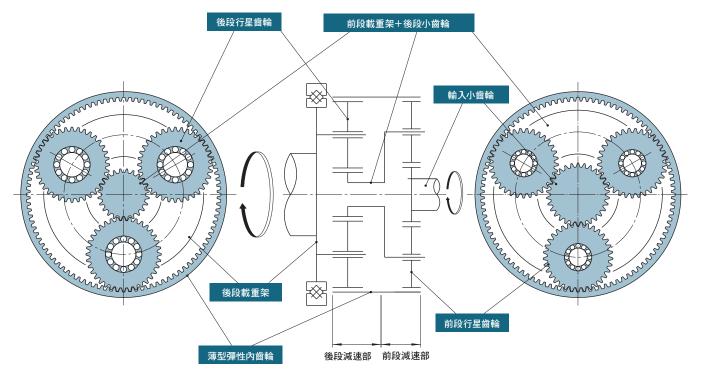
HPF系列 中空軸型 (容許峰值轉矩100N·m~220N·m) 壽命:20,000小時

HarmonicPlanetary*

型號	交期(註)1	外觀尺寸 (mm)	中空直徑	減速比	背隙 ^{(註)2}
25	2週	ф136	ф25	11	3分
32	2,00	ф167	ф30	· ·	371

- (註)1 此為型錄標準品的交期。 (註)2 反覆定位精度、角傳動精度的細節請參閱082頁HPF中空輸型性能表。

HPG系列 輸入軸型 (容許峰值轉矩3.9N·m~2200N·m) 壽命: 20,000小時


HarmonicPlanetary®

型號	交 期		減速比	背隙	(註)2	靜音規格
至城	(5台以下)(註)1	(mm)	/ / / / / / / / / / / / / / / / / / /	標準3分	特殊1分	NR6 (6分)
11	1週	□40	5,9,21,37,45	0		+ + + + + + + + + + + + + + + + + + + +
14,20,32	1週	□60、□90、□120	2 5 11 15 21 22 45	0	0	0
50	4週	□170	3,5,11,15,21,33,45	0	0	0
65	6週	□230	4,5,12,15,20,25,40,50	0	0	-

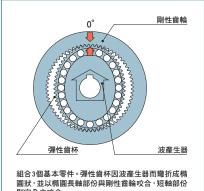
- (註)1 此為背隙3分型鋒標準品的交期。訂購特殊品(背隙1分等)及6台以上請洽詢。 (註)2 反覆定位精度、角傳動精度的細節請參閱089頁HPG輸入軸型性能表。

動作原理 HarmonicPlanetary®

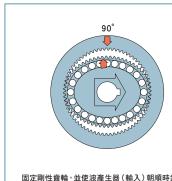
以下以二段式減速機構型(速度比11以上)進行說明。 使用一段式減速機構型(速度比3~9)時,僅使用後段減速部位的動作原理。

後段部:以具有3個或4個行星齒輪的行星減速機組成。

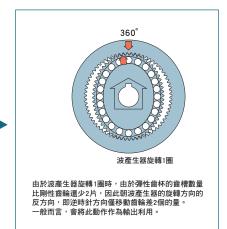
與前段載重架聯結的後段小齒輪,其對後段減速部的輸入,與前段減速部相 同,使後段行星齒輪公轉運動。此公轉運動傳達至後段載重架(交叉滾柱軸承 內輪) 並輸出。


此時,後段載重架旋轉方向與前段減速部旋轉方向相同。

前段部(輸入側):以具有3個行星齒輪的行星減速機組成。


輸入小齒輪的旋轉使得與其咬合的前段行星齒輪公轉運動。此公轉運動透過行 星軸傳達至前段載重架。

此時,前段載重架旋轉方向與輸入旋轉方向相同。

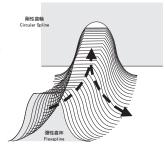

動作原理 Harmonic Drive® 」

則完全未咬合。

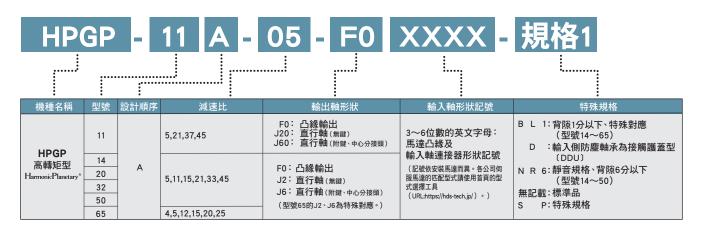
固定剛性齒輪,並使波產生器(輸入)朝順時針方向 旋轉後,彈性齒杯會產生彈性變形,並逐漸移動至能 夠和剛性齒輪的齒槽嚙合的位置。

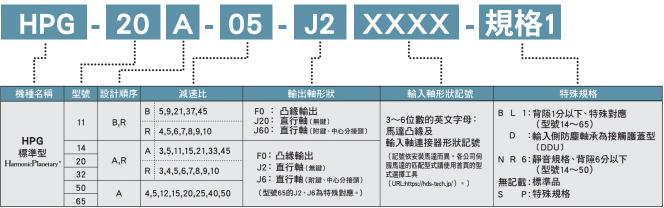
旋轉方向

CSG/CSF-GH系列的輸出旋轉方向為輸入旋轉方向的 反方向。

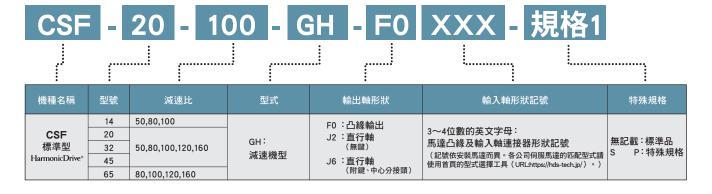

輸入: 波產生器(馬達軸安裝) 固定:剛性齒輪(護殼)

輸出:彈性齒杯(交叉滾柱軸承)

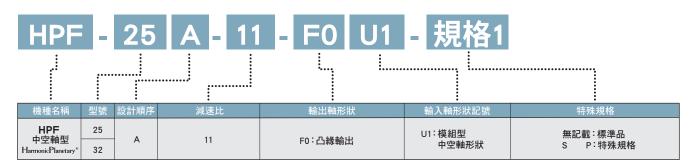

齒輪動作及咬合

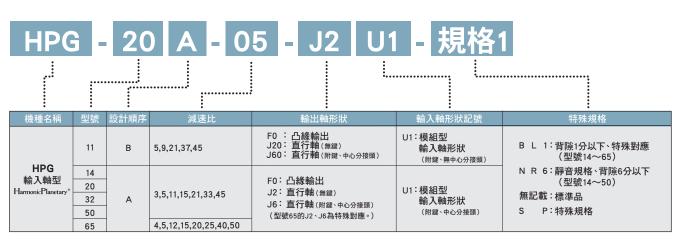

Harmonic Drive®由於如此獨特的齒輪 動作(動作原理),具有無背隙,微小 角度傳送(1脈衝傳送)、定位精度等 優點。

由於是180度對稱的兩處,且全齒數 30%以上的齒輪同時咬合,可以傳達 高轉矩。

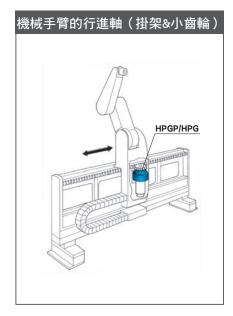

減速機型

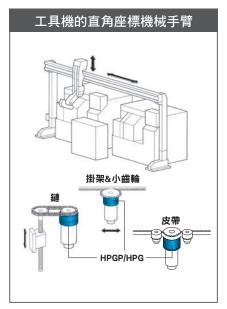
※設計順序:R 為螺旋齒輪型。

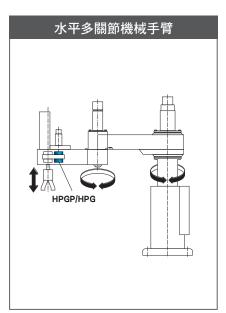


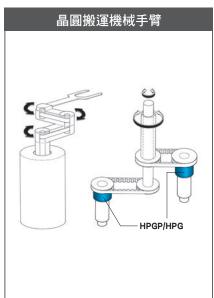

型式與記號:

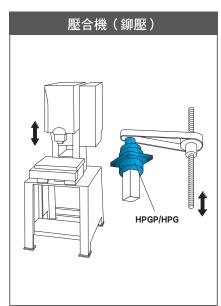
減速機型直交軸型

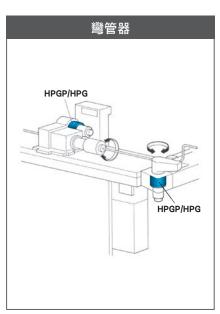

模組型

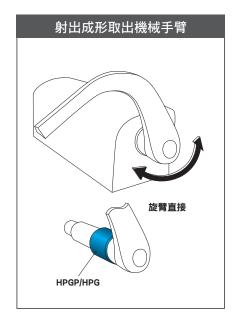


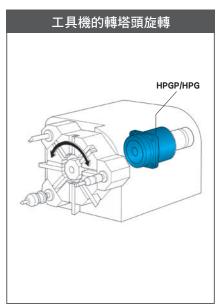


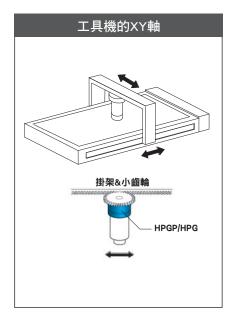

應用案例(HPGP/HPG系列)

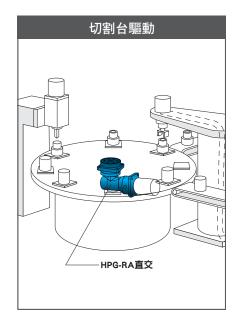

HarmonicPlanetary®HPGP/HPG 系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。

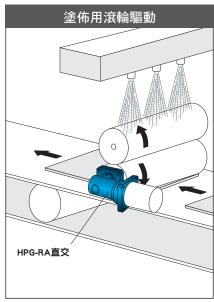


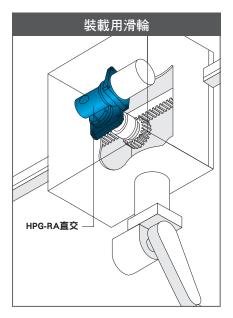


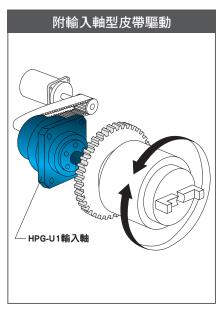


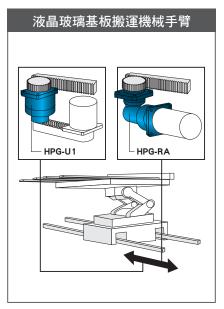


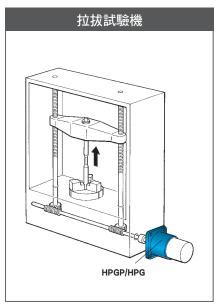


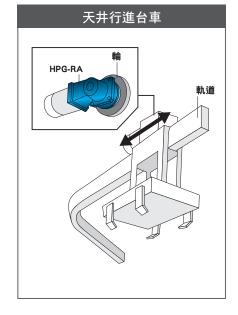


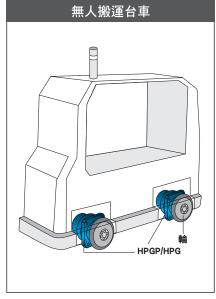


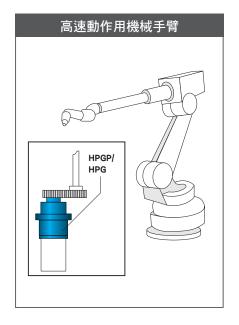

應用案例(HPGP/HPG系列) =

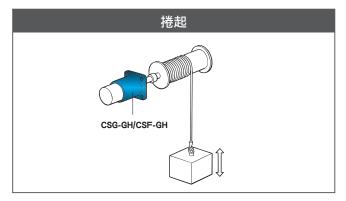

HarmonicPlanetary®HPGP/HPG 系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。

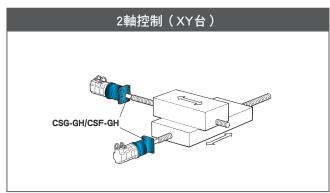




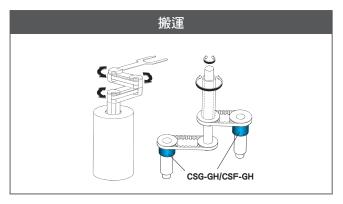


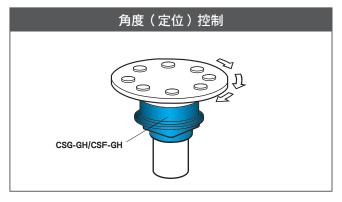


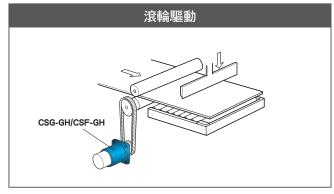


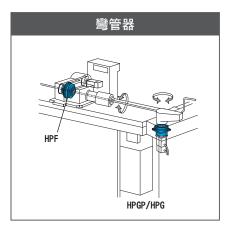





應用案例(CSG-GH/CSF-GH 系列)


Harmonic Drive®CSG-GH/CSF-GH 系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。





應用案例(HPF系列)

在繼承 HPG 系列的優異性能及規格的同時,也創造了具備中空軸結構的形狀優勢。由於輸入輸出軸為同軸上的貫穿孔,因此可縮小裝置的設計體積,將管路、線路及雷射光通過貫穿孔,或與滾珠螺桿組合,滿足客戶多樣化的需求。

減速機系列 CONTENTS

HarmonicPlanetary® HPGP系列

4+4#10		0.40
二二字	皇號 ·······	01 <i>1</i>
哲宁主	ਰੂਨ ਅਮਿ ਰ ਾਵ ਹੈ ਕਿ ਜ਼ਰੂਰ ਹੈ ਕਿ ਜ਼ਰੂ	16 - 017
朗	₹、性能表⋯⋯⋯⋯⋯⋯⋯⋯⋯0	10,011
土井左	J. T. 大夫 4 + J. J.	040
""""""""""""""""""""""""""""""""""""""	扭轉特性	018
外觀人	? 寸圖	019

HarmonicPlanetary® HPG系列 螺旋齒輪型

額定表、性	能表	026 \ 027
轉矩 扭轉	特性 ····································	028
外觀尺寸圖		029

HarmonicPlanetary® HPG系列標準型

額定表、性能表	034 \ 035
轉矩 扭轉特性	
外觀尺寸圖	037

HarmonicDrive® CSG-GH系列 高轉矩型

_ 結構圖······	043
關於額定表用語、壽命、強度	·· 044 \ 045
關於剛性、振動、效率特性	·· 046 \ 047
選擇型號	048 \ 049
額定表、棘輪轉矩、屈曲轉矩	050
性能表	051
剛性 (彈簧常數)、遲滯損失、最大背隙量	052
外觀尺寸圖	053

HarmonicDrive® CSF-GH系列 標準型

額定表、棘輪轉矩、屈曲轉矩	058
性能表	
剛性 (彈簧常數)、遲滯損失、最大背隙量	
外期尺寸圖	·061

HarmonicPlanetary® HPGP/HPG系列

尺寸

型號:11、14、20、32、50、65

峰值轉矩

HPGP系列 : 10N·m~2920N·m HPG系列 (螺旋齒輪型) : 5N·m~400N·m HPG系列 (標準型) : 3.9N·m~2200N·m

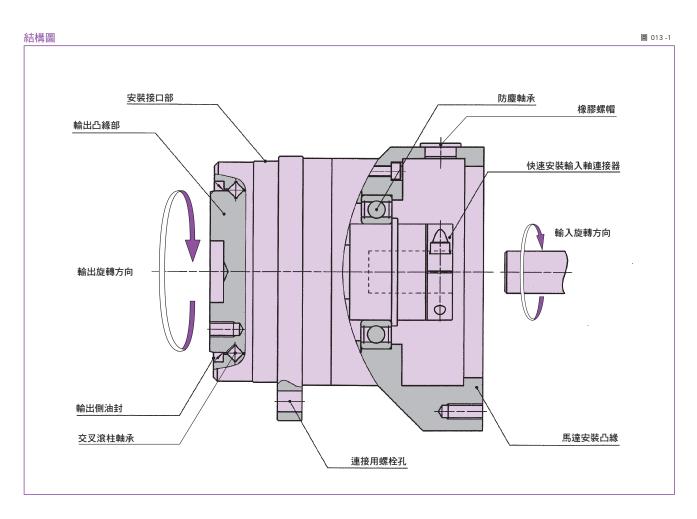
減速比

HPGP系列 : 1/5~1/45 HPG系列(螺旋齒輪型) : 1/3~1/10 HPG系列(標準型) : 1/3~1/50

小背隙

標準:3分以下 特殊:1分以下

高效率


90%以上 (型號:11、14為85%)

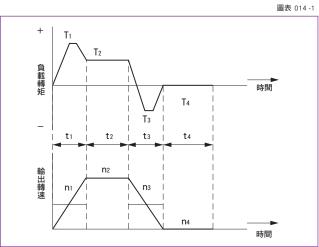
可安裝至各公司伺服馬達

安川電機/三菱電機/FANUC/Panasonic/山洋電氣/ 多摩川精機/富士電機/OMRON/東芝機械/Keyence/其他 關於其他伺服馬達請洽詢最近的營業處。

各公司伺服馬達的匹配型式請使用首頁的型式選擇工具(URL:https://hds-tech.jp/)。

選擇型號 (HPGP/HPG 系列)

為充分發揮 HarmonicPlanetary®HPGP/HPG 系列擁有的優異性能,請在確認使用條件及參考選擇流程圖後再選擇型號。


一般來說,伺服系統幾乎不會出現連續固定負載的狀態。負載轉矩 會隨輸入轉速的變動而產生變化,在起動或停止時會施加較大的轉 矩。此外,還可能會施加非預期的衝擊轉矩。

關於上述的使用條件,請參閱下圖確認負載轉矩模式後,依據右側 的流程圖選擇型號。

選擇時亦請確認交叉滾柱軸承及輸入端軸承(僅輸入軸型)的使用 壽命及靜態安全係數。(請參閱 114 頁~ 119 頁輸出軸承及輸入端 軸承的規格)

■確認負載轉矩模式

首先必須掌握負載轉矩模式。 請檢查下圖所示的各項規格。

計算各運轉模式時的條件

負載轉矩 $T_1 \sim T_n (N \cdot m)$ 時間 t1~tn (sec) 輸出轉速 $n_1 \sim n_n \ (r/min)$

<一般運轉模式>

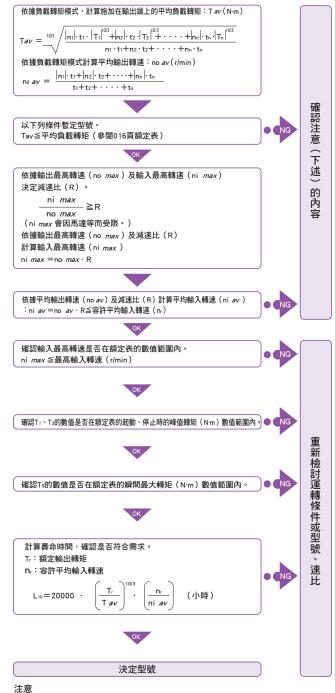
起動時 T1 \ t1 \ n1 正常運轉時 T2 \ t2 \ n2 停止(減速)時 T3 \ t3 \ n3 休止時 T4 \ t4 \ n4

<最高轉數>

輸出最高轉速 no max ≥n1~nn

輸入最高轉速 ni max ≥n1×R~n_n×R (因馬達等而受限) R:減速比

<衝撃轉矩>


施加衝擊轉矩時 Ts

<需求壽命>

L10 = L(H)

■型號選擇流程圖

選擇型號時,請依據下列流程圖進行。只要超過任一額定表數值, 便請重新檢討使用高一級的型號,或是降低負載轉矩等條件。

下述狀況請確認減速機溫度上昇、加減速時的振動等影響。 需考量安全時,請考慮「提高減速機尺寸」、「重新審視運轉條件」等。接近連續運 轉時需特別注意。

平均負載轉矩(T av)>平均負載轉矩的容許最大值(016頁) 計算輸入平均轉速(ni av)>容許平均輸入轉速(n)

輸入最高轉速 ni max= 5,000r/min : 因馬達等而受限

■型號選擇範例

各負載轉矩模式的數值

Tn (N·m)

tn (sec)

輸出轉速 nn (r/min)

<一般運轉模式>

起動時 $T_1 = 70 \text{N} \cdot \text{m}$ $t_1 = 0.3 \text{sec}$ $n_1 = 60 \text{r/min}$

正常運轉時 $T_2 = 18N \cdot m$ $t_2 = 3 sec$ $n_2 = 120 r/min$

停止(減速)時 T3=35N·m t3=0.4sec n3=60r/min 休止時 $T_4 = 0N \cdot m$ $t_4 = 5 sec$ $n_4 = 0 r/min$

<衝撃轉矩>

<最高轉數>

施加衝擊轉矩時 Ts=180N·m

輸出最高轉速 no max= 120r/min

く需求壽命> L₁₀ = 30,000 (小時)

依據負載轉矩模式,計算施加在輸出端上的平均負載轉矩: Tav(N·m)

$$T_{\textit{AV}} = \underbrace{\frac{10/3}{\sqrt{\frac{60 r/min \cdot 0.3 sec \cdot |70 N \cdot m|^{10/3} + |120 r/min \cdot 3 sec \cdot |18 N \cdot m|^{10/3} + |60 r/min \cdot 0.4 sec \cdot |35 N \cdot m|^{10/3}}_{60 r/min \cdot 0.3 sec + |120 r/min \cdot 1 \cdot 3 sec + |60 r/min \cdot 0.4 sec}$$

依據負載轉矩模式計算平均輸出轉速:no av (r/min)

| 60r/min | · 0.3sec+ | 120r/min | · 3sec+ | 60r/min | · 0.4sec+ | 0r/min | · 5sec 0.3sec + 3sec + 0.4sec + 5sec

依據下列條件暫定型號。Tav=30.2N·m≦60N·m(型號20、減速比33的平均負載轉矩(參閱016頁額定表)HPG-20A-33)

依據輸出最高轉速 (no max) 及輸入最高轉速 (ni max) 決定減速比 (R)。

5,000r/min =41.7≧33

依據輸出最高轉速 (no *max*) 及減速比 (R) 計算輸入最高轉速 (ni *max*) : ni *max* = 120r/min · 33 = 3,960r/min

依據平均輸出轉速 (no av) 及減速比 (R) 計算平均輸入轉速 (ni av) :

ni av = 46.2r/min·33=1,525r/min≦型號20的容許平均輸入轉速 3000 (r/min)

確認輸入最高轉速是否在額定表的數值範圍內。ni max=3960r/min≤6000r/min(型號20的最高輸入轉速)

確認T1、T3的數值是否在額定表的起動、停止時的峰值轉矩(N·m)數值範圍內。

T₁=70N·m≦100N·m (型號20的起動、停止時峰值轉矩)

T₃=35N·m≦100N·m (型號20的起動、停止時峰值轉矩)

確認Ts的數值是否在額定表的瞬間最大轉矩(N·m)數值範圍內。Ts=180N·m≦217N·m(型號20的瞬間最大轉矩)

計算壽命時間,確認是否符合需求。

L₁₀=20,000 ·
$$\left(\frac{29\text{N·m}}{30.2\text{N·m}}\right)^{10/3}$$
 · $\left(\frac{3,000 \text{ r/min}}{1,525 \text{ r/min}}\right)$ = 34,543 (小時) ≧ 30,000 (小時)

依據上述結果,決定為HPG-20A-33

確認注意(P11下)的內容

重新檢討運轉條件或型號

、速比

015

額定表 (HPGP 系列)

HPGP 系列減速機型有 6 種型號,種類豐富。請先參考額定表再選擇型號。

表 016 -1

11	N-m 5 3.4 221 337 4.6 45 5 7.8 11 10 15 12 1 33 13 13	kgf·m 0.35 0.47 0.80 1.0 1.2 1.3	容許最力 N·m 6.7 8 17	(雄) ² kgf·m 0.68 0.82	容許峰 N·m 10 13	值轉矩 kgf·m 1.0	最大 N·m 20	轉矩 kgf·m 2.0	輸入轉速 r/min 3000	轉速 ^{(胜) 6} r/min 10000	軸輸出 ×10 ⁻⁴ kg·m² 0.0040 0.0019 0.00069	凸線輸出 ×10 - 4kg·m² 0.0024 0.0018 0.00066	軸輸出 kg 0.18	凸線輸出 kg 0.14
11 21 37 45 5 11 14 21 33 45 5 11 15 21 20 21	5 3.4 21 37 4.6 45 5 7.8 11 10 15 12 12 133 45 13	0.35 0.47 0.80 1.0	8 17	0.68	10	1.0					0.0040 0.0019	0.0024 0.0018	0.18	
11 21 37 45 5 11 14 21 33 45 5 11 15 21 20 21	21 37 45 5 7.8 11 10 15 21 33 45	0.47 0.80 1.0 1.2	8 17	0.82			20	2.0	3000	10000	0.0019	0.0018		0.14
11 37 455 5 111 14 21 33 45 5 5 11 20 21	37 4.6 45 5 7.8 11 10 15 12 21 33 45 13	0.80 1.0 1.2	17		13	1.3	20	2.0	3000	10000				l
37 45 5 11 15 15 21 33 45 5 11 15 20 20 20	45 7.8 5 7.8 11 10 15 12 21 33 45 13	0.80 1.0 1.2	17		13	1.3	20	2.0	0000	10000	0.00069	0.00066		
5 111 15 21 33 45 5 11 20 21	5 7.8 11 10 15 21 12 33 45 13	1.0		1.7			l						0.24	0.20
114 15 21 33 45 5 11 20 21	11 10 15 12 21 12 33 13	1.0		1.7							0.00050	0.00048		
14 15 21 33 45 5 11 20 21	15 21 33 45	1.2	20								0.023	0.017	0.54	0.42
14 21 33 45 5 11 20 21	21 33 45		20								0.019	0.018		
21 33 45 5 11 20 21	21 33 45		20		30	3.1	56	5.7	3000	6000	0.017	0.016		
20 45 20 21	45 13	1.3		2.0					0000	0000	0.0093	0.0090	0.63	0.51
20 5 11 15 20 21	45	1									0.0030	0.0029		
20 11 20 21	5 21						<u> </u>				0.0028	0.0027		
20 15 21		2.1	47	4.8	ļ						0.20	0.16	1.6	1.2
20 21		2.7	60	6.1							0.17	0.17		
21		3.3	70	7.1	133	14	217	22	3000	6000	0.16	0.15	1.9	1.5
33	_	3.4	73	7.4							0.073	0.071		
	30	4.0	80	8.2							0.030	0.029	2.0	1.6
45	45		<u> </u>								0.023	0.022	1.9	1.5
	5 87	8.9	200	20	400	41					1.1	0.8	4.4	3.0
11												1.0		
32 15		_	226	23			41 650	66	3000	6000	0.77	0.74	5.1	3.7
21	21 130	13									0.37	0.35		
	33 143	15	266	27							0.17	0.17	5.4	4.0
	45										0.12	0.12	5.1	3.7
5	5 226		452	46	ļ						6.2	4.9	13	10
11			532	54	ļ						4.2	4.0		
50 15			600	61	1130	115	1850	189	2000	4500	3.7	3.5		
21		35	_				1000		2000	1000	1.7	1.6	15	12
33	350	37	665	68							0.75	0.72	[
45	45						<u> </u>				0.52	0.50		
<u> </u>	4 665		1200	122	ļ					2500	46 ^{(註) 9}	31	32 (註) 9	22
	5 705		1330	136							30 (註) 9	21		
65 12			1460	149	2920	298	4500	459	2000		22 (註) 9	20	47 (註) 9	37
15	15 971	99	1730	177	2020	250		.55	2000	3000	20 (註) 9	19		
20	20 106	_	2000	204							7.8 (註) 9	7.3 6.8		
25		115	2000	204							7.2 (註) 9			

- (註) 1. 本數值是以輸入轉數為一般伺服馬達的額定轉速 3000r/min 時,壽命時間 L_{10} =20000 小時為依據所設定之額定輸出轉矩 但型號 50、65 之額定輸出轉矩是以組合伺服馬達的額定轉速為 2000r/min,壽命時間 L₁0=20000 小時為依據設定的。
 - 2. 此為依據負載轉矩模式(014 頁)所計算出的平均負載轉矩之容許最大值·並以「輸入轉數為 2000r/min 時·壽命可達 2000 小時以上」為設定的參考標準。
 - 3. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值。
 - 4. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。
 - 若超過此轉矩可能會使減速機受損
 - 5. 此為運轉中的平均輸入轉速之容許最大值。當設備連續運轉的間隔時間短時,請特別注意勿超過此數值。
 - 6. 此為非連續運轉條件下的容許最高輸入轉速。
 - 7. 此為減速機單體的數值。包含輸入輸連接器的數值,請確認官方網站的型式選擇工具(URL:https://hds-tech.jp/)。 8. 此為減速機單體的質量。關於包含輸入輸連接器、馬達凸緣等配件的數值,請參閱尺寸表。

 - 9. 標準為凸緣輸出。軸輸出為特殊對應。

性能表 (HPGP 系列)

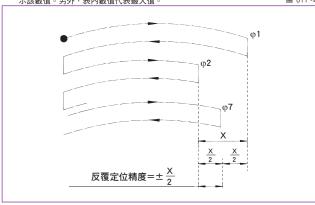
表內數值皆為 HPGP 減速機單體的數值。 由於輸入端形狀會因安裝馬達的尺寸而異,故附輸入軸連接器及馬達凸緣的數值請洽詢本公司。

表 017-1

型號	減速比	角傳動料	青度 (註) 1	反覆定位精度 ^{(註)2}	起動轉	矩 ^{(註)3}	加速起動	轉矩(註)4	無負載運輸	專轉矩 ^{(註)5}
至弧	//以还上し	arc-min	×10⁴rad	arc-sec	cN⋅m	kgf∙cm	N·m	kgf∙m	cN·m	kgf∙cm
	5				4.0	0.41	0.20	0.020	5.0	0.51
11	21		145	±30	2.9	0.29	0.60	0.061	1.3	0.13
''	37	arc-min ×10-ra 1	14.5	±30	1.6	0.17	0.00	0.062	0.90	0.092
	45				1.4	0.15	0.64	0.066	0.80	0.082
	5				8.6	0.88	0.43	0.044	9.8	1.0
	11				8.0	0.82	0.90	0.092	4.9	0.50
14	15	J ,	11.6	±20	7.4	0.75	J	0.11	2.9	0.30
14	21	, "		<u> </u>	5.2	0.53	1.1		2.5	0.30
	33	ļ			3.3	0.34		0.12	2.0	0.20
	45				2.4	0.25			2.0	0.20
	5	ļ		±15	19	1.9	0.93	0.095	28	2.9
	11	ļ	11.6		15	1.6	1.7	0.17	15	1.5
20	15	4			12	1.2	1.8	0.18	11	1.1
20	21				9.3	0.95	2.0	0.20	8.8	0.90
	33]			6.4	0.65	2.1	0.22	5.9	0.60
	45				4.7	0.48	2.1		4.9	0.50
	5	ļ		±15	33	3.4	1.7	0.17	73	7.4
	11		11.6		27	2.7	2.9	0.30	38	3.9
32	15				25	2.5	3.7	0.38	29	3.0
02	21] '	11.0		22	2.3	4.7	0.48	24	2.4
	33	ļ			15	1.5	4.8	0.49	14	1.4
	45				11	1.2	5.1	0.52	13	1.3
	5	ļ			80	8.2	4.0	0.41	130	13
	11	ļ			45	4.6	5.0	0.51	60	6.1
50	15	3	8.7	±15	40	4.1	6.0	0.61	47	4.8
""	21		0		36	3.7	7.6	0.78	40	4.1
	33				24	2.4	7.8	0.80	24	2.5
	45				20	2.0	8.9	0.91	20	2.0
	4				288	29	12	1.2	420	43
	5				240	24			360	37
65	12	2	8.7	±15	125	13	15	1.5	190	19
05	15	J	8.7	_13	110	11	17	1.7	160	16
	20				95	10	19	1.9	130	13
	25				84	8.6	21	2.1	110	11

(註)1. 角傳動精度係指任意旋轉角進行輸入時,①理論上旋轉的輸出旋轉角度和②實際上旋轉的輸出旋轉角度之間的差值。 另外,表內數值代表最大值。

圖 017 -1



θ er: 角傳動精度 θ 1:輸入旋轉角度

θ₂:實際輸出旋轉角度 R:HPGP系列的減速比

$$\theta \operatorname{er} = \theta_2 - \frac{\theta_1}{R}$$

2. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停止位置並求出最大差值。測量數值以角度表示,並以最大差值的1/2加上 + 符號表示該數值。另外,表內數值代表最大值。

 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表最大值。

表 017-2

負載	無負載
HPGP 減速機表面溫度	25℃

4. 加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。 另外,表內數值代表最大值。

表 017-3

負載	無負載
HPGP 減速機表面溫度	25℃

5. 無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表內數值代表平均值。

表 017-4

輸入轉數	3000r/min
負載	無負載
HPGP 減速機表面溫度	25°C

轉矩-扭轉特性(HPGP系列)

■減速機	機型標準	品					表 018-1	
		背	R省	T _R X0.15 時的	0單側扭轉量	扭轉	剛性	
型號	減速比	Ħ	I/R	[А	/B	
		arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N·m/rad	
	5			2.5	7.3			
11	21	3.0	8.7			0.065	22	
I "	37	5.0	0.1	3.0	8.7	0.003	22	
	45							
	5			2.2	6.4			
	11							
14	15	3.0	8.7		7.9	0.14	47	
	21			2.7				
	33							
	45							
	5			1.5	4.4			
	11							
20	15	3.0	8.7			0.55	180	
	21			2.0	5.8			
	33							
_	45			1.3	0.0			
	5 11		8.7	1.3	3.8			
	15			1.7		2.2		
32	21	3.0			4.9		740	
	33				4.9			
	45							
	5			1.3	3.8			
	11				0.0			
	15							
50	21	3.0	8.7	1.7	4.9	14	4700	
	33							
	45							
	4			1.0	0.0			
	5			1.3	3.8			
C.F.	12	2.0	0.7			20	12000	
65	15	3.0	8.7	1.7	4.0	38	13000	
	20			1.7	4.9			
	25							

■ 减速機型 BL1 規格(育原 1 分以下) 表 018-2												
		非		T _R X0.15 時的	0單側扭轉量	扭轉	剛性					
型號	減速比	=)	A	/B					
		arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N·m/rad					
	5			1.1	3.2							
	11											
14	15	1.0	2.9			0.14	47					
	21			1.7	4.9	J						
	33											
	45											
	5			0.6	1.7							
	11		2.9									
20	15	1.0				0.55	180					
	21			1.1	3.2							
	33 45											
	5			0.5	1.5							
	11		2.9	0.5	1.5							
	15						740					
32	21	1.0		1.0	2.9	2.2						
	33											
	45											
	5			0.5	1.5							
	11											
50	15	1.0	2.9			14	4700					
50	21	1.0	2.9	1.0	2.9	14	4700					
	33											
	45											
	4			0.5	1.5							
	5											
65	12	1.0	2.9			38	13000					
	15			1.0	2.9							
	20											
	25											

■扭轉剛性(彎曲曲線)

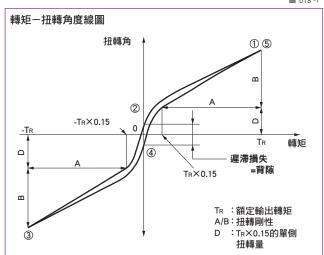
若固定住減速機的輸入及護殼,並對輸出部位施加轉矩,輸出部位便會隨轉矩產生扭轉現象。若讓轉矩值依據①正轉額定輸出轉矩→②零→③反轉額定輸出轉矩→④零→⑤正轉額定輸出轉矩的順序逐漸變化,便可描繪出如圖 018-1「轉矩-扭轉角度線圖」的①→②→③→④→⑤(回到①)循環。

從「0.15×額定輸出轉矩」到「額定輸出轉矩」的範圍內的斜率較低, HPGP系列的扭轉剛性值便是此斜率的平均值。

從「零轉矩」到「0.15×額定輸出轉矩」的範圍內的斜率較高,是因為咬合部位的輕微接觸不均,以及輕微負載時行星齒輪載重等間距不均衡等所造成的現象。

■總扭轉量(彎曲)的計算方法

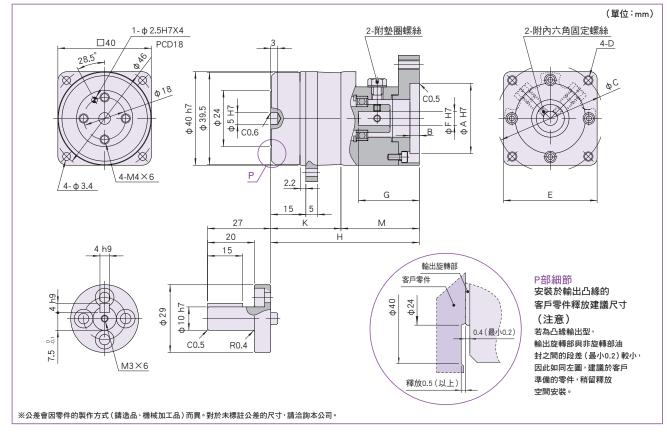
以下為減速機從無負載狀態進入施加負載狀態時的單側扭轉量計算 方法(平均值)。


公式 018-1

			0.0
●公	式		
	$\theta = D + \frac{T - T_L}{\frac{A}{B}}$		
公司	的記號		
θ	總扭轉量		
D	額定輸出轉矩×0.15轉矩的單側扭轉量	圖018-1、表018-1 參閱表018-2	
Т	負載轉矩		
TL	額定輸出轉矩×0.15轉矩(=TR×0.15)	參閱圖 018-1	
Α/	B 扭轉剛性	參閱圖 018-1、表 018-1~2	:

■背隙(遲滯損失)

圖 018-1「轉矩-扭轉角度線圖」的零轉矩範圍②④稱為遲滯損失。 HPGP 系列的背隙被定義為從「正轉額定輸出轉矩」到「反轉額定輸 出轉矩」時的遲滯損失。HPGP 系列的背隙在出廠時預設為 3 分以下 (特殊品為 1 分以下)。


圖 018 -1

外觀尺寸圖 - 型號 11 (HPGP 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

019 -1

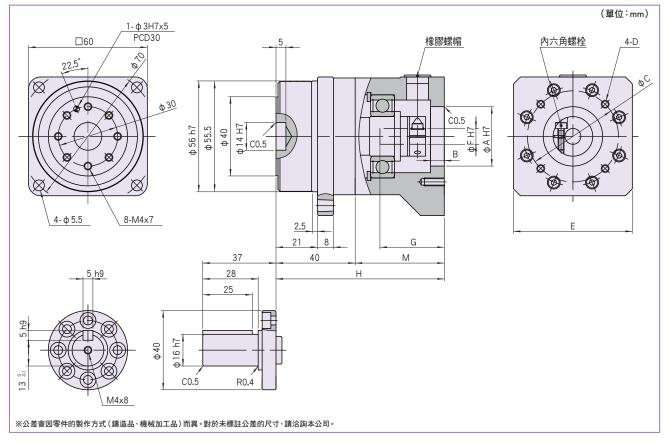
尺寸表

表 019 -1 單位:mm

	形狀記號	A (H7)	В	С	D	Е	F (1	H7)	G	Н	К	М	質量(k	g) ^{(註)2}
	(註)1	A (11)	В		D	-	Min	Max	d	П		IVI	軸輸出	凸緣輸出
	AA 🗆	28		33	M2.5×5	ф40			19.5	45.5		24.5	0.25	0.21
	AB □	20	3	28	φ3.4 貫穿	□ 25			23.5	49.5		28.5	0.26	0.22
- 🔾	AC □	22		43.8	ψ3.4 貝牙		1		23.3	45.5	21	20.0	0.27	0.23
一段式減速型 5)	AD □	30		46	M4×9	□ 40				54.5				
証に	AE □	30		45	M3×9	40	5	8					0.29	0.25
漢	AN □	34		48	1013/9				28			33.5		
型ご	AF □		4	70 M4×9	M4×9				28					
	AG □	50		10	M5×9	□ 60							0.34	0.30
	AH □			60	M4×9									
	AA 🗆	28		33	M2.5×5 φ40	ф40			16.5	54.5		24.5	0.31	0.27
減	AB □	20	3	28	φ3.4 貫穿	□ 25			20.5	58.5		28.5	0.32	0.28
- 速	AC □	22		43.8	Ψ3.4 复分				20.5	30.3		20.5	0.33	0.29
段比	AD □	30		46	M4×9	□ 40								
談 21	AE □	30		45	M3×9	40	5	8			30		0.35	0.31
(減速比=21、37、	AN □	34	4	48	1013/9				25.5	63.5		33.5		
	AF □		4	70	M4×9				20.5	03.5		33.5		
45	AG □	50		10	M5×9	□ 60					İ	0.40	0.36	
	AH □			60	M4×9									

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 - 型號 14 (HPGP 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

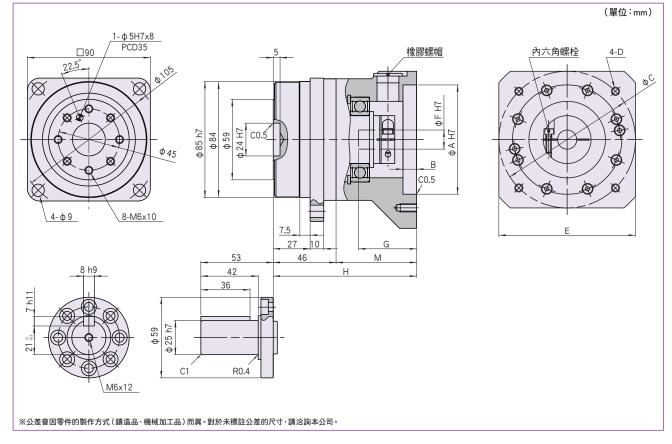
尺寸表:

表 020 -1 單位:mm

												質量(k	g) ^{(註)2}			
形狀記號	A (H7)	В	С	D	E	F (1	H7)	G	н	М		減速比= 5 減速比= 11、1		`15 `21 `		
(註)1	A (n/)		C	C			D	_			u		IVI	/成述比一 5		45
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出		
AA 🗆	30		45	M3×8			8	32						0.95		
AB □] 30	7	46	M4×10		6					1.01	0.89				
AF □	34		48	M3×8					85				1.07			
AC □			70	M5×12						45						
AD □	1		10		□ 60											
AE □	50	6.5	60	M4×10												
AX 🗆] 50	0.0	70	1014 / 10												
AY 🗆]		60			9										
AZ □	1		70	M5×12			14				1.06	0.94	1.12	1.00		
9E 🗆	70	7	90	M6×12	□ 80	11		33	86	46						
9F □	1 10	_ ′	90	M5×12	□ 80	''		33	00	46						

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。 (註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 - 型號 20 (HPGP 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

圖 021 -1

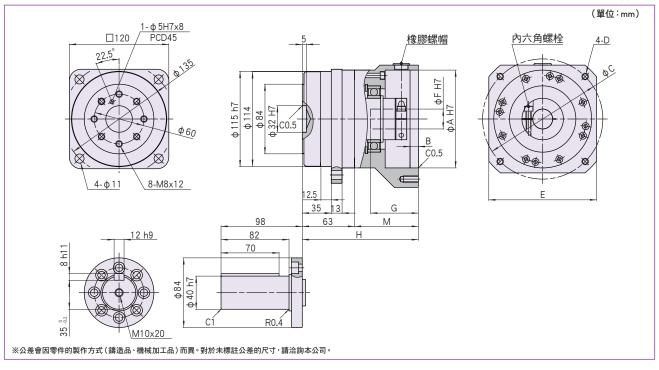
尺寸表

表 021 -1 單位:mm

																車IM・mm
													質量(k	g) ^{(註)2}		
形狀記號	A (H7)	В	С	D	E	F(H	H7)	G	H ^{(註) 3}	M ^{(註) 3}	減速上	t= 5	減速比= 21		減速比	c= 33
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出	軸輸出	凸緣輸出
PGC □			70	M5×12					98	F0						
PGD □	50	10	70	M4×10	ф89			35	(103)	52 (57)	2.7	2.3	3.0	2.6	3.1	2.7
PGE □			60	M4×8					(103)	(31)						
PFF □	70	7	90	M5×12	□ 80	7	19									
PFE 🗆 🗆	10	'	30	M6×12	□ 00			42	105	59	2.9	2.5	3.2	2.8	3.3	2.9
PHC 🗆	80	10	100	M6×12	□ 100			42	(110)	(64)	2.9	2.0	3.2	2.0	3.3	2.9
PHD □	95	6	115	M8×16	□ 100											
PJA □□	30	5	45	M3×8	Ф55	6	8	30.5	93.5	47.5	-	_	2.5	2.1	2.6	2.2
PJB □□	30	o o	46	M4×10	ψυυ	b	٥	30.5	(98.5)	(52.5)	_	_	2.0	2.1	2.0	2.2

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

- (註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。
 - 3. ()內為減速比= 33 產品的數值。

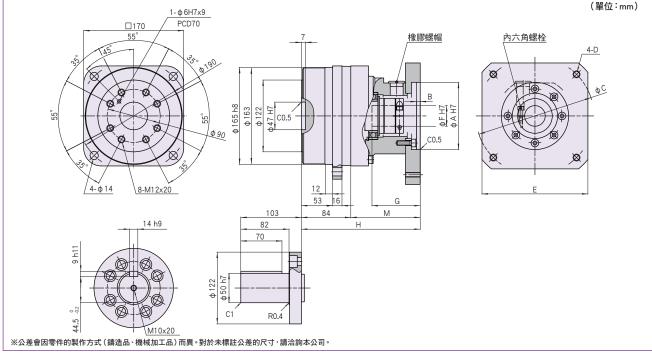
外觀尺寸圖 - 型號 32 (HPGP 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

圖 022 -1

尺寸表

表 022 -1 單位:mm


							F (H7)						質量(k	g) ^{(註)3}		
形狀記號	A (H7)	В	С	D	Е	F(F	1 7)	G	H ^{(註) 4}	M ^{(註) 4}	減速」	比= 5		11 \ 15 \ \ 45	減速比	Ŀ= 33
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出	軸輸出	凸緣輸出
PNA □	70		90	M5×12												
PNB □□	80	7	100	M6×12				56	139	76	7.4	6.0	8.0	6.6	8.3	6.9
PNC □	70		90	IVIO A 12	ф122				(144)	(81)						
PND 🗆	50	10	70	M5×12				38	(144)	(01)	_	_	7.7	6.3	8.0	6.6
	30	10	10	M4×10				30			_	_	1.1	0.3	0.0	0.0
PNF □	95	6	115	M8×10	ф135	10	24	62	145 (150)	82 (87)	7.5	6.1	8.1	6.7	8.4	7.0
PNG □□	70	4	90	M6×12	ф122			38	139 (144)	76 (81)	7.4	6.0	8.0	6.6	8.3	6.9
PNJ □	95	6	115	M6×10	ф135			62	145 (150)	82 (87)	7.5	6.1	8.1	6.7	8.4	7.0
PMC □	110	10	145	M8×18	□ 130			59	142 (147)	79 (84)	7.4	6.0	8.0	6.6	8.3	6.9
PPA □				M8×25		16	35 (註) 2				8.0	6.6	8.6	7.2	9.1	7.5
PPB □□	114.3	6.5	200		□ 180	16	30/ 2	81	164	101	9.0	7.6	9.6	8.2	9.9	8.5
PQP □□	114.3	0.5	200	M12×25	□ 180			01	(169)	(106)	14.6	13.2	_	_	_	_
PPC □□	200		235		□ 220						9.1	7.7	9.7	8.3	10.0	8.6

- (註)1. 形狀記號的□內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 僅 ϕ 35 尺寸有 H7 公差及正公差之分,請多加注意
 - 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。
 - 4. ()內為減速比= 33 產品的數值。

外觀尺寸圖 - 型號 50 (HPGP 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

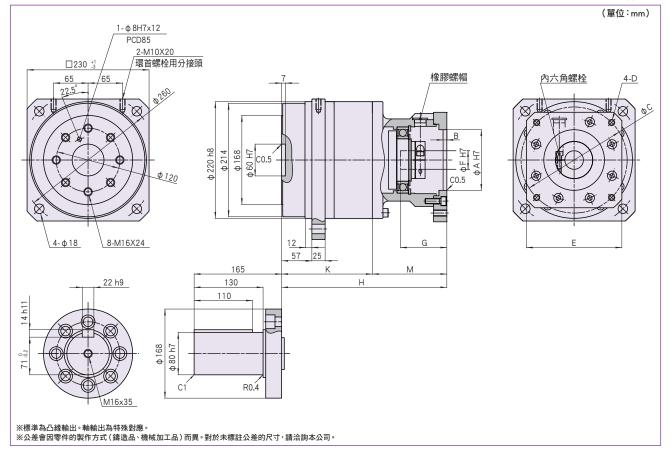
mm)

尺寸表:

表 023 -1 單位:mm

												質量(k	g) ^{(註)3}	
形狀記號	A (H7)	В	С	D	E	F (1	⊣7)	G	н	М	減速」	±= 5	減速比= 11 33 ·	\ 15\ 21\ \ 45
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出
AA 🗆 🗆	110		145	M8×16										
AD 🗆	95	1.0	115	M8×10	+170				170	92	17.0	146	100	100
AE 🗆 🗆	80	10	100	MCV10	φ170 16×10 18×25 □ 130		35 (註) 2	55.5	176	92	17.6	14.6	19.0	16.0
AF 🗆 🗆	95		115	IVIDATU										
ВА □□	110		145	M8×25		1					17.7	14.7	19.1	16.1
ВВ □□	1140		200		□ 180	19	42	1			18.6	15.6	20.1	17.1
EP 🗆 🗆	114.3		200	M12×25	□ 180		42	81	202	118	25.9	22.9	27.4	24.4
ВС □□	200	6.5	235	IVI1ZXZ5		1		1 81	202	118	18.7	15.7	20.2	17.2
EQ 🗆 🗆	200		235		□ 220		35 (註) 2				26.0	23.0	27.5	24.5
BF □□	130		165	M10×25]					18.6	15.6	20.1	17.1
СВ 🗆 🗆	114.3		200	M12×25	□ 180		42	114	243.5	159.5	_	_	20.4	17.4

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

- (註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 僅φ35 尺寸有 H7 公差及正公差之分,請多加注意。
 - 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 - 型號 65 (HPGP 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

圖 024 -1

尺寸表

表 024 -1 單位:mm

	形狀記號	A (H7)	В	С	D	Е	F (1	H7)	G	Н	К	М	質量(k	g) ^{(註)3}
	(註)1	A (11)	Ь	C			Min	Max	G	П		IVI	軸輸出	凸緣輸出
一	CB 🗆	114.3		200		□ 180								
一段式減速型	CG □□	180	10	215	M12×25	□ 220	35 (註) 2	55	113	241.5	91	150.5	48	38
減 4	CC 🗆	200	10	235	W112/23	L 220	35 (==) -	35	113	241.5	91	150.5	40	30
型 5	ch 🗆 🗆	230		265		□ 250								
	CB 🗆	114.3		200		□ 180								
減速	CG □□	180	10	215	M12×25	□ 220	35 (註) 2	55	113	311.5	161	150.5		
段里	CC 🗆	200		235		L 220								
(減速比=12、15、20	ВВ □□	114.3		200	M12×25	□ 180							52	42
速 20	ВС□□	200		235	W112/23	□ 220	10	35 (註) 2	0.4	000	170	110		
25	BF 🗆 🗆	130	6.5	165	M10×25	□ 180	19	35 \mi/ 2	84	288	170	118		
	ВА □□	110		145	M8×25	□ 130								

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

- 2. 僅 ϕ 35 尺寸有 H7 公差及正公差之分,請多加注意。
- 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

ΛΕM	0																		
																	_		
																	_	_	
																		_	
																	-		
																	+		
																	_		
																	_		
																	_		
																	_	_	
																	_	_	
																	+	\dashv	
																	+		
																	_		
																	_	_	
																	_		
																	-	+	
																		+	
																	_	_	
																	_	_	
																	_	_	
																	+	+	
																	_	+	
																	+		
																	+	+	
																	+		
																	_		

額定表 (HPG 系列 螺旋齒輪型)

請先參考額定表再選擇型號。

表 026 -1

			輸出		負載		· 亭止時的		最大	容許平均	最高輸入	慣性力矩(輸入	端換算值)(註)7		重質量 (註) 8
型號	減速比	轉矩	(註)1	轉矩	(註)2	峰值轉	矩(註)3	轉矩	(註)4	輸入轉速 (E) 5	轉速(註)6	軸輸出	凸緣輸出	軸輸出	凸緣輸出
		N∙m	kgf∙m	N·m	kgf∙m	N·m	kgf⋅m	N·m	kgf∙m	r/min	r/min	×10 ⁻⁴ kg·m²	$\times 10^{-4} kg \cdot m^2$	kg	kg
	4	2.8	0.3	6.3	0.64	10	1.0					0.011	0.0084		
	5	2.9	0.3	6.5	0.67	10	1.0					0.0069	0.0053		
	6	2.9	0.3	6.5	0.67	10	1.0	J				0.0047	0.0036		
11	7	3.1	0.3	7.0	0.71	9.0	0.9	20	2.0	3000	10000	0.0035	0.0027	0.24	0.19
	8	3.1	0.3	7.0	0.71	7.0	0.7	ļ				0.0026	0.002		
	9	3.1	0.3	6.0	0.61	6.0	0.6	J				0.0021	0.0016		
	10	3.4	0.3	5.0	0.51	5.0	0.5					0.0017	0.0013		
	3	4.0	0.4	9.0	0.92	20	2.0	37	3.8		5000	0.089	0.072		
	4	7.0	0.7	16	1.6	30	3.1					0.047	0.037		
	5	7.2	0.7	16	1.6	30	3.1]				0.03	0.023		
14	6	7.3	0.7	16	1.6	30	3.1			3000		0.028	0.024	0.55	0.45
14	7	7.8	0.8	18	1.8	26	2.7	56	5.7	3000	6000	0.021	0.018	0.55	0.43
	8	7.8	0.8	18	1.8	20	2.0					0.016	0.014		
	9	7.9	0.8	17	1.7	17	1.7					0.013	0.011		
	10	8.5	0.9	15	1.5	15	1.5					0.01	0.0087		
	3	11	1.1	25	2.6	90	9.2	124	13		4000	0.64	0.53		
	4	23	2.3	51	5.2	133	14	J				0.36	0.3		
	5	23	2.4	53	5.4	133	14]				0.23	0.19		
20	6	23	2.4	53	5.4	126	13	ļ		3000		0.15	0.13	1.7	1.3
20	7	25	2.5	56	5.7	108	11	217	22	3000	6000	0.11	0.093	''	1.5
	8	25	2.5	56	5.7	84	8.6	ļ				0.085	0.07		
	9	25	2.6	57	5.8	73	7.4	ļ				0.067	0.055		
	10	27	2.8	61	6.2	65	6.6					0.055	0.046		
	3	50	5.1	110	11	290	30	507	52		3600	3.5	2.8		
	4	77	7.9	170	17	400	41					1.7	1.3		
	5	80	8.2	180	18	400	41					1.1	0.79		
32	6	80	8.2	180	18	390	40			3000		0.73	0.55	4.5	3.1
32	7	85	8.7	190	19	330	34	650	66	3000	6000	0.55	0.41	4.5	3.1
	8	85	8.7	190	19	260	27					0.43	0.33		
	9	86	8.8	190	19	220	22					0.34	0.26		
	10	92	9.4	200	20	200	20					0.28	0.22		
(註)1.本	數值是以輸	入轉數為一般	设伺服馬達的	物額定轉速 3	3000r/min 時	,壽命時間	L10=20000	小時為依據	所設定之額'	定輸出轉矩					

- - 但型號 50、65 之額定輸出轉矩是以組合伺服馬達的額定轉速為 2000r/min,壽命時間 L₁≔20000 小時為依據設定的。 2. 此為依據負載轉矩模式 (P014) 所計算出的平均負載轉矩之容許最大值·並以「輸入轉速為 2000r/min 時,壽命可達 2000 小時以上」為設定的參考標準。
 - 3. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值
 - 4. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。
 - 若超過此轉矩可能會使減速機受損。
 - 5. 此為運轉中的平均輸入轉速之容許最大值。當設備連續運轉的間隔時間短時,請特別注意勿超過此數值。

 - 6. 此為非連續運轉條件下的容許最高輸入轉速。 7. 此為減速機單體的數值。包含輸入軸連接器的數值,請確認官方網站的型式選擇工具(URL:https://hds-tech.jp/)。 8. 此為減速機單體的質量。關於包含輸入軸連接器、馬達凸緣等配件的數值,請參閱尺寸表。

性能表(HPG系列螺旋齒輪型)

表內數值皆為 HPG 減速機單體的數值。

由於輸入端形狀會因安裝馬達的尺寸而異,故附輸入軸連接器及馬達凸緣的數值請洽詢本公司。

表 027 -1

型號	減速比	角傳動料	青度 ^{(註) 1}	反覆定位精度 (註) 2	起動轉	矩(註)3	加速起動	轉矩(註)4	無負載運輸	專轉矩 ^{(註)5}
主加	//X.1 <u>~</u> .LL	arc-min	×10⁴rad	arc-sec	cN⋅m	kgf∙cm	N·m	kgf∙m	cN⋅m	kgf∙cm
	4				4.7	0.48	0.19	0.019	6.8	0.69
	5				4.1	0.42	0.21	0.021	5.4	0.55
	6				3.6	0.37	0.22	0.022	4.5	0.46
11	7	5	14.5	±20	3.3	0.34	0.23	0.024	3.9	0.4
	8				3	0.31	0.24	0.024	3.4	0.35
	9				2.8	0.29	0.25	0.026	3	0.31
	10				2.6	0.27	0.26	0.027	2.7	0.28
	3				13	1.3	0.38	0.039	22	2.2
	4				11	1.1	0.45	0.046	17	1.7
	5				10	1	0.51	0.052	13	1.3
14	6	1	11.6	±15	9.5	1	0.57	0.058	11	1.1
14	7	4	11.0	±15	9	0.92	0.63	0.064	9.4	1
	8				8.5	0.87	0.68	0.069	8.3	0.85
	9	4			8.1	0.83	0.73	0.074	7.3	0.74
	10				7.8	0.8	0.78	0.08	6.6	0.67
	3				31	3.2	0.93	0.095	50	5.1
	4				25	2.6	1	0.1	38	3.9
	5				22	2.2	1.1	0.11	30	3.1
20	6	4	11.6	±10	20	2	1.2	0.12	25	2.6
20	7	1 4	11.0	<u>- 10</u>	18	1.8	1.3	0.13	21	2.1
	8				17	1.7	1.4	0.14	19	1.9
	9				17	1.8	1.5	0.15	17	1.7
	10				16	1.6	1.6	0.16	15	1.5
	3				56	5.7	1.7	0.17	135	14
	4				52	5.3	2.1	0.21	101	10
	5				49	5	2.5	0.26	81	8.3
32	6	4	11.6	±10	47	4.8	2.8	0.29	68	6.9
32	7	, "	11.0	_10	45	4.6	3.2	0.33	58	5.9
	8				44	4.5	3.5	0.36	51	5.2
	9				43	4.4	3.9	0.4	45	4.6
	10				42	4.3	4.2	0.43	41	4.2

(註)1. 角傳動精度係指任意旋轉角進行輸入時,①理論上旋轉的輸出旋轉角度和②實際上旋轉的輸出旋轉角度之間的差值。 另外,表內數值代表最大值。

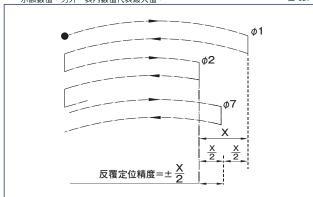
 のer:角傳動精度

 のer:角傳動精度

 のer:角傳動精度

 のer:角傳動精度

 のer:角傳動精度


 のer:角傳動精度

 のer:角傳動精度

 のer:角傳動精度

 R:HPG系列的減速比

2. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停止位置並求出最大差值。測量數值以角度表示,並以最大差值的1/2加上生符號表示該數值。另外,表內數值代表最大值。

 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表最大值。

表 027 -2

圖 027 -1

負載	無負載
HPG 減速機表面溫度	25℃

加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。
 另外,表內數值代表最大值。

表 027 -3

負載	無負載
HPG 減速機表面溫度	25℃

無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表內數值代表平均值。

表 027 -4

輸入轉數	3000r/min
負載	無負載
HPG 減速機表面溫度	25℃

轉矩一扭轉特性(HPG 系列)

	■減速機	Nix Nix			表 028 -1			
ı			3 5	階	T _R X0.15 時的	5單側扭轉量	扭轉	剛性
1	型號	減速比	Ħ	I/R			А	/B
ı			arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N·m/rad
I								
ı								
1								
ı	11		3.0	8.7	2.5	7.3	0.065	22.0
ı								
ı								
Ļ								
1								
ı	14		3.0	8.7	22	6.4	0.14	47.0
ı		7	0.0	0.1	2.2	0.4	0.14	41.0
ı								
ı		9						
Ļ								
ı								
1								
ı								
1	20		3.0	8.7	1.5	4.4	0.55	180.0
ı	20		0.0	01.	110		0.00	10010
ı								
ı								
Ļ								
ı								
ı								
	32		3.0	8.7	1.3	3.8	2.2	740.0
		8						
		9						
L		10						

型號	減速比	背		T _R X0.15 時的		扭轉 A	剛性 /B
		arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N·m/rad
	3						
	4]					
	5	l					
14	6	1.0	2.9	1.1	3.2	0.14	47.0
14	7	1.0	2.5		0.2	0.14	41.0
	8	ļ					
	9	ļ					
	10						
	3	ļ					
	4	l					
	5 6	{					
20	7	1.0	2.9	0.6	1.7	0.55	180.0
	8	ł					
	9	ł					
	10	i					
	3						
	4	1					
	5	ĺ					
20	6	١.,	0.0	0.5	4.5		7400
32	7	1.0	2.9	0.5	1.5	2.2	740.0
	8	1					
	9]					
	10						

■ 活沫機利 D. 4 +8+4 / 北欧 4 / ハハエ \

■扭轉剛性(彎曲曲線)

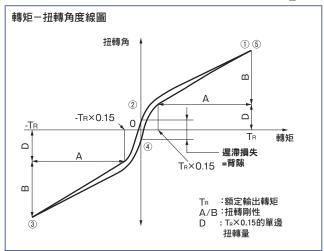
若固定住減速機的輸入及護殼,並對輸出部位施加轉矩,輸出部位便會隨轉矩產生扭轉現象。若讓轉矩值依據①正轉額定輸出轉矩→②零→③反轉額定輸出轉矩→④零→⑤正轉額定輸出轉矩的順序逐漸變化,便可描繪出如圖 028-1「轉矩-扭轉角度線圖」的①→②→③→④→⑤(回到①)循環。

從「0.15×額定輸出轉矩」到「額定輸出轉矩」的範圍內斜率較低, HPG系列的扭轉剛性值便是此斜率的平均值。

從「零轉矩」到「0.15×額定輸出轉矩」的範圍內斜率較高,這是因為咬合部位的輕微接觸不均,以及輕微負載時行星齒輪載重等間距不均衡等所造成的現象。

■總扭轉量(彎曲)的計算方法

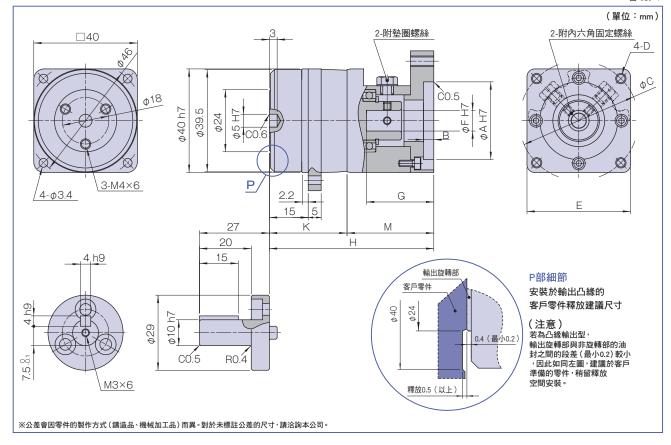
以下為減速機從無負載狀態進入施加負載狀態時的單側扭轉量計算方法(平均值)。


小士 028

:	
$\theta = D + \frac{T - TL}{\frac{A}{B}}$	
記號	
總扭轉量	
額定輸出轉矩×0.15轉矩的單側扭轉量	圖 028-1 (參閱表 028 -1~2)
負載轉矩	
額定輸出轉矩×0.15轉矩(=⊤R×0.15)	參閱圖028-1
扭轉剛性	圖 028-1 (參閱表028-1~ 2)
	### ### ### #########################

■背隙(遲滯損失)

圖 028-1「轉矩-扭轉角度線圖」的零轉矩範圍②④稱為遲滯損失。 HPG 系列的背隙被定義為從「正轉額定輸出轉矩」到「反轉額定輸 出轉矩」時的遲滯損失。HPG 系列的背隙在出廠時預設為 3 分以下 (特殊品為 1 分以下)。


圖 028 -1

外觀尺寸圖一型號 11 (HPG 系列 螺旋齒輪型)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 029 -1

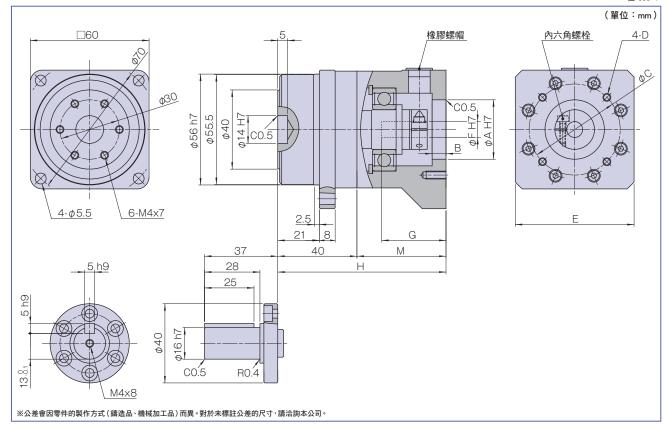
尺寸表

表 029 -1 單位:mm

形狀記號(註)1	A (H7)	В	С	D	E	F(H	H7)	G	Н	М	質量(k 減速比= 4、5、	g) ^{(註)2} 6、7、8、9、10
						Min	Max				軸輸出	凸緣輸出
RAA □	28		33	M2.5×5	ф 40			16.5	45.5	24.5	0.31	0.26
RAB □	20	3	28	φ 3.4 貫穿孔	□ 25			20.5	49.5	28.5	0.32	0.27
RAC □	22		43.8	φ 3.4 貫穿孔				20.5	49.5	20.5	0.33	0.28
RAD □	30		46	M4×9	□ 40							
RAE □	30		45	M3×9	40	5	8				0.35	0.30
RAN □	34	4	48	M3×9				25.5	54.5	33.5		
RAF □		4	70	M4×9				25.5	54.5	33.5		
RAG □	50		70	M5×9	□ 60						0.40	0.35
RAH □			60	M4×9								

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。


(註)1.形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖-型號 14 (HPG 系列 螺旋齒輪型)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 030 -1

尺寸表

表 030 -1 單位:mm

形狀記號(註)1	A (H7)	В	С	D	E	F(H	H7)	G	Н	М		g) ^{(註)2} 、6、7、8、9、10
						Min	Max				軸輸出	凸緣輸出
AA 🗆	30		45	M3×8								
AB □	30	7	46	M4×10		l						
AF □	34		48	M3×8		8	8				1.02	0.92
AC □			70	M5×12		ľ	°				1.02	0.92
AD □			10		□ 60			33	85	45		
AE □	50	6.5	60	M4×10								
RAX □	50	6.5	70	IVI4 × 10								
RAY □			60	1		9						
RAZ □			70	M5×12			14				1.07	0.97
RDA □	70	7	90	M6×12	□ 80	11		33	86	46		
RDB □	70	· ·	90	M5×12	□ 80	11		33	90	40		

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

- (註)1. 形狀記號的□內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖-型號 20 (HPG 系列 螺旋齒輪型)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 031 -1

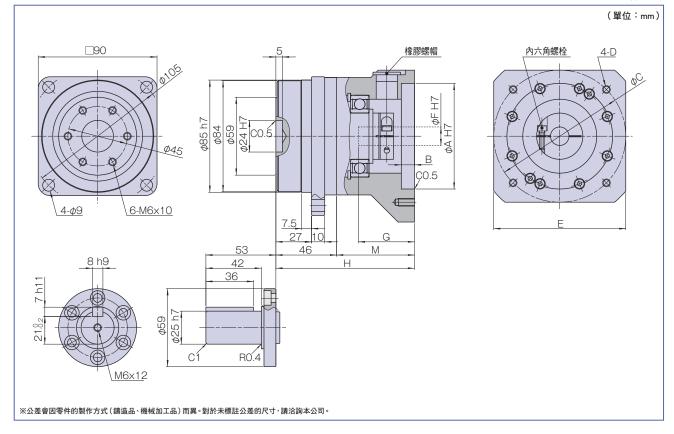
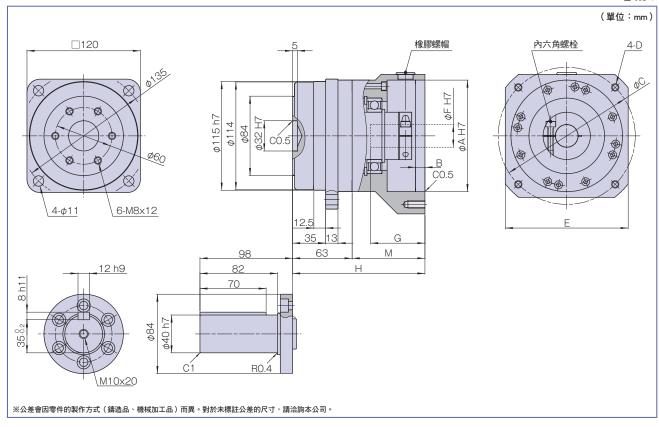


表 031 -1 單位:mm

形狀記號(註)1	A (H7)	В	С	D	E	F(H	H7)	G	Н	М	質量(k 減速比= 3、4、5	g) ^{(註)2} 、6、7、8、9、10
						Min	Max				軸輸出	凸緣輸出
PGC □			70	M5×12								
PGD □	50	10	10	M4×10	ф89			38	98	52	2.8	2.4
PGE □			60	M4×8								
PFF □	70	7	90	M5×12	□ 80	7	19					
PFE 🗆 🗆	70	1	90	M6×12	□ 80			45	105	59	3.0	2.6
PHC 🗆 🗆	80	20	100	IVIO A 12	□ 100			45	105	59	3.0	2.6
PHD □	00	6	115	M8×16	□ 100							

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。


(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖-型號 32 (HPG 系列 螺旋齒輪型)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 032 -1

尺寸表

表 032 -1 單位:mm

形狀記號(註)1	A (H7)	В	С	D	E	F (1	H7)	G	Н	М	質量(k 減速比= 3、4、5	g) ^{(註)3} 、6、7、8、9、10
						Min	Max				軸輸出	凸緣輸出
PNA □	70		90	M5×12								
PNB □□	80	7	100	M6×12	ф 122			56	139	76	7.5	6.1
PNC □	70		90	M6×12		10	0.4					
PNF □	95	6	115	M8×10	ф 135	10	24	62	145	82	7.6	6.2
PNG □□	70	4	90	M6×12	ф 122			38	139	76	7.5	6.1
PNJ □	95	6	115	M6×10	ф 135			62	145	82	7.6	6.2
PMC □	110	10	145	M8×18	□ 135			59	142	79	7.5	6.1
PPA □	110		145	M8×25	135						8.1	6.7
PPB □□	114.3	6.5	200		□ 180	16	35 ^{(註) 2}	81	164	101	9.1	7.7
PQP □□	114.3	6.5	200	M12×25	□ 180			81	164	101	14.7	13.3
PPC □□	200		235		□ 220			1			9.2	7.8

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖 如需瞭解減速機單體及特殊安裝方法,請洽詢本公司

- (註)1. 形狀記號的□內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 僅 ϕ 35 size 有 H7 公差及正公差之分,請多加注意
 - 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

MEM	10																		
																		\dashv	
																		\dashv	
		1	-								_								

額定表 (HPG 系列)

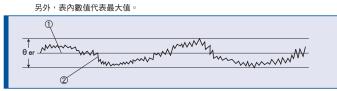
HPG 系列減速機型有 6 種型號,種類豐富。請先參考額定表再選擇型號。

表 034 -1

Might Migh			類完	·輸出	亚卡	負載	#P. 新人 、	· 亭止時的	暖問	最大	容許平均	最高輸入	槽性力铂(詮 λ)	端換算值)(註)7	減速機單體	表 U34 -1
No.	型號	減速比														ロ 単
1		#WX.E.F.0						-								kg
9 2.5 0.26 3.9 0.40 3.9 0.40 20 20 3000 10000 00019 0.0018 0.0006 0.24 0 450 3.4 0.35		5														
37		9	2.5	0.26	3.9	0.40	3.9	0.40	İ				0.0012	0.00070	0.18	0.14
37	11	21	3.4	0.35					20	2.0	3000	10000	0.0019	0.0018		
1		37	3.4	0.35	6.0	0.61	9.8	1.0					0.00068	0.00066	0.24	0.20
14		45	3.4	0.35	1								0.00049	0.00048		
11		3	2.9	0.30	6.4	0.65	15	1.5	37	3.8		5000	0.077	0.059	0.50	0.40
14		5	5.9	0.60	13	1.3					1		0.026	0.020	0.50	0.40
21		11	7.8	0.80			1						0.019	0.018		
21 8.8 0.90 15 1.5	14	15	9.0	0.90	ĺ						3000		0.017	0.016		
A		21	8.8	0.90	15	1.5	23	2.3	56	5.7		6000	0.0092	0.0089	0.60	0.50
3 8.8 0.90 19 2.0 64 6.5 124 13 400 0.57 0.46 1.6 15 11 20 2.0 45 4.6 1.6 35 3.6 11 20 2.0 45 4.6 1.6 15 24 2.4 53 5.4 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 25 2.5 55 5.6 16 21 21 21 25 2.5 55 5.6 16 21 21 21 21 21 21 21 21 21 21 21 21 21		33	10	1.0	ĺ								0.0030	0.0029		
The color of the		45	10	1.0	1								0.0028	0.0027		
1		3	8.8	0.90	19	2.0	64	6.5	124	13		4000	0.57	0.46	1.0	1.0
20		5	16	1.6	35	3.6					1		0.21	0.17	1.0	1.2
21		11	20	2.0	45	4.6]						0.16	0.15		
21	20			2.4	53	5.4	100	1.0	017		3000		0.14	0.14		
45		21			55	5.6	100	10	217	22		6000	0.071	0.069	1.8	1.4
A5		33 29	3.0	-00	6.1	1						0.024	0.023			
S		45	29	3.0	60	6.1							0.022	0.022		
11		3	31	3.2	71	7.2	225	23	507	52		3600	2.8	2.0	12	2.9
15		5	66	6.7	150	15							1.0	0.73	4.3	2.5
21 98 10 300 31 650 66 66 600 0.36 0.34 4.9 333 108 11 200 20 20 657 67 1200 122 0.12 0.11 3000 17 13 13 13 13 14 15 15 230 24 450 450 45 270 28 500 51 200 45 270 28 5 530 54 1000 102 12 200 25 850 87 1500 153 200 800 81 1500 153 200 800 81 25 850 87 1500 153 200 194 450 460 2000 3000 3000 3000 31 33 4.9 4.9 31 30.12 3000 17 13 300 31 33 3200 31 3200 31 3200 31 3200 30		11	88	9.0									0.84	0.78		
21	32		92	9.4	170	17	300	21	650	66	3000	6000	0.65	0.62		
45 108 11 200 20 657 67 1200 122 3000 17 13 13 13 13 150 153 20 657 67 1200 122 3000 17 13 13 13 13 15 (it) 9 6.5 6.5 (it) 9 6.1 1.5 (it) 9 6.5 6.5 (it) 9 6.1 1.5 (it) 9 6.5 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9 6.5 (it) 9 6.1 1.5 (it) 9 6.5 (it) 9			98	10	170 17		300	31	650	66		0000	0.36	0.34	4.9	3.5
A5		33	108	11	200	20							0.13	0.12		
5 170 17 340 35			108	11	200								0.12	0.11		
5 170 17 340 35 11 200 20 400 41 21 260 27 33 270 28 500 51 900 92 45 270 28 50 54 1000 102 12 600 61 1100 112 12 600 61 1100 112 200 800 81 25 850 87 1500 153 1900 194 450 460 460 666 1300 133 1900 194			97				657	67	1200	122	ļ	3000	17		13	10
50							ļ									
21 260 27 33 270 28 500 51 850 87 1850 189 4500 1.7 1.6 0.63 0.60 0.59 0.60 15 15 15 15 15 15 15 15 15 15 15 15 15						-	ļ									
21 260 27 33 270 28 500 51	50				450	46	850	87	1850	189	2000	4500				
45 270 28 90 92															15	12
4 500 51 900 92 5 530 54 1000 102 12 600 61 1100 112 15 730 75 1300 133 20 800 81 1500 153 25 850 87 1500 153 40 640 66 1300 133 1900 194 225 25 850 87 250 87 261 300 194 250 42 (£) 9 28 27 (£) 9 18 18 18 (£) 9 17 17 (£) 9 16 7.1 (£) 9 6.5 6.5 (£) 9 6.1 1.5 (£) 9 1.3					500	51										
5 530 54 1000 102 12 600 61 1100 112 15 730 75 1300 133 20 800 81 25 850 87 1500 153 40 640 66 1300 133 1900 194	45															
5 530 54 1000 102 12 600 61 1100 112 15 730 75 1300 133 20 800 81 25 850 87 1500 153 40 640 66 1300 133 1900 194	4 500 5 530 12 600										2500			32 (註) 9	22	
65																
65 15 730 75 1300 133 4500 460 2000 3000 17 (15) 9 1.6 7.1 (15) 9 6.5 6.5 (15) 9 6.1 1.5 (15) 9 1.3 47 (15) 9 1.3						2200	225									
20 800 81 1500 153 3000 7.1 (E) 9 6.5 6.5 (E) 9 6.1 47 (E) 9 40 640 66 1300 133 1900 194	65	65		1300	133			4500	460	2000						
40 640 66 1300 133 1900 194 1.5 (註) 9 1.3					1500	153						3000			47 (註) 9	37
															4/(a±)9	
50 750 77 1500 153 2200 225 1.3 (EE) 9 1.2																
(註)1. 本數值是以輸入轉數為一般伺服馬達的額定轉速 3000r/min 時,壽命時間 Lto=20000 小時為依據所設定之額定輸出轉矩。													1.3 (証) 9	1.2		

- 但型號 50、65 之額定輸出轉矩是以組合伺服馬達的額定轉速為 2000r/min,壽命時間 L₁₀=20000 小時為依據設定的。
 - 2. 此為依據負載轉矩模式(014頁)所計算出的平均負載轉矩之容許最大值,並以「輸入轉數為 2000r/min 時,壽命可達 2000 小時以上」為設定的參考標準。
 - 3. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值 4. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。
 - - 若超過此轉矩可能會使減速機受損。
 - 5. 此為運轉中的平均輸入轉速之容許最大值。當設備連續運轉的間隔時間短時,請特別注意勿超過此數值。
 - 6. 此為非連續運轉條件下的容許最高輸入轉速。
 - 7. 此為減速機單體的數值。包含輸入軸連接器的數值,請確認官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 8. 此為減速機單體的質量。關於包含輸入軸連接器、馬達凸緣等配件的數值,請參閱尺寸表。
 - 9. 標準為凸緣輸出。軸輸出為特殊對應。

性能表 (HPG 系列)


表內數值皆為 HPG 減速機單體的數值。

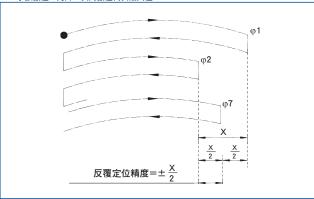
由於輸入端形狀會因安裝馬達的尺寸而異,故附輸入軸連接器及馬達凸緣的數值請洽詢本公司。

表 035 -1

型號	減速比	角傳動料	青度 ^{(註) 1}	反覆定位精度 (註) 2	起動轉	矩 ^{(註)3}	加速起動	轉矩(註)4	無負載運輸	專轉矩 ^{(註)5}		
空弧	/収1本工厂	arc-min	×10⁴rad	arc-sec	cN⋅m	kgf⋅cm	N·m	kgf∙m	cN⋅m	kgf·cm		
	5				4.0	0.41	0.20	0.020	5.0	0.51		
	9	1			3.7	0.37	0.33	0.034	2.5	0.26		
11	21	5	14.5	±30	2.9	0.29	0.00	0.061	1.3	0.13		
	37				1.6	0.17	0.60	0.062	0.90	0.092		
	45				1.4	0.15	0.64	0.066	0.80	0.082		
	3				14	1.5	0.43	0.044	21	2.1		
	5				8.6	0.88	0.43	0.044	9.8	1.0		
	11				8.0	0.82	0.90	0.092	4.9	0.50		
14	15	4	11.6	±20	7.4	0.75		0.11	2.9	0.30		
	21				5.2	0.53	1.1		2.9	0.30		
	33				3.3	0.34	1.1	0.12	2.0	0.20		
	45				2.4	0.25			2.0	0.20		
	3				31	3.2	0.93	0.095	50	5.1		
	5				19	1.9	0.93	0.093	28	2.9		
	11				15	1.6	1.7	0.17	15	1.5		
20	15	4	11.6	±15	12	1.2	1.8	0.18	11	1.1		
	21				9.3	0.95	2.0	0.20	8.8	0.90		
	33				6.4	0.65	2.1	0.22	5.9	0.60		
	45				4.7	0.48	2.1	0.22	4.9	0.50		
	3				56	5.7	1.7	0.17	135	14		
	5				33	3.4	1.1	0.11	73	7.4		
	11				_		27	2.7	2.9	0.30	38	3.9
32	15	4	11.6	±15	25	2.5	3.7	0.38	29	3.0		
	21				22	2.3	4.7	0.48	24	2.4		
	33				15	1.5	4.8	0.49	14	1.4		
	45				11	1.2	5.1	0.52	13	1.3		
	3	Į			134	14	4.0	0.41	250	26		
	5	ļ			80	8.2			130	13		
	11			[45	4.6	5.0	0.51	60	6.1		
50	15	3	8.7	±15	40	4.1	6.0	0.61	47	4.8		
	21				36	3.7	7.6	0.78	40	4.1		
	33	ļ		[24	2.4	7.8	0.80	24	2.5		
	45				20	2.0	8.9	0.91	20	2.0		
4					288	29	12	1.2	420	43		
	5				240	24			360	37		
	12				125	13	15	1.5	190	19		
65	15	3	8.7	±15	110	11	17	1.7	160	16		
	20	Ĭ	0.1		95	10	19	1.9	130	13		
	25				84	8.6	21	2.1	110	11		
	40				75	7.7	30	3.1	76	7.7		
	50				70	7.1	35	3.6	64	6.6		

(註)1. 角傳動精度係指任意旋轉角進行輸入時,①理論上旋轉的輸出旋轉角度和②實際上旋轉的輸出旋轉角度之間的差值。

θer:角傳動精度


θ1:輸入旋轉角度

θ2:實際輸出旋轉角度

R :HPG系列的減速比

 $\theta \text{ er} = \theta_2 - \frac{\sigma}{\rho}$

2. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停止位置並求出最大差值。測量數值以角度表示,並以最大差值的1/2加上 + 符號表示該數值。另外,表內數值代表最大值。
圖 035-2

 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表最大值。

表 035 -2

圖 035 -1

	3C 033
負載	無負載
HPG 減速機表面溫度	25℃

 加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。 另外,表內數值代表最大值。

表 035 -3

負載	無負載
HPG 減速機表面溫度	25℃
FIFG /成还版农田/皿/支	23 C

5. 無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表內數值代表平均值。

表 035 -4

輸入轉數	3000r/min
負載	無負載
HPG 減速機表面溫度	25°C

轉矩一扭轉特性(HPG系列)

■減速	幾型標準	品					表 036 -1	
Tri n.E	Sekte III.	背	·隙		的單側扭轉量 -	扭轉		
型號	減速比	arc-min	×10 ⁻⁴ rad	arc-min	X10 ⁻⁴ rad	A kgf·m/arc-min	/B X100N·m/rad	
	5	arc mm	X10 Idd			ngi injule ililii	Arouningac	
	9	i		2.5	7.3			
11	21	3.0	8.7			0.065	22	
	37	İ		3.0	8.7			
	45	ĺ						
	3			2.2	6.4			
	5	Ì		2.2	6.4			
	11							
14	15	3.0	8.7			0.14	47	
	21			2.7	7.9			
	33							
	45							
	3			1.5	4.4			
20	5			1.5	4.4			
	11	ļ	8.7					
20	15	3.0				0.55	180	
	21	ļ		2.0	5.8			
	33	ļ						
	45							
	3			1.3	3.8			
	5				0.0			
	11							
32	15	3.0	8.7			2.2	740	
	21	ļ		1.7	4.9			
	33							
	45							
	3	Į.		1.3	3.8			
	5	1						
50	11							
	15	3.0	8.7			14	4700	
	21	ļ		1.7	4.9			
	33	l						
	45							
	4			1.3	3.8			
	5							
	12 15						13000	
65		3.0	8.7		4.9	38		
	20			1.7				
	25							

型號	減速比	背	隙	T _R X0.15 時的	的單側扭轉量 O		剛性 /B
空弧	减迷比	arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N·m/rad
	3 5			1.1	3.2		
14	11 15 21 33 45	1.0	2.9	1.7	4.9	0.14	47
	3 5			0.6	1.7		
20	0 11 0 15 21 33 45	1.0	2.9	1.1	3.2	0.55	180
	3 5			0.5	5 1.5		
32	11 15 21 33 45	1.0	2.9	1.0	2.9	2.2	740
	3 5			0.5	1.5		
50	11 15 21 33 45	1.0	2.9	1.0	2.9	14	4700
	4 5			0.5	0.5 1.5		
65	12 15 20 25 40 50	1.0	2.9	1.0	2.9	38	13000

■減速機型 BL1 規格(背隙 1 分以下)

■扭轉剛性(彎曲曲線)

50

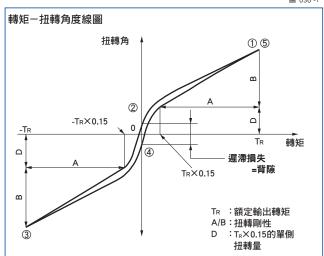
若固定住減速機的輸入及護殼,並對輸出部位施加轉矩,輸出部位 便會隨轉矩產生扭轉現象。若讓轉矩值依據①正轉額定輸出轉矩 →②零→③反轉額定輸出轉矩→④零→⑤正轉額定輸出轉矩的順 序逐漸變化,便可描繪出如圖 036-1「轉矩-扭轉角度線圖」的 ①→②→③→4→⑤(回到①)循環。

從「0.15×額定輸出轉矩」到「額定輸出轉矩」的範圍內的斜率較低, HPG 系列的扭轉剛性值便是此斜率的平均值。

從「零轉矩」到「0.15×額定輸出轉矩」的範圍內的斜率較高,是 因為咬合部位的輕微接觸不均,以及輕微負載時行星齒輪載重等間 距不均衡等所造成的現象。

■總扭轉量(彎曲)的計算方法

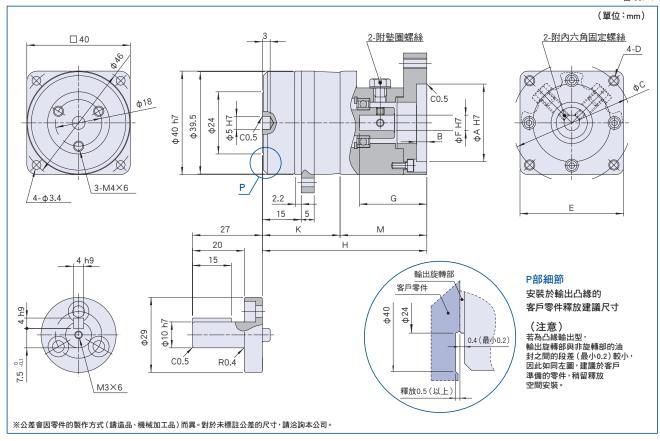
以下為減速機從無負載狀態進入施加負載狀態時的單側扭轉量計算 方法(平均值)。


公式 036 -1

●公式		
	$\theta = D + \frac{T - T_L}{\frac{A}{B}}$	
公式的	記號	
θ	總扭轉量	
D	額定輸出轉矩×0.15轉矩的單側扭轉量	圖036-1、表036-1 參閱表036-2
Т	負載轉矩	
TL	額定輸出轉矩×0.15轉矩(=TR×0.15)	參閱圖 036-1
A/B		參閱圖036-1、表036-1~2

■背隙(遲滯損失)

圖 036-1「轉矩-扭轉角度線圖」的零轉矩範圍②④稱為遲滯損失。 HPG 系列的背隙被定義為從「正轉額定輸出轉矩」到「反轉額定輸 出轉矩」時的遲滯損失。HPG 系列的背隙在出廠時預設為 3 分以下 (特殊品為1分以下)。


表 036 -2

外觀尺寸圖 - 型號 11 (HPG 系列)

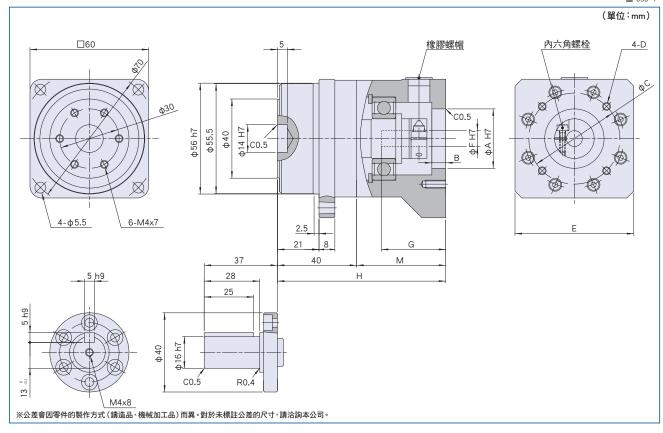
本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 037 -1

尺寸表

表 037-1 單位:mm

	形狀記號	A (H7)	В	С	D	Е	F (H	H7)	G	Н	К		質量(k	g) ^{(註)2}
	(註)1	A (H/)	В	C	D	E	Min	Max	G	Н	K	М	軸輸出	凸緣輸出
	AA 🗆	28		33	M2.5×5	ф40			19.5	45.5		24.5	0.25	0.21
	АВ □	20	3	28	φ3.4 貫穿	□ 25			23.5	49.5		28.5	0.26	0.22
_ 減	AC □	22		43.8	ψ3.4 貝牙				23.0	49.5		20.0	0.27	0.23
段比	AD □	30		46	M4×9	□ 40								
一段式減速型	AE 🗆	30		45	M3×9	□ 40	5	8			21		0.29	0.25
速 5	AN □	34	4	48	IVI3/>9				28	54.5		33.5		
型 9	AF □		4	70	M4×9				20			33.5	0.34	
$\overline{}$	AG □	50		10	M5×9									0.30
	AH □			60	M4×9									
	AA 🗆	28		33	M2.5×5	ф40			16.5	54.5		24.5	0.31	0.27
(減速比=1、37、	AB □	20	3	28	φ3.4 貫穿	□ 25			20.5	58.5		28.5	0.32	0.28
- 速	AC □	22		43.8	ψ3.4 員分				20.5	30.3		20.5	0.33	0.29
段出	AD □	30		46	M4×9	□ 40								
式 21	AE 🗆	30		45	M3×9	□ 40	5	8			30		0.35	0.31
速37	AN □	34	_ ,	48	1012/9				25.5	C2 F		22.5		
	AF □		4	70	M4×9				20.5	63.5		33.5		
45	AG □	50		10	M5×9	□ 60							0.40	0.36
	AH □			60	M4×9									


以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖 - 型號 14 (HPG 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

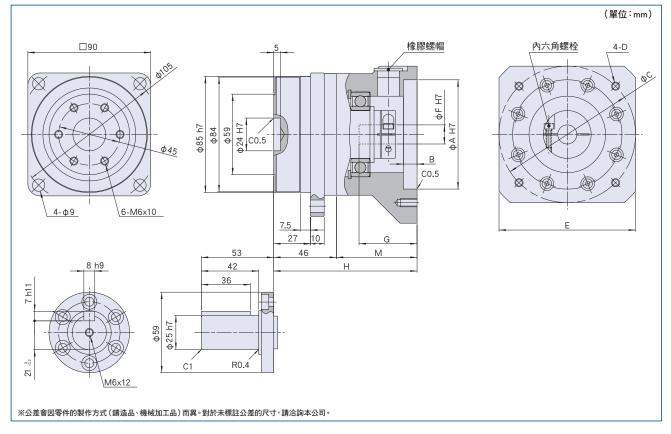
圖 038 -1

尺寸表:

表 038 -1 單位:mm

												質量(k	g) ^{(註)2}	
形狀記號	A (H7)	В	С	D	F (H7)		H7)	G	Н	М	減速比	c= 3,5	減速比= 11	
(a±)													33 \ 45	
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出
AA 🗆	30		45	M3×8										
AB □	30	7	46	M4×10										
AF □	34		48	M3×8		6	8				0.97	0.85	1.04	0.92
AC □			70	M5×12		0	°				0.91	0.65	1.04	0.92
AD □			10		□ 60			32	85	45				
AE □	50	6.5	60	M4×10										
AX 🗆	30	0.0	70	1014/10										
AY 🗆			60			9	14				1.02	0.90	1.09	0.97
AZ □			70	M5×12										

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖 - 型號 20 (HPG 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

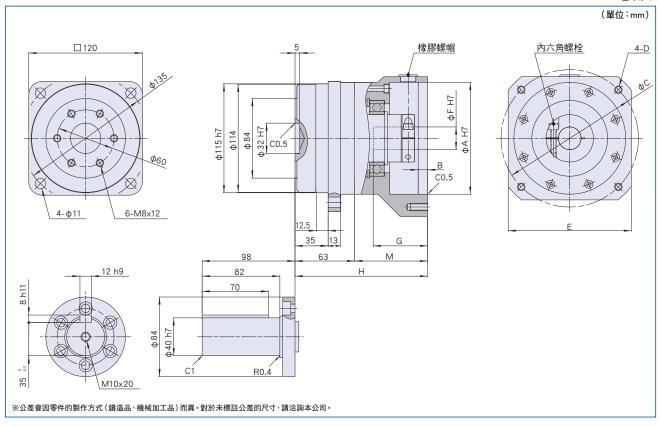
圖 039 -1

尺寸表

表 039 -1 單位:mm

												質量(k			
形狀記號	A (H7)	В	С	D	E F		F (H7)		Н	М	減速比	≤= 3,5	減速比= 11 33 ·	、15、21、 、45	
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出	
GC □			70	M5×12											
GD □	50	10	10	M4×10	ф89			35	98	52	2.7	2.3	2.9	2.5	
GE □			60	M4×8											
FF 🗆	70	7	90	M5×12	□ 80	7	19								
FE 🗆 🗆	10	'	90	M6×12		J		42	105	59	2.9	2.5	3.1	2.7	
HC □□	80	10	100	M6×12	□ 100			42	103	39	2.5	2.3	3.1	2.1	
HD □	95	6	115	M8×16	□ 100										
JA 🗆 🗆	30	5	45	M3×8	ф55	6	8	30.5	93.5	47.5	_	_	2.4	2.0	
JB□□	30	J	46	M4×10	ψυυ	0	°	30.0	93.5	47.5	_	_	2.4	2.0	

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。


關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解減速機單機及特殊安裝方法,請洽詢本公司

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖 - 型號 32 (HPG 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

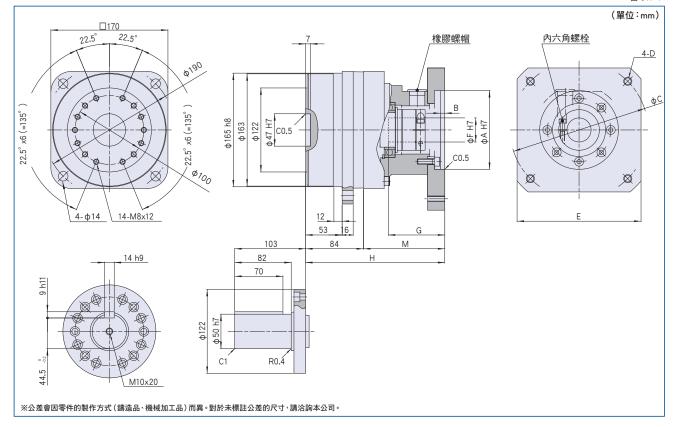
圖 040 -1

尺寸表:

表 040 -1 單位:mm

												質量(k	g) ^{(註) 3}	
形狀記號	A (H7)	В	С	D	E	F (H7)		G	Н	М	減速比	c= 3,5	減速比= 11、15、21、 33、45	
						Min	Min Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出
NA 🗆	70		90	M5×12										
NB □□	80	7	100	M6×12				56			7.3	5.9	7.8	6.4
NC □	70		90	IVID X I Z	ф122				139	76				
ND 🗆 🗆	50	10	70	M5×12	5×12	10	24	38			-	-	7.5	6.1
NE 🗆 🗆	50	10	70	M4×10		10		38			_	-	1.5	0.1
NF □	95	6	115	M8×10	ф135			62	145	82	7.4	6.0	7.9	6.5
NG □□	70	4	90	M6×12	ф122			38	139	76	7.3	5.9	7.8	6.4
NJ 🗆	95	6	115	M6×10	ф135			62	145	82	7.4	6.0	7.9	6.5
MC □	110	10	145	M8×18	□ 130			59	142	79	7.3	5.9	7.8	6.4
PA □	110		140	M8×25	□ 130	1.6	2E (計) 2				7.9	6.5	8.4	7.0
РВ □□	114.3	6.5	200	M12×25	□ 180	16 35	35 (註) 2	81	164	101	8.9	7.5	9.4	8.0
PC □□	200		235	IVI12/25	□ 220						9.0	7.6	9.5	8.1

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司

- (註)1. 形狀記號的□內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 僅 ϕ 35 尺寸有 H7 公差及正公差之分,請多加注意。
 - 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 - 型號 50 (HPG 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 041 -1

尺寸表

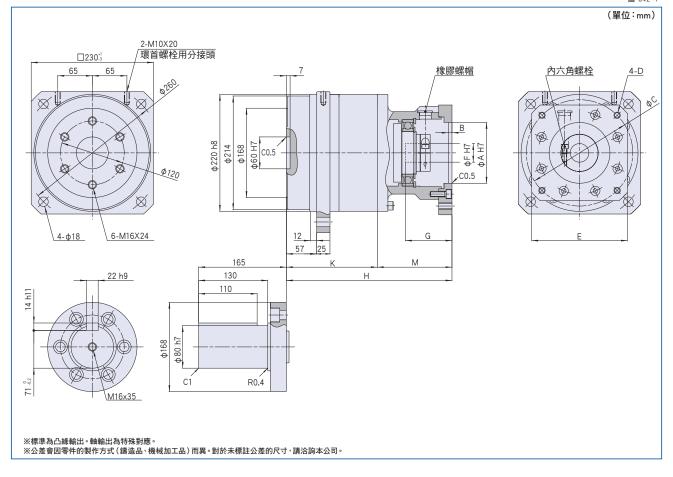
表 041 -1 單位:mm

												質量(k	g) ^{(註) 3}	
形狀記號	A (H7)	В	С	D	E	F (H7)		G	Н	М	減速比	c= 3,5	減速比= 11、15、21 33、45	
						Min	Max				軸輸出	凸緣輸出	軸輸出	凸緣輸出
AA 🗆 🗆	110		145	M8×16										
AD 🗆	95	10	115	M8×10	ф170			55.5	176	92	17.6	14.6	19.0	16.0
AE 🗆 🗆	80	10	100	M6×10	Ψ170		35 ^{(註) 2}	55.5	170	92	17.0	14.0	19.0	10.0
AF 🗆 🗆	95		115	IVIDATU										
ВА □□	110		145	M8×25	□ 130						17.7	14.7	19.1	16.1
ВВ □□	114.3		200		□ 180	19					18.6	15.6	20.1	17.1
EP 🗆 🗆	114.3		200	M12×25	100		42	81	202	118	25.9	22.9	27.4	24.4
BC □□	200	6.5	235	W112/25	□ 220			81	202	118	18.7	15.7	20.2	17.2
EQ 🗆 🗆	200		235		□ 220		35 (註) 2				26.0	23.0	27.5	24.5
BF □□	130		165	M10×25	□ 180			i i			18.6	15.6	20.1	17.1
СВ 🗆 🗆	114.3		200	M12×25	□ 180		42	114	243.5	159.5	-	_	20.4	17.4

以上為代表性產品的尺寸表。關於上述以外的產品,請治詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

關於八寸及形成的詳細內容,請多閱本公司提供的交員 如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。


- 2. 僅φ35 尺寸有 H7 公差及正公差之分,請多加注意。
- 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

041

外觀尺寸圖 - 型號 65 (HPG 系列)

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 042 -1

尺寸表

表 042 -1 單位:mm

	形狀記號(註)1	A (H7)	В	B C D E F (H7)		H7)	G	Н	К	М	質量(k	g) ^{(註)3}		
	ガシガ人古じかだ、ニー・・	A (H/)	В	C	D		Min	Max	G	П		IVI	軸輸出	凸緣輸出
	CB □□	114.3		200		□ 180								
一段式減速型	CG □□	180	10	215	M12×25	□ 220	35 (註) 2	55	113	241.5	91	150.5	48	38
減 4	CC 🗆 🗆	200	10	235	IVITZAZS	L 220	35 (11.7)	33	113	241.5	91	150.5	40	30
型 5	CUDD	230		265		□ 250								
減	CB 🗆 🗆 (註) 4	114.3		200		□ 180								
減速比=	CG 🗆 🗆 (註) 4	180	10	215	M12×25	□ 220	35 (註) 2	55	113	311.5	161	150.5		
段 1,2	CC 🗆 🗆 (註) 4	200		235		□ 220								
	ВВ □□	114.3		200	M12×25	□ 180							52	42
速 25	BC □□	200	6.5	235	IVI12×25	□ 220	19	35 ^{(註) 2}	84	288	170	118		
40	BF□□	130	0.5	165	M10×25	□ 180	19	30 111/2	04	200	170	118		
50	ВА □□	110		145	M8×25	□ 130								

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

- (註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 僅 ϕ 35 尺寸有 H7 公差及正公差之分,請多加注意
 - 3. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。
 - 4. 不支援減速比 40、50。

Harmonic Drive[®]

CSG-GH系列 高轉矩型 CSF-GH系列 標準型

尺寸

型號: 14、20、32、45、65

峰值轉矩

CSG-GH: =23N·m \sim 3419N·m CSF-GH: =18N·m~2630N·m

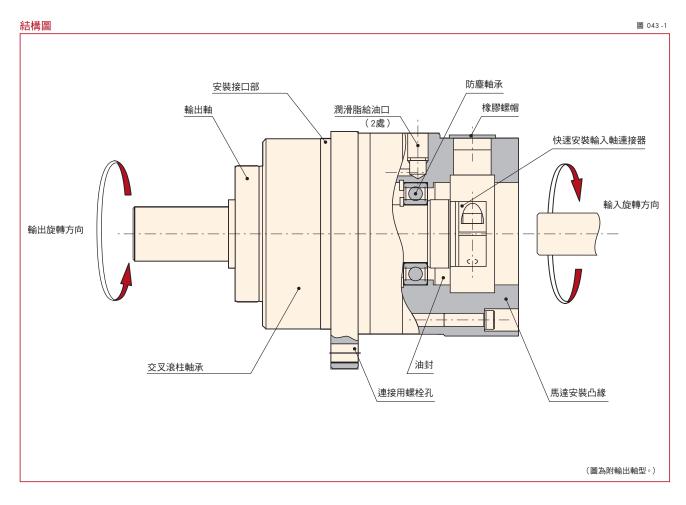
無背隙

減速比

CSG-GH: =50~160 $CSF-GH : = 50 \sim 160$

高定位精度

反覆定位 $\pm 4 \sim \pm 10$ arc-sec


可安裝至各公司伺服馬達

安川電機/三菱電機/FANUC/Panasonic/ 山洋電氣/多摩川精機/富士電機/OMRON/ 東芝機械/ Keyence

關於其他伺服馬達請洽詢最近的營業處。

各公司伺服馬達的匹配型式請使用首頁的型式選擇工具(URL:https://hds-tech.jp/)。

伺服馬達用高性能減速機系列

CSF-GH%列

額定表用語:

額定表的數值,請參閱各系列相關頁數內容。

■額定轉矩

輸入轉速為 2000r/min 時的容許連續負載轉矩。

■起動、停止時的容許峰值轉矩(參閱圖表 044-1)

起動、停止時,會因負載慣性力矩導致 Harmonic Drive® 承受比恆定 轉矩更大的負載。

額定表中的數值,為此時的峰值轉矩容許值。

■平均負載轉矩的容許最大值

當負載轉矩或輸入轉速變化時,需要另外求出負載轉矩的平均值。額定表中的數值,為該平均負載轉矩的容許值。

當平均負載轉矩(公式:049頁)超過額定表中的數值時,將因發 熱導致潤滑劑提早劣化,或是齒磨耗加劇。務請注意。

■瞬間容許最大轉矩(參閱圖表 044-1)

除了通常負載轉矩、起動或停止時負載轉矩外,也會有來自外部無 法預期的衝擊轉矩。額定表中的數值,為此時的容許值。

另外,此轉矩的施加頻率設有限制。請參閱「壽命」、「強度」等項目。

■容許最高輸入轉速、容許平均輸入轉速

使用時,輸入轉速請勿超過額定表所示容許值的範圍。 (平均輸入轉速公式:049頁)

■慣性力矩

表示各型號波產生器軸上的慣性力矩。

負載轉矩模式範例 圖表 044 -1 異常時的衝擊轉矩 起動 恆定 負載轉矩 時間 峰值轉矩 恆定狀態的轉矩 起動、停止時的 瞬間最大轉矩 停止 起動 (速度週期) 波產生器轉速 →時間

壽命

■波產生器的壽命

Harmonic Drive®的壽命,由波產生器軸承的壽命決定。和一般滾珠軸承相同,由轉速與負載轉矩計算求出。

表 044 -1

	壽命	時間
系列名稱	CSF-GH	CSG-GH
L10 (10% 受損機率)	7,000 小時	10,000 小時
L50 (平均壽命)	35,000 小時	50,000 小時

※ 額定表記載之額定轉速、額定轉矩下運轉時的壽命。

依據實際運轉條件的壽命時間(Lh)公式

公式 044 -1

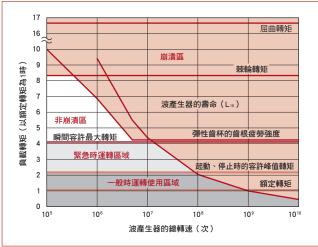

$$Lh = Ln \cdot \left(\frac{Tr}{Tav}\right)^{3} \cdot \left(\frac{Nr}{Nav}\right)$$

表 044 -2

Ln	L10 或 L50 時的壽命時間
Tr	額定轉矩
Nr	額定轉速
Tav	輸出端的平均負載轉矩(公式:049頁)
Nav	平均輸入轉速 (公式:049頁)

Harmonic Drive® 強度與壽命的關係圖

圖表 044-2

(註)使用 Harmonic Drive®時請維持在「一般時運轉使用區域」內。若使用時超出「緊急 時運轉區域」,將加快 Harmonic Drive® 的損壞速度。

- ※ 上述圖表未考慮齒面磨耗等潤滑壽命。
- ※ 請以上述圖表作為參考值。

■彈性齒杯的強度

由於彈性齒杯會反覆發生彈性變形,所以 Harmonic Drive® 的傳動轉矩以彈性齒杯的齒根疲勞強度為基準。

額定轉矩、起動與停止時的容許峰值轉矩等數值,為彈性齒杯的齒 根疲勞極限之內的數值。

瞬間容許最大轉矩(衝擊轉矩)之數值,為能充分承受彈性齒杯之疲勞極限的數值,但若超過瞬間容許最大轉矩過於頻繁,將可能產生疲勞破壞。為了避免產生疲勞破壞,對衝擊轉矩的施加次數設有限制。

在波產生器承受衝擊轉矩時,彈性齒杯的彈性變形次數限制: 1.0×10⁴(次)

可依據此一彈性變形次數限制,求出施加衝擊轉矩的容許轉速。

公式 045 -1

 $N = \frac{1.0 \times 10^4}{2 \times \frac{n}{60} \times t}$

表 045 -1

容許次數	N次
衝擊轉矩的施加時間	t sec
當時的波產生器轉速	n r/min
波產生器旋轉 1 次,將使彈性齒杯產	生 2 次彈性變形。

超過容許速度時,彈性齒杯可能產生疲勞破壞。

■屈曲轉矩

波產生器為固定狀態下,對彈性齒杯(輸出)施加過度轉矩時,將 引起彈性齒杯的塑性變形,並將導致彈性齒杯胴部發生屈曲,進而 破損。

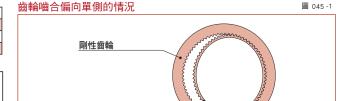
此時的轉矩,稱為屈曲轉矩。

※ 屈曲轉矩的數值,請參閱各系列相關頁數內容。

Harmonic Drive®無法在彈性齒杯產生屈曲的狀態下使用, 請特別注意。

■棘輪轉矩

運轉中若施加過度的衝擊轉矩,可能出現彈性齒杯未破損,但剛性齒輪與彈性齒杯的嚙合瞬間脫開的情況。此一現象稱為棘輪效應,此時的轉矩稱為棘輪轉矩(數值請參閱各系列相關頁數內容)。如果發生棘輪效應卻繼續運轉,將受到棘輪效應發生時產生的磨屑影響,導致齒輪早期磨耗或縮短波產生器軸承的使用壽命。


- ※ 棘輪轉矩的數值,請參閱各系列相關頁數內容。
- ※ 棘輪轉矩受到剛性齒輪安裝之外殼剛性的影響。詳情請洽詢本公司。

發生棘輪效應時,無法正常嚙合,可能如圖045-1般偏 往單側。如在此狀態下運轉,將因產生振動引起彈性齒 杯破損,務請注意。

一旦發生棘輪效應,齒尖將會磨耗,發生第二次棘輪效 應後,轉矩值將會降低。這一點也務請注意。

彈性齒杯

此一情況,稱為空轉。

剛性:

就伺服系統而言,驅動系的剛性與背隙將大幅影響系統性能。 設計裝置以及選擇型號時,應就前述各項目進行詳細檢討。

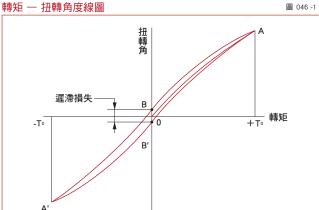
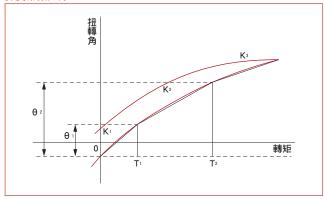

固定輸入端(波產生器)並對輸出端(彈性齒杯)施加轉矩,輸出 端將產生與轉矩幾乎等比例的扭轉。

圖 046-1 是將施加於輸出端的轉矩,從 0 開始向正方向以及負方向 分別增減+ T0至- T0 時的輸出端扭轉角度量。這張圖稱為「轉矩-扭轉角度線圖」,一般情況會描繪出 0 - A - B - A' - B' - A的循環。在 Harmonic Drive® 的剛性中,會將「轉矩一扭轉角度線圖」 的斜率表示為彈簧常數。(單位:N·m/rad)

如圖 046-2 所示,此一「轉矩 一 扭轉角度線圖」可分為 3 部分, 各區域的彈簧常數各以 K1、K2、K3表示。


 K_1 ······轉矩從「0」至「 T_1 」為止的彈簧常數 K2······轉矩從「T1」至「T2」為止的彈簧常數 K₃·····轉矩在「T₂」以上的彈簧常數

■各彈簧常數 (K₁、K₂、K₃)以及轉矩-扭轉角 (T₁、T₂-θ₁、θ₂) 的數值,請參閱各系列相關頁數內容。

彈簧常數區分

圖 046 -2

■扭轉量計算範例

以 CSF-25-100-2A-GR 為例,計算扭轉量(θ)。

負載轉矩極小, T₁ = 2.9N·m 時 -

由於轉矩在 T₁ 以下,因此扭轉量 θ_{L1} 為:

 $\theta_{L1} = T_{L1}/K_1$

- $= 2.9/3.1 \times 10^{4}$
- $= 9.4 \times 10^{-5} \text{rad} (0.33 \text{ arc-min})$

負載轉矩為 TL2 = 39N·m 時

由於轉矩在T₁和T₂之間,因此扭轉量θ៤2為:

- $\theta_{L2} = \theta_1 + (T_{L2} T_1) / K_2$
 - $= 4.4 \times 10^{-4} + (39 14) /5.0 \times 10^{4}$
 - $= 9.4 \times 10^{-4} \text{rad} (3.2 \text{ arc-min})$

此外,負載若加上正逆方向,其總扭轉量值將是前述求出數值的2 倍加上背隙量。

※ 該扭轉量為元件單體的數值。

並不包含輸出軸等的扭轉量,務請注意。

■遲滯損失

如圖 046-1 的線圖,轉矩加至額定後恢復為「0」,扭轉角並不會 完全為「O」,仍然殘留些許餘量(B-B')。這稱為遲滯損失。

■遲滯損失量請參閱各系列相關頁數內容。

■背隙

遲滯損失主要因內部摩擦而產生,轉矩極小時則幾乎不存在,線圖 上只會顯示細小的背隙。這個量即顯示為背隙量。

由於 Harmonic Drive® 將齒咬合部的背隙量抑制在「0」,因此背隙 量是產生自波產生器的 Oldham 聯結器 (自動校準機構) 間隙所導致。 固定輸入端後測量輸出端的數值極小,如各系列相關頁數所載。

※ 背隙量請參閱各系列相關頁數內容

表 047 -2

伺服馬達用高性能減速機系列 CSF-GH系列(HarmonitDrive)

Harmonic Drive® 帶有的角傳動誤差成分,有時會顯現為負載端的慣 性旋轉振動。

尤其是包含 Harmonic Drive® 的振動系的固有振動數與機體或負載慣 性的固有振動數重疊時,將形成共振狀態,造成 Harmonic Drive® 的 角傳動誤差成分獲得增幅,因此請嚴格遵守各系列的設計指南。

另外,造成 Harmonic Drive® 的角傳動誤差成分的主要原因,是因為 Harmonic Drive® 在結構設計上,輸入軸每旋轉 1次便會出現 2次誤 差成分。因此,誤差主要成分的頻率是輸入頻率的2倍。

假設包含 Harmonic Drive® 的振動系的固有振動數為 f=15Hz, 此時的 輸入轉速(N)為:

公式 047 -1

$$N = \frac{15}{2} \cdot 60 = 450 \text{r/min}$$

且將於該轉速帶(450r/min)發生共振。

包含 Harmonic Drive® 的振動系的固有振動數的計算方法(概述)

2π

公式的記號

表 047-1

f	包含 Harmonic Drive [®] 的振動系 的固有振動數	Hz	
K	Harmonic Drive®的彈簧常數	N·m/rad	參閱各系列相關頁數內容
J	負載慣性	kg·m²	·

效率特性

效率將因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

本型錄所示的各系列效率特性,係基於表 047-2 的測量條件。

■效率數值,請參閱各系列相關頁數內容。

測量條件

潤滑條件

潤滑脂

組裝 以建議組裝精度組裝後測量 額定表所示的額定轉矩(參閱各系列相關頁數內容) 負載轉矩 Harmonic 潤滑脂® SK-1A

Harmonic 潤滑脂®

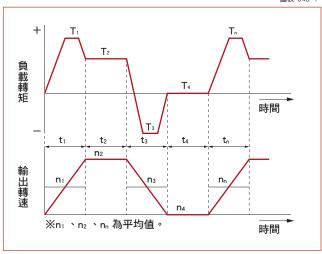
SK-2

選擇型號

一般來說,伺服系統幾乎不會出現連續固定負載的狀態。輸入轉速 或負載轉矩會發生變化,起動或停止時會施加較大的轉矩。此外, 還可能會承受非預期的衝擊轉矩。

將這些變動負載轉矩換算成平均負載轉矩後,再選擇型號。 此外,模組型在外部負載的直接支撐(輸出凸緣部)組裝了精密交叉為其數分,請,供給本具土負載力等負素,公叉為其數分壽令以

此外,模組至任外部負載的且接支援(輸出口稼部)組裝」有徵交 叉滾柱軸承,請一併檢查最大負載力矩負重、交叉滾柱軸承壽命以 及靜態安全係數。


(請參閱 114 ~ 119 頁「檢查主軸承」)

(注意)當 Harmonic Drive®CSG / CSF-GH 系列的安裝方向為輸出軸朝下(馬達朝上)的狀態,且以一定負載朝某一方向連續運轉時,可能會產生潤滑不良。如需以此種方式使用時,請洽詢本公司營業據點。

■確認負載轉矩模式

首先要掌握負載轉矩模式。請檢查下圖所示的各項規格。

圖表 048 -1

■型號選擇流程圖

選擇型號時,請依下列流程圖進行。

只要超過任一額定表數值,請重新檢討使用高一級的型號,或是降 低負載轉矩等條件。

依據負載轉矩模式計算施加在Harmonic Drive輸出端上的平均 負載轉矩:Tav(N·m)

$$Tav = \sqrt[3]{\frac{n_1 \cdot t_1 \cdot |T_1|^3 + n_2 \cdot t_2 \cdot |T_2|^3 + \cdots \cdot n_n \cdot t_n \cdot |T_n|^3}{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots \cdot n_n \cdot t_n}}$$

以下列條件暫定型號。Tav≦平均負載轉矩的容許最大值 (參閱各系列額定表)

計算平均輸出轉速 : no av (r/min) no $av=\frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots \cdot n_n \cdot t_n}{t_1 + t_2 + \cdots \cdot t_n}$ 決定減速比(R)。 ni max會因馬達等而受限。 $\frac{ni \ max}{no \ max} \geqq R$

依據平均輸出轉速(no *av*) 與減速比(R)計算平均輸入 ni *av* = no *av* · R 轉速:ni av(r/min)

依據最高輸出轉速(no *max*) 與減速比(R)計算最高輸入 ni *max* = no *max*·R 轉速:ni *max* (r/min)

確認暫定型號的數值是否 ni av \le 容許平均輸入轉速(r/min)在額定表的數值範圍內。 ni max \le 容許最高輸入轉速(r/min)

NG

OK

確認 T_1 、 T_3 的數值是否在額定表的起動、停止時的容許峰值轉矩($N\cdot m$)數值範圍內。

NG

OK

確認TS的數值是否在額定表的瞬間容許最大轉矩(N·m)數值 範圍內。

NG

重新檢討運轉條件或型號

OK

NG

NG

OK

計算壽命時間。 $L_{10} = 7000 \cdot (\frac{Tr^3}{Tav}) \cdot (\frac{nr}{niav})$ (小時)

檢查計算的壽命時間是否超過波產生器的壽命時間。 (參閱044頁)

OK

決定型號

求出各負載轉矩模式的數值

 負載轉矩
 T. (N·m)

 時間
 t. (sec)

 輸出轉速
 n. (r/min)

<一般運轉模式>

 起動時
 T₁ \ t₁ \ n₁

 恆定運轉時
 T₂ \ t₂ \ n₂

 停止(減速)時
 T₃ \ t₃ \ n₃

 休止時
 T₄ \ t₄ \ n₄

<最高轉速>

最高輸出轉速 no *max* 最高輸入轉速 ni *max* (會因馬達等而受限。)

<衝擊轉矩>

施加衝擊轉矩時 Ts、ts、ns

<需求壽命>

L₁₀ = L (小時)

<一般運轉模式>

各負載轉矩模式的數值 負載轉矩

T_n (N·m) t_n (sec) 輸出轉速 n_n (r/min)

(會因馬達等而受限。)

 $T_1 = 400 N \cdot m \cdot t_1 = 0.3 sec \cdot n_1 = 7 r/min$ 起動時 恆定運轉時

停止(減速)時 T₃=200N·m、t₃=0.4sec、n₃=7 r/min 休止時 $T_4=0$ N·m \ $t_4=0.2$ sec \ $n_4=0$ r/min

<衝擊轉矩>

<最高轉速> 最高輸出轉速

最高輸入轉速

施加衝擊轉矩時 $T_s = 500 \text{N} \cdot \text{m} \cdot t_s = 0.15 \text{sec} \cdot n_s = 14 \text{ r/min}$

no max = 14 r/min

<需求壽命>

L₀=7000(小時)

依據負載轉矩模式計算施加在Harmonic Drive輸出端上的平均負載轉矩:Tav (N·m)

$$Tav = 3\sqrt{\frac{7r/\min \cdot 0.3\sec \cdot | 400N \cdot m|^3 + 14r/\min \cdot 3\sec \cdot | 320N \cdot m|^3 + 7r/\min \cdot 0.4\sec \cdot | 200N \cdot m|^3}{7r/\min \cdot 0.3\sec + 14r/\min \cdot 3\sec \cdot | 320N \cdot m|^3 + 7r/\min \cdot 0.4\sec \cdot | 200N \cdot m|^3}}$$

依據下列條件暫定型號。Tav =319N·m≦620N·m(型號CSF-45-120-GH的平均負載轉矩的容許最大值:參閱額定表、050頁) CSF-45-120-GH

計算平均輸出轉速:no av (r/min)

no
$$av = \frac{7r/\text{min} \cdot 0.3\text{sec} + 14r/\text{min} \cdot 3\text{sec} + 7r/\text{min} \cdot 0.4\text{sec}}{0.3\text{sec} + 3\text{sec} + 0.4\text{sec} + 0.2\text{sec}} = 12r/\text{min}$$

決定減速比(R)。

$$\frac{1800 \text{r/min}}{14 \text{r/min}} = 128.6 \ge 120$$

依據平均輸出轉速(no av)與減速比(R)

計算平均輸入轉速:ni av (r/min)

 $ni \ av = 12r/min \cdot 120 = 1440r/min$

依據最高輸出轉速(no max)與減速比(R)

計算最高輸入轉速:ni max (r/min)

ni max = 14r/min · 120 = 1680r/min

確認暫定型號的數值是否在額定表的數值範圍內。

ni av =1440r/min≤3000r/min (型號45的容許平均輸入轉速) ni *max*=1680r/min≤3800r/min (型號45的容許最高輸入轉速)

OK

確認T₁、T₃的數值是否在額定表的起動、停止時的容許 峰值轉矩(N·m)數值範圍內。

T₁ =400N·m≤823N·m (型號45的起動、停止時容許峰值轉矩) T₃=200N·m≦823N·m(型號45的起動、停止時容許峰值轉矩)

OK

確認Ts的數值是否在額定表的瞬間容許最大轉矩(N·m)數值範圍內。 Ts =500N·m≤1760N·m(型號45的瞬間容許最大轉矩)

OK

依據施加衝擊轉矩時的輸出轉速ns與時間ts,計算容許 次數(N_s),並確認是否符合使用條件。

N_s =
$$\frac{10^4}{2 \cdot \frac{14r/\text{min} \cdot 120}{60}}$$
 = 1190 \(\(\frac{1}{2}\)\) 1.0 \times 10⁴ (次)

OK

計算壽命時間。
$$L_{10} = 7000 \cdot (\frac{402 \text{N} \cdot \text{m}}{319 \text{N} \cdot \text{m}})^3 \cdot (\frac{2000 \text{r/min}}{1440 \text{r/min}}) \text{ (小時)}$$

檢查計算的壽命時間是否超過波產生器的壽命時間。(參閱034頁) L 10=19,457時間≥7,000 (波產生器的壽命時間: L 10)

OK

根據上述結果,決定為CSF-45-120-GH

重新檢討運轉條件或型號

NG

NG

NG

NG

NG

049

額定表 CSG-GH

CSG-GH 系列為高轉矩型的 Harmonic Drive® 減速機。

Harmonic Drive®CSG-GH 系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。

表 050 -1

		齢 ス 为 20	I00r/min 時	輸入為 3000r/min 時		平均負責	北輔46台	护動、停 !	上時的(註)4	暖問交	許(註)5	容許平均	容許最高輸入	減速機單體	貴質量 (註) 7
型號	減速比		矩 ^{(註)1}		(註)2(註)8		大值 ^{(註) 3}		值轉矩		轉矩	輸入 轉速	轉速(註)6	軸輸出	凸緣輸出
		N·m	kgf⋅m	N·m	kgf∙m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf∙m	r/n	nin	kg	kg
	50	7.0	0.7	6.1	0.6	9.0	0.9	23	2.3	46	4.7				
14	80	10	1.0	8.7	0.9	14	1.4	30	3.1	61	6.2	3500	8500	0.62	0.50
	100	10	1.0	8.7	0.9	14	1.4	36	3.7	70	7.2				
	50	33	3.3	29	2.9	44	4.5	73	7.4	127	13				
	80	44	4.5	38	3.9	61	6.2	96	9.8	165	17]			
20	100	52	5.3	45	4.6	64	6.5	107	10.9	191	20	3500	6500	1.8	1.4
	120	52	5.3	45	4.6	64	6.5	113	11.5	191	20				
	160	52	5.3	45	4.6	64	6.5	120	12.2	191	20				
	50	99	10	86	8.8	140	14	281	29	497	51				
	80	153	16	134	14	217	22	395	40	738	75	J			
32	100	178	18	155	16	281	29	433	44	812	83	3500	4800	4.6	3.2
	120	178	18	155	16	281	29	459	47	812	83				
	160	178	18	155	16	281	29	484	49	812	83				
	50	229	23	200	20	345	35	650	66	1235	126				
	80	407	41	356	36	507	52	918	94	1651	168				
45	100	459	47	401	41	650	66	982	100	2033	207	3000	3800	13	10
	120	523	53	457	47	806	82	1070	109	2033	207				
	160	523	53	457	47	819	84	1147	117	2033	207				
	80	969	99	846	86	1352	138	2743	280	4836	493				
65	100	1236	126	1080	110	1976	202	2990	305	5174	528	1900	2800	32	24
65	120	1236	126	1080	110	2041	208	3263	333	5174	528	1900	2000	32	24
	160	1236	126	1080	110	2041	208	3419	349	5174	528				
(註)1.本	數值是以輸	入轉速為一般	投伺服馬達的	 勺輸入轉速 2	2000r/min 時	,壽命時間		6. j	 此為非連續這	 重轉條件下的	 的容許最高輔	 俞入轉速。虽	全 全 全 全 生 会 日 動 作 環	境及運轉條	

- 註)1. 本數值是以輸入轉速為一般伺服馬達的輸入轉速 2000r/min 時,壽命時間 L₁₀₌10,000 小時為依據所設定之輸出轉矩。請作為恆定運轉時的參考。
 - 2. 本數值是以輸入轉數為一般伺服馬達的輸入轉速 3000r/min 時,壽命時間 L₁₀=10,000 小時為依據所設定之輸出轉矩。請作為恆定運轉時的參考。
 - 3. 此為依據負載轉矩模式(048頁)所計算出的平均負載轉矩之容許最大值。若超過此數值,可能會降低產品的壽命及耐久性。請注意。
 - 4. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值。
 - 5. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。 請務必在本轉矩範圍內使用。此外,在選擇型號的過程中,也請計算出容許頻率 並確認是否符合使用條件。
- 6. 此為非連續運轉條件下的容許最高輸入轉速。雖會因動作環境及運轉條件而異但使用請以連續運轉時輸入轉速低於3000r/min為參考基準。
 - (注意)當Harmonic Drive®CSG-GH 系列的安裝方向為輸出軸朝下(馬達朝上)的狀態,且以一定負載朝某一方向連續運轉時,可能會產生潤滑不良。如需以此種方式使用時,請洽詢本公司營業據點。
- 7. 此為減速機單體的質量。關於包含輸入軸連接器、馬達凸緣等配件的數值,請參閱尺寸表(053 頁 \sim 057 頁)。
- 8. 型號 65 為輸入 2800r/min 時的額定轉矩。

棘輪轉矩 CSG-GH **■■**

表 050 -2

型號減速比	14	20	32	45	65
50	110	280	1200	3500	_
80	140	450	1800	5000	14000
100	100	330	1300	4000	12000
120	-	310	1200	3600	10000
160	_	280	1200	3300	10000

屈曲轉矩 CSG-GH!

表 050 -3 單位:N·m

型號 14 20 32 45 65 全減速比 260 800 3500 8900 26600						
全減速比 260 800 3500 8900 26600	型號	14	20	32	45	65
	全減速比	260	800	3500	8900	26600

性能表 CSG-GH

CSG-GH 系列為高轉矩型的 Harmonic Drive® 減速機。

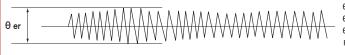

Harmonic Drive®CSG-GH 系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。

表 051 -1

世號 (法)	5.6 5.1 4.6 11 10 10 9.8 9.6	kgf·cm 0.6 0.5 0.5 1.2 1.0 1.0
14 所有産品 80 1.5 4.4 ±10 7.1 0.7 4.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.1 4.6 11 10 10 9.8	0.5 0.5 1.2 1.0
100 E □ □ 100	4.6 11 10 10 9.8	0.5 1.2 1.0 1.0
20 E	11 10 10 9.8	1.2 1.0 1.0
20	10 10 9.8	1.0
20	10 9.8	1.0
20	9.8	
20	+	
20 50 1.0 2.9 ±8 21 2.1 12 1.3 17 1.8 16 1.7 16 1.7 20 2.0 16 1.7 24 2.4 160 15 1.6 30 3.0 3.0 15 1.6 30 3.0	9.6	1.0
F□□		1.0
Too 100 16 1.7 20 2.0 16 1.7 24 2.4 160 15 1.6 30 3.0 3.0 16 1.7 24 2.4 160 15 1.6 30 3.0 3.0 160 160 160 17 160 17 17 17 180	11	1.2
G 100 16 1.7 20 2.0 120 16 1.7 24 2.4 160 15 1.6 30 3.0 KP	10	1.0
120	10	1.0
KP □ 80 KQ □ 100 KR □ 100	9.8	1.0
KP □ 80 KQ □ 100 KR □ 100	9.6	1.0
KQ \(\text{KQ} \) \(\text{KR} \(\text{C} \) \(\text{KR} \(\text{C} \) \(\te	47	4.8
KR 0 100 47 4.8 56 5.7	42	4.3
	41	4.2
	40	4.1
32 160 1.0 2.9 ±6 42 4.3 81 8.3	40	4.1
50 1.0 2.9 50 53 5.4 32 3.3	47	4.8
上述以外的 80 40 4.1 39 4.0	42	4.3
<u> </u>	41	4.2
進品 120 35 3.6 51 5.2	40	4.1
160 34 3.5 66 6.7	40	4.1
50 129 13 78 8.0	120	12
80 99 10 96 9.8	109	11
45 所有產品 100 1.0 2.9 ±5 93 9.5 111 11	107	11
120 88 9.0 128 13	105	11
160 82 8.4 158 16	103	11
80 197 20 191 19	297	30
65 所有產品 100 1.0 2.9 ±4 176 18 213 22	289	30
05 別月雇品 120 1.0 2.9 二4 165 17 240 24		29
160 147 15 285 29	285	

- (註)1. 形狀記號表示型式(參閱007頁)的馬達凸緣形狀及輸入軸連接器形狀。(前2位數為馬達凸緣形狀,後1位數為輸入軸連接器形狀)
 - 2. 角傳動精度係指以任意旋轉角進行輸入時,理論上旋轉的輸出旋轉角度和實際上旋轉的輸出轉速之間的差值。另外,表內數值代表最大值。

圖 051 -1

θer :角傳動精度 θι :輸入旋轉角度 θ 2 :實際輸出旋轉角度

:CSG-GH系列的減速比(i=1:R)

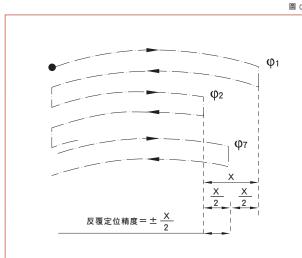
- 3. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停 止位置並求出最大差值。測量數值以角度表示,並以最大差值的 1/2 加上 生 符號表示 該數值。另外,表內數值代表最大值
- 4. 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表減速機單體的最大值。

圖 051 -2

測量條件	表 051 -2
負載	無負載
減速機表面溫度	25℃

5. 加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。 另外,表內數值代表減速機單體的最大值。

測量條件


表 051 -3

負載	無負載
減速機表面溫度	25°C

6. 無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表 內數值代表減速機單體的平均值。

測量條件

侧里床件	\$C 031 -4
輸入轉速	2000r/min
負載	無負載
減速機表面溫度	25℃

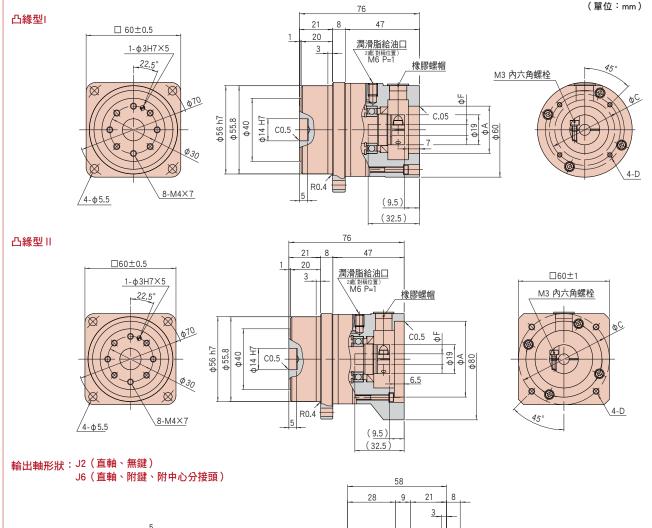
剛性(彈簧常數) CSG-GH

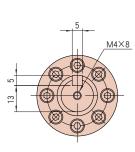
		型號	14				
	T ₁	N·m	2.0	7.0	29	76	235
	11	kgf·m	0.2	0.7	3.0	7.8	24
	T ₂	N·m	6.9	25	108	275	843
	12	kgf⋅m	0.7	2.5	11	28	86
	K ₁	×10⁴N·m/rad	0.34	1.3	5.4	15	-
	IXI	kgf·m/arc-min	0.1	0.38	1.6	4.3	_
	K ₂	×10⁴N·m/rad	0.47	1.8	7.8	2.0	-
減速比 50	N2	kgf·m/arc-min	0.14	0.52	2.3	6.0	-
	1/	×10⁴N·m/rad	0.57	2.3	9.8	26	_
	K3	kgf·m/arc-min	0.17	0.67	2.9	7.6	-
		×10⁴rad	5.8	5.2	5.5	5.2	-
	01	arc-min	2.0	1.8	1.9	1.8	_
		×10⁴rad	16	15.4	15.7	15.1	-
	02	arc-min	5.6	5.3	5.4	5.2	-
	l/	×10⁴N·m/rad	0.47	1.6	6.7	18	54
	K1	kgf·m/arc-min	0.14	0.47	2.0	5.4	16
	1/	×10⁴N·m/rad	0.61	2.5	11	29	88
	K ₂	kgf·m/arc-min	0.18	0.75	3.2	8.5	26
減速比 80 以上 	1/	×10⁴N·m/rad	0.71	2.9	12	33	98
	K ₃	kgf·m/arc-min	0.21	0.85	3.7	9.7	29
		×10⁴rad	4.1	4.4	4.4	4.1	4.4
	θ1	arc-min	1.4	1.5	1.5	1.4	1.5
		×10⁴rad	12	11.3	11.6	11.1	11.3
	θ2	arc-min	4.2	3.9	4.0	3.8	3.9

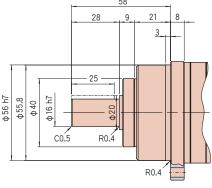
遲滯損失 CSG-GH I

減速比50 減速比80以上:約2.9X10⁻⁴ rad (1arc-min)

(相關用語說明請參閱「046 頁」。)


最大背隙量 **CSG-GH** ■


減速比	型號	14	20	32	45	65
50	×10⁻⁵rad	17.5	8.2	6.8	5.8	_
50	arc-sec	36	17	14	12	_
80	×10 ⁻⁵ rad	11.2	5.3	4.4	3.9	2.9
80	arc-sec	23	11	9	8	6
100	×10⁻⁵rad	8.7	4.4	3.4	2.9	2.4
100	arc-sec	18	9	7	6	5
120	×10⁻⁵rad	_	3.9	2.9	2.4	1.9
120	arc-sec	-	8	6	5	4
160	×10⁻⁵rad	-	2.9	2.4	1.9	1.5
160	arc-sec	-	6	5	4	3


(相關用語說明請參閱「046頁」。)

外觀圖 型號 14 CSG-GH

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,請洽詢本公司。

尺寸表

表 053-1 單位:mm

	形狀記號	A (H7)	С	D	F(F	1 7)	質量(kg) ^{(註)2}	
		Α (Π/)		U	Min	Max	軸輸出	凸線輸出
凸緣 類型 I	АВ □	30	45	M3×8	6	8	0.88	
	AC 🗆	30	46	M4×10				0.76
	AD □	34	48	M3×8				
11. ≪年	ВА □		60	M4×10		8	0.9	0.78
凸緣 類型Ⅱ	ВВ □	50		IVI4×10	6			
規至Ⅱ	BC □		70	M5×12				

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解安裝方法,請洽詢本公司。

- (註)1. 形狀記號的□內為輸入軸連接器的記號。
 - 請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 型號 20 CSG-GH I

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

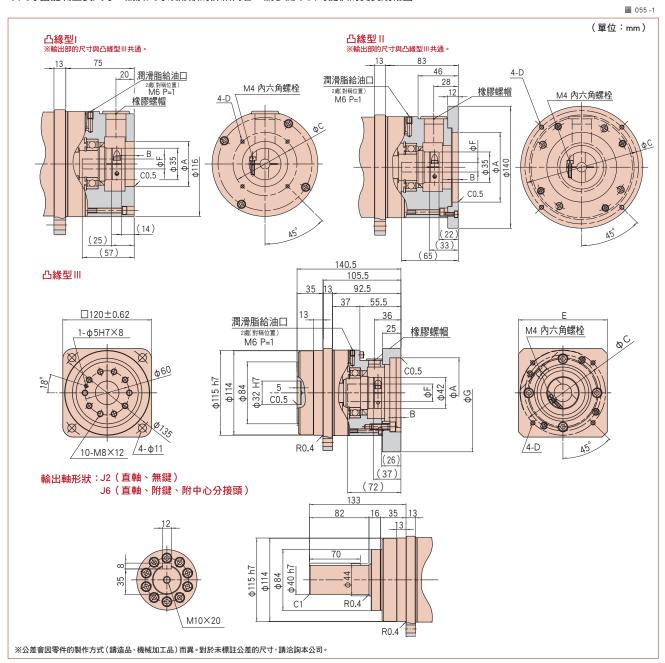
圖 054 -1 凸緣型I 凸緣型Ⅱ (單位:mm) ※輸出部的尺寸與凸緣型Ⅲ共通。 ——— ※輸出部的尺寸與凸緣型Ⅲ共通。 潤滑脂給油口 26.5 28.5 潤滑脂給油口 2處(對稱位置) M4 內六角螺栓 M3 內六角螺栓 橡膠螺帽 2處(對稱位置) M6 P=1 M6 P=1 4-D 橡膠螺帽 0 Ф19 Ф29 ф55 ф89 C0.5 (11) (11) 4-D (32.5) (32) 潤滑脂給油口 凸緣型Ⅲ 1-φ5H7×8 2處(對稱位置) M6 P=1 橡膠螺帽 M4 內六角螺栓 □90±0.56 C0.5 C0.5 R0.4 4-D 4-φ9/ <u>8-M6×10</u> 11) (32) 輸出軸形狀:J2(直軸、無鍵) J6(直軸、附鍵、附中心分接頭) 42 M6X12 C1 R0.4

※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,請洽詢本公司。

尺寸表

表 054 -1 單位:mm

	形狀記號	A (H7)	В		D	F (H7)		質量(kg) ^{(註)2}	
	(註)1	A (П/)	۵	٥	ט	Min	Max	軸輸出	凸緣輸出
П 4#	EA 🗆	30	5	45	M3×8				
凸線 類型Ⅰ	EB □	30	5	46	M4×10	7	8	2.3	1.9
規 至 「	EC 🗆	34	6	48	M3×8				
凸緣	FA □			60	M4×10				
類型Ⅱ	FB □	50	10	70	1014 ^ 10	8	14	2.6	2.2
規至Ⅱ	FC □								
凸緣	GA □	70	6.5	90	M5×12	8	14	2.8	2.4
類型Ⅲ	GB □	10	0.5	90	M6×14	ð	14	2.8	2.4


以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解安裝方法,請洽詢本公司。

(註)1. 形狀記號的□內為輸入軸連接器的記號。

- 請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
- 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 型號 32 CSG-GH ■

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

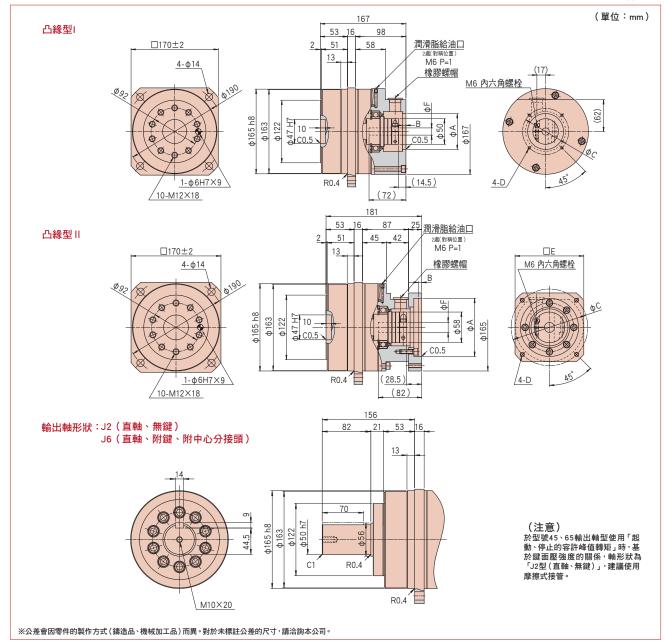
尺寸表

表 055 -1 單位:mm

	形狀記號	A (H7)	В	С	D	E	F (I	-1 7)	G	質量 (kg) ^{(註) 2}	
	(註)1	A (H/)	В	Ų	U	ш	Min	Max	G	軸輸出	凸緣輸出
	KA □	50	10	70	M4×10						
	КВ □	30	10	10	M5×12						
凸緣	KC □	60		99	M6×14						
類型 I KD I KE I KF I	KD □	70	7	90	M5×12	_	11	19	-	6.4	5
	10	'	90	M6×14							
	KF □	80		100	WOXIT						
	KI □	50	10	60							
凸緣	KG □	95	7	115	M6×12	_	11	19	_	6.6	5.2
類型Ⅱ	KH □	90	'	113	M8×12		''	19			5.2
	KP □	95		115	M6×14	□ 120			160		
凸緣	KQ □	90	6.5	113	M8×25	120	16	0.4		6.9	5.5
類型Ⅲ	KR □	110	0.5	145	IVIO A Z5	□ 130	1 16	24	165		
	KS □	130		165	M10×25	□ 180			233	7.9	6.5

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解安裝方法,請洽詢本公司。

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖 型號 45 CSG-GH I

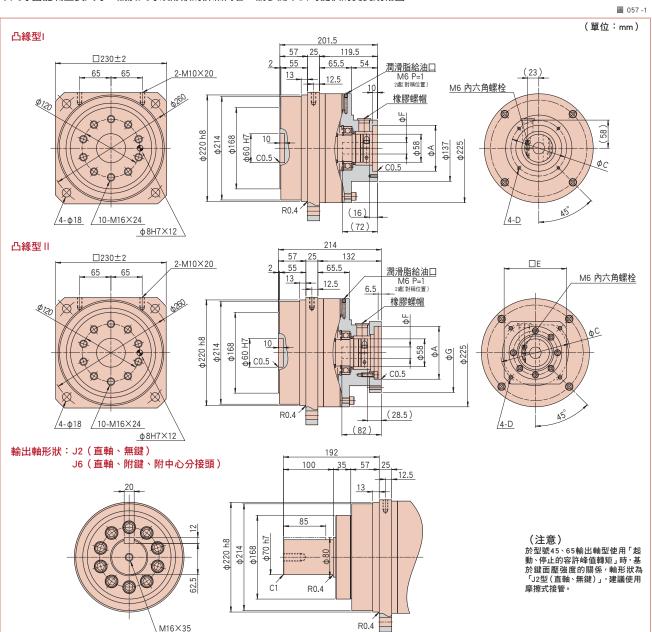
本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

圖 056 -1

尺寸表

表 056 -1 單位:mm

	形狀記號	A (H7)	В	С	D	E	F (H7)		質量 (kg) ^{(註) 2}	
	(註)1	A (П/)	۵	J	D		Min	Max	軸輸出	凸緣輸出
	PA □	70	7	90	M5×12					
	PB □	10	1	90	M6×14					
П 48	PC □	80	100	1010 1 14					 	
類型 ├──	PD □	95	8	115	M8×20	-	14	24	17.3	14.3
	PE 🗆	95			M6×14					
	PF □	110		130	M8×20					
	PG □	1110		145	IVIOAZU					
工格	PR □	110		145	M8×20	□ 130		24	16.7	13.7
四緣 ┣ 類型Ⅱ ┣	PP □	114.3	6.5	200	M12×25	□ 180	19	35	17.7	14.7
	PQ □	130		165	M10×25					


以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。關於上述以外的產品,請洽詢本公司。關於行政及於的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解安裝方法,請洽詢本公司。

- (註)1. 形狀記號的□內為輸入軸連接器的記號。
 - 請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 型號 65 CSG-GH !

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

尺寸表

表 057 -1 單位:mm

	形狀記號 A(H7)	С	D	E	F (H7)		G	質量 (kg) ^{(註)2}		
	(註)1	A (П/)	J	U	_	Min	Max	G	軸輸出	凸緣輸出
凸緣	UA 🗆	95	115	M6×14		19	35		36.3	27.7
類型	UB □	95	110	M8×20						21.1
	UF 🗆	☐ 110 145 M8×25 ☐ 1	□ 130			165	36.4	27.8		
凸緣 類型॥	UG □	114.3	200	M12×25	□ 180	19	35	233	37.4	28.8
	UH 🗆	130	165	M10×25	□ 100			233	31.4	20.0
	UI 🗆	200	235	M12×25	□ 220			270	38.4	29.8

※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,請洽詢本公司。

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解安裝方法,請洽詢本公司。

(註)1. 形狀記號的口內為輸入軸連接器的記號。

請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

額定表 CSF-GH !

CSF-GH 系列為標準型的 Harmonic Drive® 減速機。

Harmonic Drive®CSF-GH系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。

売 058 -1

		輸入為 20			00r/min 時	平均負責	載轉矩的	起動、停口	上時的(註)4	瞬間容	許 ^{(註)5}	容許平均	容許最高	減速機單能	質量(註)7
型號	減速比	額定轉	矩(註)1	額定轉矩	(註)2(註)8	容許最大	大值 (註) 3	容許峰	值轉矩	最大	轉矩	輸入轉速	輸入轉速(註)6	軸輸出	凸緣輸出
		N·m	kgf⋅m	N·m	kgf∙m	N·m	kgf∙m	N·m	kgf⋅m	N·m	kgf∙m	r/n	nin	kg	kg
	50	5.4	0.55	4.7	0.48	6.9	0.70	18	1.8	35	3.6				
14	80	7.8	0.80	6.8	0.70	11	1.1	23	2.4	47	4.8	3500	8500	0.62	0.50
	100	7.8	0.80	6.8	0.70	11	1.1	28	2.9	54	5.5				
	50	25	2.5	22	2.2	34	3.5	56	5.7	98	10				
	80	34	3.5	30	3.1	47	4.8	74	7.5	127	13				1.4
20	100	40	4.1	35	3.6	49	5.0	82	8.4	147	15	3500	6500	1.8	
	120	40	4.1	35	3.6	49	5.0	87	8.9	147	15				
	160	40	4.1	35	3.6	49	5.0	92	9.4	147	15				
	50	76	7.8	66	6.8	108	11	216	22	382	39				
	80	118	12	103	10	167	17	304	31	568	58				3.2
32	100	137	14	120	12	216	22	333	34	647	66	3500	500 4800	4.6	
	120	137	14	120	12	216	22	353	36	686	70				
	160	137	14	120	12	216	22	372	38	686	70				
	50	176	18	154	16	265	27	500	51	950	97				
	80	313	32	273	28	390	40	706	72	1270	130				
45	100	353	36	308	31	500	51	755	77	1570	160	3000	3800	13	10
	120	402	41	351	36	620	63	823	84	1760	180				
	160	402	41	351	36	630	64	882	90	1910	195				
	80	745	76	651	66	1040	106	2110	215	3720	380				
65	100	951	97	831	85	1520	155	2300	235	4750	485	85	2800	32	24
00	120	951	97	831	85	1570	160	2510	256	4750	485	1300	2000	32	24
	160	951	97	831	85	1570	160	2630	268	4750	485				
(註)1.本	數值是以輸	入轉數為一		的輸入轉速:	2000r/min 時	,壽命時間	L ₁₀ =7000	6.)	——— 此為非連續〕	重轉條件下的	内容許最高輔	· · · · · · · · · · · · · · · · · · ·	推會因動作環	境及運轉條	件而異,

- (註) 1. 本數值是以輸入轉數為一般伺服馬達的輸入轉速 2000r/min 時,壽命時間 L₁₀=700 小時為依據所設定之輸出轉矩。請作為恆定運轉時的參考。
 - 2. 本數值是以輸入轉數為一般伺服馬達的輸入轉速 3000r/min 時,壽命時間 L_{10} =7000 小時為依據所設定之輸出轉矩。請作為恆定運轉時的參考。
 - 此為依據負載轉矩模式(048頁)所計算出的平均負載轉矩之容計最大值。若超過此數值,可能會降低產品的壽命及耐久性。請注意。
 - 4. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值。
 - 5. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。請務必在本轉矩範圍內使用。此外,在選擇型號的過程中,也請計算出容許頻率並確認是否符合使用條件。
- 6. 此為非連續運轉條件下的容許最高輸入轉速。雖會因動作環境及運轉條件而異但使用時請以連續運轉時輸入轉速低於3000r/min為參考基準。
 - (注意)當 Harmonic Drive® CSF系列的安裝方向為輸出軸朝下(馬達朝上)的狀態, 且以一定負載朝某一方向連續運轉時,可能會產生潤滑不良。如需以 此種方式使用時,請洽詢本公司營業據點。
- 7. 此為減速機單體的質量。關於包含輸入軸連接器、馬達凸緣等配件的數值,請參閱尺寸表(061 \sim 065 頁)。
- 8. 型號 65 為輸入 2800r/min 時的額定轉矩。

棘輪轉矩 CSF-GH ■

表 058 -2 單位:N·m

型號 減速比	14	20	32	45	65
50	88	220	980	2700	_
80	110	350	1400	3900	11000
100	84	260	1000	3100	9400
120	_	240	980	2800	8300
160	-	220	980	2600	8000

屈曲轉矩 CSF-GH ■

表 058 -3 單位:N·m

型號	14	20	32	45	65
全減速比	190	560	2200	5800	17000

性能表 CSF-GH =

CSF-GH 系列為標準型的 Harmonic Drive® 減速機。

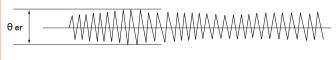

Harmonic Drive®CSF-GH系列可廣泛使用於半導體、液晶製造裝置、機械手臂、工具機等需要精密運動控制的尖端領域上。

表 059 -1

型號	輸入端形狀記號	はままし	角傳動料	青度 ^{(註) 2}	反覆定位精度 ^{(註)3}	起動轉	矩 ^{(註)4}	加速起動	轉矩 ^{(註)5}	無負載運轉轉矩(註)6	
型號	(註)1	減速比	arc-min	×10⁴rad	arc-sec	cN⋅m	kgf⋅cm	N·m	kgf⋅m	cN⋅m	kgf·cm
		50				8.2	0.8	2.9	0.3	5.6	0.6
14	所有產品	80	1.5	4.4	±10	6.9	0.7	3.9	0.4	5.1	0.5
		100				6.6	0.7	4.7	0.5	4.6	0.5
		50				13	1.3	7.8	0.8	11	1.2
		80	1			10	1.0	9.6	1.0	10	1.0
	E 🗆 🗆	100	1.0	2.9	±8	9.6	1.0	12	1.2	10	1.0
		120]			9.1	0.9	13	1.3	9.8	1.0
20		160	1			8.6	0.9	17	1.7	9.6	1.0
20		50				20	2.0	12	1.2	11	1.2
		80	1			17	1.7	16	1.6	10	1.0
	F □ □ G □ □	100	1.0	2.9	±8	16	1.7	19	2.0	10	1.0
	G LL	120]			16	1.6	23	2.3	9.8	1.0
		160				15	1.6	29	3.1	9.6	1.0
		50				58	5.9	35	3.6	47	4.8
	KP □ KQ □	80]			46	4.7	44	4.5	42	4.3
	KQ □ KR □	100	1.0	2.9	±6	45	4.6	54	5.5	41	4.2
	KS □	120]			42	4.3	61	6.2	40	4.1
32		160				41	4.2	79	8.1	40	4.1
32		50				50	5.1	30	3.1	47	4.8
	上述	80	1			38	3.9	37	3.8	42	4.3
	以外的	100	1.0	2.9	±6	37	3.8	45	4.6	41	4.2
	產品	120]		1 1	34	3.5	49	5.1	40	4.1
		160				33	3.4	64	6.6	40	4.1
		50				123	13	74	7.8	120	12
		80	J			95	9.7	92	9.3	109	11
45	所有產品	100	1.0	2.9	±5	89	9.1	107	11	107	11
		120	ļ			85	8.7	123	13	105	11
		160				79	8.1	152	16	103	11
		80				186	19	179	18	297	30
65	所有產品	100	1.0	2.9	±4	166	17	200	20	289	30
05	沙门伊连帕	120	1.0	2.5	_ ÷	156	16	226	23	285	29
		160				139	14	268	27	278	28

- (註)1. 形狀記號表示型式(參閱007頁)的馬達凸緣形狀及輸入軸連接器形狀。(前2位數為馬達凸緣形狀,後1位數為輸入軸連接器形狀)
 - 2. 角傳動精度係指以任意旋轉角進行輸入時,理論上旋轉的輸出旋轉角度和實際上旋轉的輸出旋轉角度之間的差值。另外,表內數值代表最大值。

圖 059 -1

- θ er : 角傳動精度θ₁ : 輸入旋轉角度θ₂ : 實際輸出旋轉角度
- R :CSF-GH系列的減速比(i=1:R)

 $\theta \text{ er } = \theta_2 - \frac{\theta_1}{R}$

- 3. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停止位置並求出最大差值。測量數值以角度表示,並以最大差值的1/2加上 生符號表示該數值。另外,表內數值代表最大值。
- 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表減速機單體的最大值。

圖 059 -2

表 059 -2

	70.11	
	負載	無負載
	減速機表面溫度	25℃
φ1		

測量條件

5. 加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。 另外,表內數值代表減速機單體的最大值。

測量條件

表 059-3

则里除什	\$£ 000 -
負載	無負載
減速機表面溫度	25℃

無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表內數值代表減速機單體的平均值。

測量條件

表 059 -4

門里除什	£€ 000 -4
輸入轉速	2000r/min
負載	無負載
減速機表面溫度	25°C

反覆定位精度 = $\pm \frac{X}{2}$

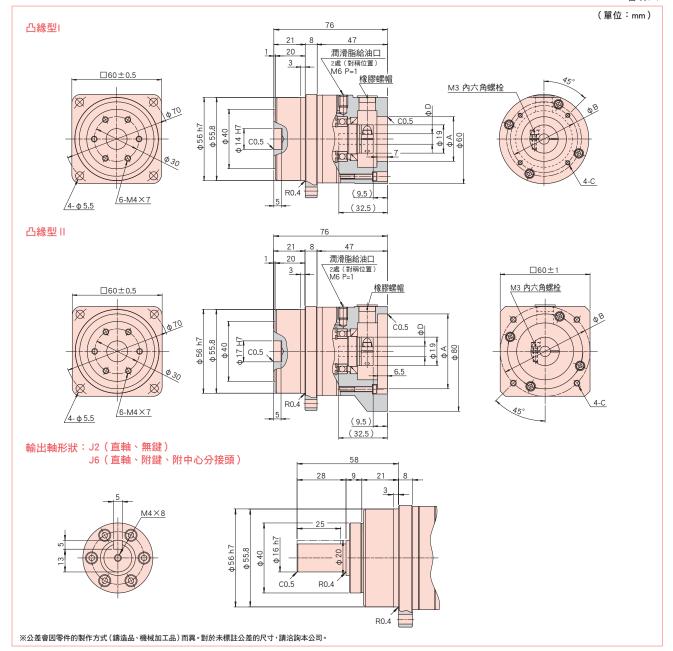
剛性(彈簧常數) CSF-GH =

記號		型號	14	20	32	45	65
	T ₁	N·m	2.0	7.0	29	76	235
		kgf·m	0.2	0.7	3.0	7.8	24
	T ₂	N·m	6.9	25	108	275	843
	12	kgf·m	0.7	2.5	11	28	86
	K ₁	×10⁴N·m/rad	0.34	1.3	5.4	15	-
	IXI	kgf·m/arc-min	0.1	0.38	1.6	4.3	-
	K ₂	×10⁴N·m/rad	0.47	1.8	7.8	20	-
	IN ₂	kgf·m/arc-min	0.14	0.52	2.3	6.0	-
減速比	K₃	×10⁴N·m/rad	0.57	2.3	9.8	26	-
50	IN3	kgf·m/arc-min	0.17	0.67	2.9	7.6	-
	θ1	×10⁴rad	5.8	5.2	5.5	5.2	-
	01	arc-min	2.0	1.8	1.9	1.8	-
	θ2	×10⁴rad	16	15.4	15.7	15.1	-
		arc-min	5.6	5.3	5.4	5.2	-
	K ₁	×10⁴N·m/rad	0.47	1.6	6.7	18	54
	KI	kgf·m/arc-min	0.14	0.47	2.0	5.4	16
	K ₂	×10⁴N·m/rad	0.61	2.5	11	29	88
	IN2	kgf·m/arc-min	0.18	0.75	3.2	8.5	26
減速比	Кз	×10⁴N·m/rad	0.71	2.9	12	33	98
80 以上	1//3	kgf·m/arc-min	0.21	0.85	3.7	9.7	29
	θ_1	×10⁴rad	4.1	4.4	4.4	4.1	4.4
	01	arc-min	1.4	1.5	1.5	1.4	1.5
	θ2	×10⁴rad	12	11.3	11.6	11.1	11.3
	02	arc-min	4.2	3.9	4.0	3.8	3.9

遲滯損失 CSF-GH =

(相關用語說明請參閱「046頁」。)

最大背隙量 CSF-GH ■


減速比	型號	14	20	32	45	65
50	×10⁻⁵rad	17.5	8.2	6.8	5.8	_
50	arc-sec	36	17	14	12	_
90	×10⁻⁵rad	11.2	5.3	4.4	3.9	2.9
80	arc-sec	23	11	9	8	6
100	×10⁻⁵rad	8.7	4.4	3.4	2.9	2.4
100	arc-sec	18	9	7	6	5
120	×10⁻⁵rad	ı	3.9	2.9	2.4	1.9
120	arc-sec	ı	8	6	5	4
160	×10⁻⁵rad	_	2.9	2.4	1.9	1.5
160	arc-sec	ı	6	5	4	3

(相關用語說明請參閱「046頁」。)

外觀圖 型號 14 CSF-GH ■

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 061 -1

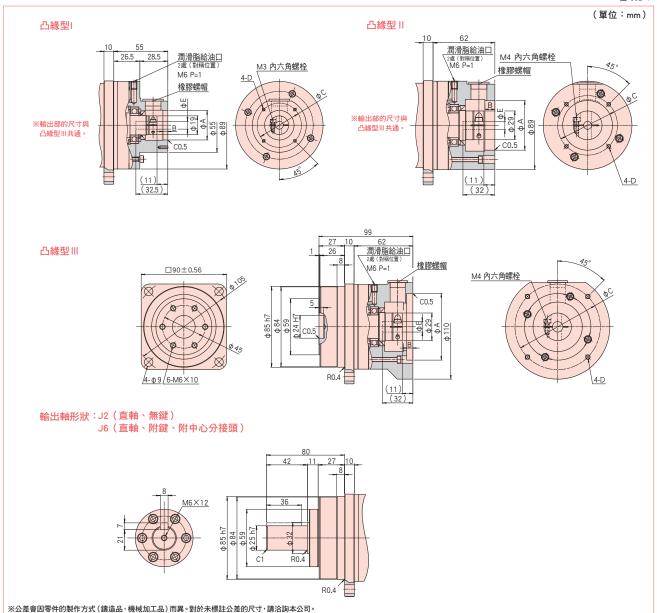
尺寸表

表 061 -1 單位:mm

	形狀記號	A (H7)	В	С	D (1	17)	質量 (kg) ^{(註) 2}		
	(註)1	A (H/)	D		Min	Max	軸輸出	凸緣輸出	
П 66	АВ □	30	45	M3×8					
凸緣 類型 I	AC □	30	46	M4×10	6	8	0.88	0.76	
规至「	AD □	34	48	M3×8					
T 48	ВА □		60	M4×10					
凸緣 類型Ⅱ	BB □	50	70	IVI4 ^ I U	6	8	0.9	0.78	
規主!!	BC □		10	M5×12					

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解安裝方法,請洽詢本公司。


(註)1. 形狀記號的口內為輸入軸連接器的記號。

請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖 型號 20 CSF-GH =

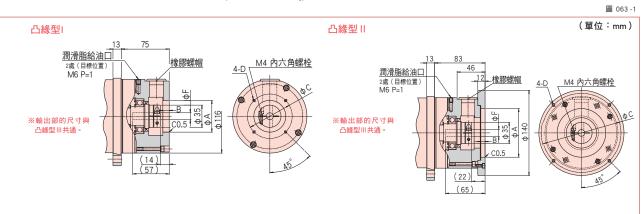
本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

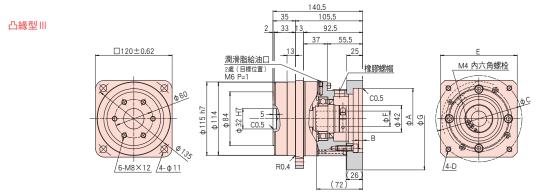
圖 062 -1

尺寸表 =

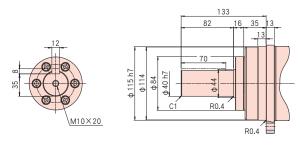
表 062 -1 單位:mm

	形狀記號	A (H7)	В	С	D	E (H7)		質量 (kg) ^{(註) 2}		
	(註)1	A (HI)	Ь	C	D	Min	Max	軸輸出	凸緣輸出	
工格	EA 🗆	30	5	45	M3×8	7			1.9	
凸緣 類型 I	EB 🗆	30	ິ	46	M4×10		8	2.3		
	EC 🗆	34	6	48	M3×8					
凸緣	FA 🗆		10	60	M4×10	8	14	2.6		
類型Ⅱ	FB □	50		70	1014 / 10				2.2	
規至 II	FC 🗆			70	M5×12					
凸緣	GA □	70	0.5	90	M5×12	8	14	0.0	2.4	
類型Ⅲ	GB □	70	6.5	90	M6×14	°	14	2.8	2.4	


以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解安裝方法,請洽詢本公司。


- (註)1. 形狀記號的□內為輸入軸連接器的記號。

 - 請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。


外觀尺寸圖 型號 32 CSF-GH

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

輸出軸形狀:J2(直軸、無鍵) J6(直軸、附鍵、附中心分接頭)

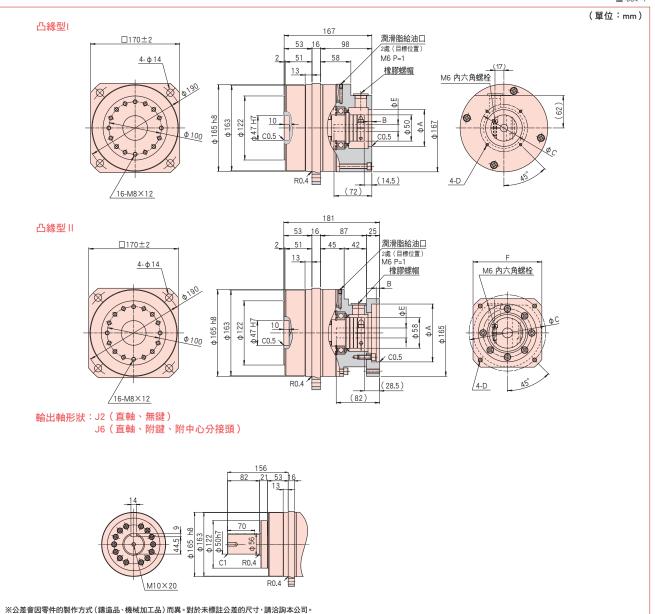
※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,請洽詢本公司。

尺寸表

表 063 -1 單位:mm

	形狀記號	A (H7)	В	С	D	Е	F(I	H7)	G	質量(k	g) ^{(註) 2}
	(註)1	A (П/)	D		U	-	Min	Max	9	軸輸出	凸緣輸出
凸緣	KA □	50	10	70	M4×10						
	KB □	50	10	70	M5×12						
	KC □	60		99	M6×14						
類型Ⅰ	KD □	70	7	90	M5×12	-	11	19	-	6.4	5
類型「	KE □	10	l '	30	M6×14						
	KF □	80		100	1010/14						
	KI□	50	10	60	M4×10						
凸緣	KG □	95	7	115	M6×12		11	19		6.6	5.2
類型Ⅱ	KH □	90	,	113	M8×12			19	_	0.6	3.2
	KP □	95		115	M6×14	□ 120			160		
凸緣	KQ □	33	6.5	113	M8×25	L 120	16	24	100	6.9	5.5
類型Ⅲ	KR □	110	0.5	145	IVIOAZJ	□ 130	10	24	165		
	KS □	130		165	M10×25	□ 180			233	7.9	6.5

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如雲瞭解安裝方法,請洽詢本公司。

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖 型號 45 CSF-GH ■

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

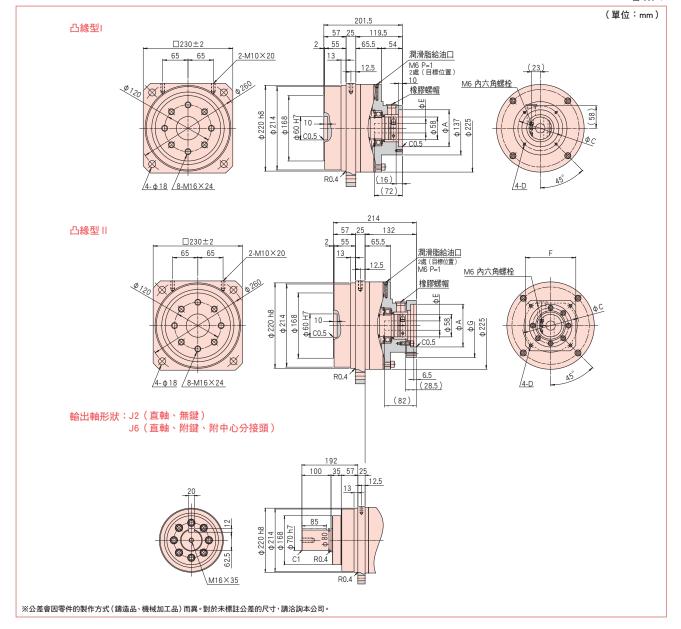
圖 064 -1

尺寸表

表 064 -1 單位:mm

	形狀記號	A (117)		C D		E (H7)		_	質量(kg) ^{(註)2}		
	(註)1	A (H7)	В	C	D	Min	Max	F	軸輸出	凸緣輸出	
	PA □	70	7	90	M5×12						
	PB □	10	1	90	M6×14		24	_	17.3	14.3	
П 6/2	PC □	80		100	M8×20 M6×14	14					
凸緣 類型Ⅰ	PD □	95		115							
規 至 !	PE 🗆	95	8	113							
	PF □	110		130							
	PG □	110		145	M8×20						
凸緣	PR □	110		145	M8×20		24	□ 130	16.7	13.7	
類型Ⅱ	PP □	114.3	6.5	200	M12×25	19	35	□ 180	477	14.7	
規至!!	PQ □	130		165	M10×25		35	□ 180	17.7	14.7	

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解安裝方法,請洽詢本公司。


如需瞭解安裝方法,請治詢本公司。 (註)1.形狀記號的□內為輸入軸連接器的記號。

- 請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
- 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

外觀尺寸圖 型號 65 CSF-GH ■

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 065 -1

尺寸表 =

表 065 -1 單位:mm

	形狀記號	A (H7)	С	D	E (F	17)	_	G	質量 (kg) ^{(註) 2}	
	(註)1	A (П/)	Min Max	_	G	軸輸出	凸緣輸出			
凸緣	UA 🗆	95	115	M6×14	19	9 35	_	_	36.2	27.6
類型Ⅰ	UB 🗆	90	115	M8×20	19	30			30.2	21.0
	UF 🗆	110	145	M8×25			□ 130	165	36.3	27.7
凸緣	UG 🗆	114.3	200	M12×25	19	35	□ 180	233	37.3	28.7
類型Ⅱ	UH 🗆	130	165	M10×25	19	30	100	233	31.3	20.1
	UI 🗆	200	235	M12×25			□ 220	270	38.3	29.7

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 如需瞭解安裝方法,請洽詢本公司。

- (註)1. 形狀記號的口內為輸入軸連接器的記號。
 - 請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 2. 質量會因減速比及輸入軸連接器的內徑尺寸而有若干差異。

● 同形馬達用高性能減速機系列

HarmonicPlanetary® HPG系列(行星齒輪減速機) HarmonicDrive® CSG/CSF-GH系列(Harmonic Drive®減速機型)

減速機系列 CONTENTS

HarmonicPlanetary® HPG系列 直交軸型

結構圖				06
選擇型號	虎			068
額定表				070
性能表		*		07
轉矩	丑轉特性			072
外觀尺寸	†圖			073

HarmonicPlanetary® HPG直交軸型

尺寸

型號:32、50、65

3 種類

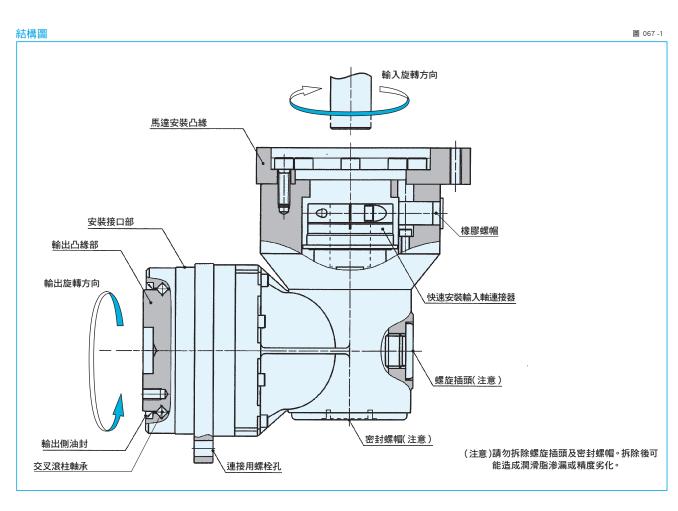
峰值轉矩

150N·m~2200N·m

減速比

1段減速=5 2段減速=11~50

小背隙


標準:3分以下

可安裝至各公司伺服馬達

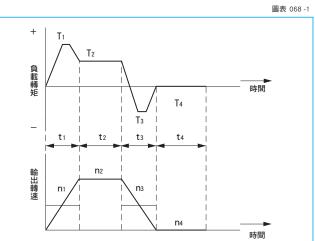
安川電機/三菱電機/FANUC/ Panasonic/山洋電氣/富士電機/東芝機械 關於其他伺服馬達請洽詢最近的營業處。

各公司伺服馬達的匹配型式請使用首頁的型式選擇工具(URL:https://hds-tech.jp/)。

選擇型號:

為充分發揮 Harmonic Planetary® HPG 系列擁有的優異性能,請在確認使用條件及參考選擇流程圖後再選擇型號。

一般來說,伺服系統幾乎不會出現連續固定負載的狀態。負載轉矩會隨輸入轉速的變動而產生變化,在起動或停止時會施加較大的轉矩。此外,還可能會施加非預期的衝擊轉矩。


關於上述的使用條件,請參閱下圖確認負載轉矩模式後,依據右側 的流程圖選擇型號。

選擇時亦請確認交叉滾柱軸承及輸入端軸承(僅輸入軸型)的使用 壽命及靜態安全係數。

(請參閱 114 頁~ 119 頁輸出軸承及輸入端軸承的規格)

■確認負載轉矩模式

首先必須掌握負載轉矩模式。請檢查下圖所示的各項規格。

計算各運轉模式時的條件

負載轉矩 T1∼Tn (N·m) 時間 t1∼tn (sec) 輸出轉速 n1∼nn (r/min)

<一般運轉模式>

 起動時
 T1 \ t1 \ n1

 正常運轉時
 T2 \ t2 \ n2

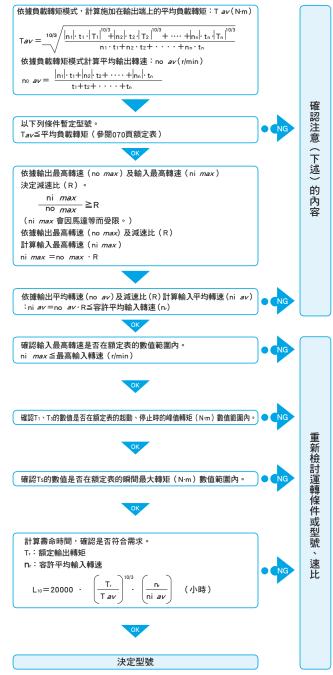
 停止(減速)時
 T3 \ t3 \ n3

 休止時
 T4 \ t4 \ n4

<最高轉數>

輸出最高轉速 no max ≥ n1~nn 輸入最高轉速 ni max ≥ n1×R~nn×R (因馬達等而受限) R:減速比

<衝撃轉矩>


施加衝擊轉矩時 Ts

<需求壽命>

 $L_{10} = L (H)$

■型號選擇流程圖

選擇型號時,請依據下列流程圖進行。只要超過任一額定表數值,便請重新檢討使用高一級的型號,或是降低負載轉矩等條件。

注意

下述狀況請確認減速機溫度上昇、加減速時的振動等影響。 需考量安全時,請考慮「提高減速機尺寸」、「重新審視運轉條件」等。接近連續運轉 時需特別注意。

> 平均負載轉矩(Tav) > 平均負載轉矩的容許最大值(070頁) 計算輸入平均轉速($ni\ av$) > 容許平均輸入轉速(n_r)

■型號選擇範例

各負載轉矩模式的數值

負載轉矩 T_n (N·m) 時間 tn (sec)

輸出轉速 nn (r/min)

<一般運轉模式>

 $T_1 = 220N \cdot m \quad t_1 = 0.5 sec \quad n_1 = 60 r/min$

正常運轉時 $T_2 = 50 \text{N·m}$ $t_2 = 2.7 \text{sec}$ $n_2 = 120 \text{r/min}$

停止(減速)時 T3=55N·m t3=0.8sec n3=60r/min $T_4 = 0N \cdot m$ $t_4 = 5 \text{sec}$ $n_4 = 0 \text{r/min}$

<最高轉數>

輸出最高轉速 no *max* = 120r/min

輸入最高轉速 ni max = 5,000r/min :因馬達等而受限

<衝擊轉矩>

施加衝擊轉矩時 Ts=180N·m

く需求書命>

L₁₀ = 20,000 (小時)

依據負載轉矩模式,計算施加在輸出端上的平均負載轉矩:Tav(N·m)

$$T_{\textit{AV}} = \underbrace{\frac{^{10|3}}{|60 \text{r/min}| \cdot 0.5 \text{sec} \cdot |220 \text{N} \cdot \text{m}|^{10|3}}^{|0|3} + |120 \text{r/min}| \cdot 2.7 \text{sec} \cdot |55 \text{N} \cdot \text{m}|^{10|3} + |60 \text{r/min}| \cdot 0.8 \text{sec} \cdot |55 \text{N} \cdot \text{m}|^{10|3}}_{|60 \text{r/min}| \cdot 0.5 \text{sec} + |120 \text{r/min}| \cdot 2.7 \text{sec} + |60 \text{r/min}| \cdot 0.8 \text{sec}}$$

依據負載轉矩模式計算平均輸出轉速:no av (r/min)

no $av = \frac{|60r/\min| \cdot 0.5\sec + |120r/\min| \cdot 2.7\sec + |60r/\min| \cdot 0.8\sec + |0r/\min| \cdot 5\sec}{|120r/\min| \cdot 1.8\sec + |0r/\min| \cdot 1.8\sec}$

0.5sec + 2.7sec + 0.8sec + 5sec

依據下列條件暫定型號。T aν=104N·m≤170N·m (型號32、減速比21的平均負載轉矩(参閱070頁額定表) HPG-32A-21-RA3)

依據輸出最高轉速(no max)及輸入最高轉速(ni max)決定減速比(R)。

5,000r/min =41.7≧21

依據輸出最高轉速 (no max) 及減速比 (R) 計算輸入最高轉速 (ni max) : ni max = 120r/min · 21 = 2,520r/min

依據平均輸出轉速(no av)及減速比(R)計算平均輸入轉速(ni av):

ni av = 44.7r/min·21=939r/min≤型號32的容許平均輸入轉速 1500 (r/min)

確認輸入最高轉速是否在額定表的數值範圍內。ni max = 2520r/min≤6000r/min(型號32的最高輸入轉速)

確認T1、T3的數值是否在額定表的起動、停止時的峰值轉矩(N·m)數值範圍內。

T₁=220N·m≦300N·m(型號32的起動、停止時峰值轉矩)

T₃=55N·m≤300N·m (型號32的起動、停止時峰值轉矩)

確認Ts的數值是否在額定表的瞬間最大轉矩(N·m)數值範圍內。Ts=180N·m≤650N·m(型號32的瞬間最大轉矩)

計算壽命時間,確認是否符合需求。

依據上述結果,決定HPG-32A-21-RA3

HPG系列(

確認注意(P68下)的內容

重新檢討運轉條件或型號

、速比

CSG-GH系列 (HarmonicDrive)

額定表:

HPG 系列 直交軸型有 3 種型號。請先參考額定表再選擇型號。

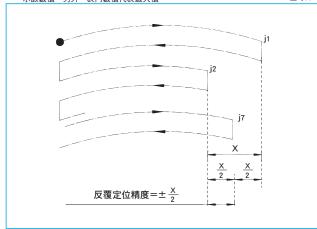
表 070 -1

					平均負責	比輔4660	起動、傷口	· 上時的 ^{(註)3}		owing (2) ++45 (2) .		容許最高輸入	慣性力矩 (輸入	端換算值)(註)7	減速機單骨	豊質量 (註) 8
型號	直交部位 型式	減速比	額定轉	矩 ^{(註)1}		大值 ^{(註) 2}		值轉矩	瞬間最大	轉矩 (註) 4	容許平均(註)5 輸入轉速	(注)6 轉速	軸輸出	凸緣輸出	軸輸出	凸緣輸出
			N∙m	kgf∙m	N∙m	kgf∙m	N·m	kgf∙m	N·m	kgf∙m	r/min	r/min	X10 ⁻⁴ kg·m ²	X10 ⁻⁴ kg·m²	kg	kg
		5	66	6.7	150	15	150	15	200	20		4.1	3.9	7.4	6.0	
		11	88	9.0					440	45	1		3.7	3.6		
32	RA3	15	92	9.4	170	17			600	61	1500	6000	3.5	3.4	1	
32	RAS	21	98	10	1		300	31			1 1500	6000	3.2	3.2	7.9	6.5
		33	108	11	000	-00	1		650	66			3.0	2.9	1	
		45	108	11	200	20				1 1			2.9	2.9	1	
		5	150	15	150	15	150	15	200	20			9.9	8.6	20	17
		11	200	20	330	34	330	34	440	45	1		6.8	6.5	21	
	L	15	230	24	450	46	450	46	600	61	1500	4500	6.2	6.1		18
	RA3	21	260	27			630	64	840	86	1500		4.9	4.8		
		33	270	28	500	51	050	87	1320	135	1		3.8	3.8	1	
50		45	270	28	1		850	87	1800	184	1		3.8	3.7		
50		5	170	17	340	35	400	41	500	51			32	31	21	18
		11	200	20	400	41			1100	112		29	28			
	RA5	15	230	24	450	46	1		1500	153	1,000		28	28	22	19
	RA5	21	260	27			850	87			1300	4500	27	27		
		33	270	28	500	51			1850	189			26	26		
		45	270	28	ĺ				ĺ		İ		26	26	ĺ	
		5	400	41	400	41	400	41	500	51			55 (註) 9	46	45 ^{(註) 9}	35
		12	600	61	960	98	960	98	1200	122	1		44 (註) 9	42		
	l i	15	730	75	1200	122	1200	122	1500	153	1		43 (註) 9	41	ĺ	İ
65	RA5	20	800	82	1500		1600	163	2000	204	1300	3000	33 (註) 9	32	60(註)9	F0
	l i	25	850	87	1500	450	153	204	2500	255	1		32 (註) 9	32	00 '117"	50
		40	640	65	1300	153		194	4000	408	1	27	27 (註) 9	27	1	
		50	750	77	1500		2200	224	4500	460	1		27 (註) 9	27	1	

- (註)1. 本數值是以輸入轉速為一般伺服馬達的額定轉速 3000r/min 時,壽命時間 L₁₀₌20000 小時為依據所設定之額定輸出轉矩。 但型號 50、65 之額定輸出轉矩是以組合伺服馬達的額定轉速為 2000r/min,壽命時間 L₁₀₌20000 小時為依據設定的。
 - 2. 此為依據負載轉矩模式(068頁)所計算出的平均負載轉矩的容計最大值,並以「輸入轉速為 2000/min 時,壽命可達 2000 小時以上」為設定時的參考標準。
 - 3. 此為在設備的運轉週期中中,在起動、停止時所施加轉矩的容許最大值
 - 4. 此為緊急停止時的 衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。
 - 若超過此數值可能會使減速機受損。 5. 此為運轉中的平均輸入轉速之容許最大值。尤其是當設備連續運轉的間隔時間短時,可能會因發熱而造成內壓上升,故請特別注意勿超過此數值。
 - 6. 此為非連續運轉條件下的容許最高輸入轉速。
 - 7. 此為減速機單體的數值。包含輸入軸連接器的數值,請確認官方網站的型式選擇工具(URL:https://hds-tech.jp/)。
 - 8. 此為減速機單體的質量。詳情請洽詢本公司。
 - 9. 標準為凸緣輸出。軸輸出為特殊對應

型號	直交部位 型號 減速比		角傳動料	清度 (註) 1	反覆定位精度 (E) 2	起動轉	矩 ^{(註)3}	加速起動	轉矩(註)4	無負載運轉轉矩(註)5			
空號	型式	減迷比	arc-min	×10⁴rad	arc-sec	cN·m	kgf-cm	N·m	kgf⋅m	cN·m	kgf-cm		
		5				64	6.5	3.3	0.34	179	18		
1		11]	4.0 11.6 ±15	58	5.9	6.8	0.69	162	17			
32	RA3	15	1 40			56	5.7	8.9	0.91	155	16		
32	RA3	21	4.0	11.6	15	53	5.4	12	1.2	155	16		
1		33]			48	4.9	17	1.7	150	15		
		45				47	4.8	23	2.3	150	15		
		5				111	11	5.8	0.59	241	25		
		11]	.0 11.6		76	7.8	8.9	0.91	198	20		
	RA3	15	4.0		±15	71	7.2	11	1.2	173	18		
	RAS	21	4.0	11.0		69	7.0	15	1.6	113	10		
		33	J			61	6.2	21	2.2	161	16		
50		45				59	6.0	28	2.9	101	10		
30		5				132	14	6.9	0.70	496	51		
		11	l		±15		97	9.9	11	1.2	459	47	
	RA5	15	3.0	8.7		92	9.4	15	1.5	437	45		
	IVAS	21	3.0	0.1		-13	_ 13	90	9.2	20	2.1	401	45
		33				82	8.4	29	2.9	427	44		
		45				80	8.2	38	3.9	421	44		
		5				292	30	15	1.6	647	66		
		12	J			177	18	23	2.3	532	54		
		15	J			162	17	26	2.6	513	52		
65	RA5	20	3.0	8.7	±15	147	15	31	3.2	494	50		
		25	J			136	14	36	3.7	481	49		
		40]			127	13	51	5.2	460	47		
		50				122	12	61	6.2	453	46		

(註)1. 角傳動精度係指任意旋轉角進行輸入時,①理論上旋轉的輸出旋轉角度和②實際上旋轉的輸出旋轉角度之間的差值。 另外,表內數值代表最大值。


 θer: 角傳動精度

 θ₁: 輸入旋轉角度

 θ₂: 實際輸出旋轉角度

 R: HPG系列的減速比

2. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停止位置並求出最大差值。測量數值以角度表示,並以最大差值的1/2加上 + 符號表示該數值。另外,表內數值代表最大值。

3. 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外,表內數值代表最大值。

表 071 -2

圖 071 -1

	12 011 -2
負載	無負載
HPG 減速機表面溫度	25℃

4. 加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。 另外,表內數值代表最大值。

表 071 -3

負載	無負載
HPG 減速機表面溫度	25℃

無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表內數值代表平均值。

表 071

輸入轉速	直交部位型式 RA3	1500r/min
平削/八半守2 <u>不</u>	直交部位型式 RA5	1300r/min
負	載	無負載
HPG 減速	25°C	

轉矩一扭轉特性 =

■直交軸型								表 072 -1		
			als	背隙		的單側扭轉量	扭轉	剛性		
型號	直交部位型式	減速比	=	月原		D		/B		
			arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	×100N·m/rad		
		5		8.7			2.2	740		
		11]				2.4	820		
32	RA3	15	3.0		1.9	5.5	2.5	850		
32	KAS	21	3.0	0.1	1.9	5.5	2.6	880		
		33]						2.7	900
		45						910		
		5			2.7	7.9	3.9	1300		
		11					9.3	3100		
	RA3	15	3.0	8.7	2.1		11	3800		
	10.5	21	3.5			6.1	13	4300		
		33					14	4700		
50		45						4800		
30		5			1.7	4.9	7.5	2500		
		11			1.8 5.2		12	4100		
	RA5	15	3.0	8.7			13	4500		
	10.0	21		S.,		14	4700			
		33					15	4900		
		45						5000		
		5			2.3	6.7	10	3400		
		12					26	8600		
		15					29	9800		
65	RA5	20	3.0	8.7	2.0	5.8	32	11000		
		25					34	11000		
		40					36	12000		
		50					37			

■扭轉剛性(彎曲曲線)

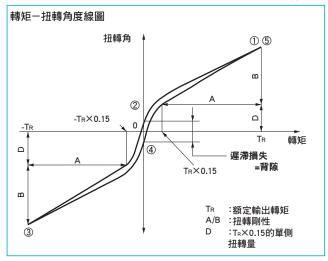
若固定住減速機的輸入及護殼,並對輸出部位施加轉矩,輸出部位便會隨轉矩產生扭轉現象。若讓轉矩值依據①正轉額定輸出轉矩→②零→③反轉額定輸出轉矩→④零→⑤正轉額定輸出轉矩的順序逐漸變化,便可描繪出如圖 072-1「轉矩-扭轉角度線圖」的①→②→③→④→⑤循環。

從「0.15×額定輸出轉矩」到「額定輸出轉矩」的範圍內的斜率較低, HPG 系列的扭轉剛性值便是此斜率的平均值。

從「零轉矩」到「0.15×額定輸出轉矩」的範圍內的斜率較高,是因為咬合部位的輕微接觸不均,以及輕微負載時行星齒輪載重等間距不均衡等所造成的現象。

■總扭轉量(彎曲)的計算方法

以下為減速機從無負載狀態進入施加負載狀態時的單側扭轉量計算方法(平均值)。


公式 072 -1

た公●	;	
	$\theta = D + \frac{T - T_L}{\frac{A}{B}}$	
公式的	勺記號	
θ	總扭轉量	_
D	額定輸出轉矩×0.15轉矩的單側扭轉量	參閱圖072-1、表072-1
Т	負載轉矩	
TL	額定輸出轉矩×0.15轉矩(=TR×0.15)	參閱圖072-1
A/B	扭轉剛性	參閱圖072-1、表072-1

■背隙(遲滯損失)

「轉矩-扭轉角度線圖」的零轉矩範圍②④稱為遲滯損失。HPG系列的背隙被定義為從「正轉額定輸出轉矩」到「反轉額定輸出轉矩」 時的遲滯損失。HPG系列的背隙在出廠時預設為3分以下。

圖 072 -1

 \bigoplus

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

фАН7

ф ГН7

107

本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

4-D

98 82 70 12 h9 13 12.5 13 12.5 5 11 12 0 12 h9 13 12.5

※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,請洽詢本公司。

U

尺寸表

<u>內六角</u>螺栓

表 073-1 單位:mm

4-ф11

6-M8×12

	T/UN=In+						F (1	17.					所 B	単1以·mm	
	形狀記號	A (H7)	В	С	D	Е	F(H	17)	G	Н	М	N	質量		
	(註)1	7. ()				_	Min	Max	, i			ı,	軸輸出	凸緣輸出	
	NF 🗆 95 10	10	115	M8×18	+125		24	56	209.5	174.5	115	0.7	0.2		
一段式	NJ 🗆	95	10	115	M6×12	ф135		24	30	203.3	174.5	115	9.7	8.3	
一段式減速型	ВА□	110	6.5	145	M8×25	□ 130	10	35	81	207	172	140	10.3	8.9	
	ВВ □	114.3	6.5	200	M12×25	□ 180			01	232	197	140	11.3	9.9	
(減速比=	NF □	95	10	10	115	M8×18	ф135		24	56	209.5	174.5	115	10.1	8.7
1 段式:	NJ □	93	10	113	M6×12	Ψ133	10	24	56	209.5	174.5	115	10.1	0.1	
二段式減速型33	ВА□	110	6.5	6.5	M8×25	□ 130		25	01	207	172	140	10.7	9.3	
45	ВВ □	114.3	6.5		M12×25	□ 180		35	81	232	197	140	11.7	10.3	

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

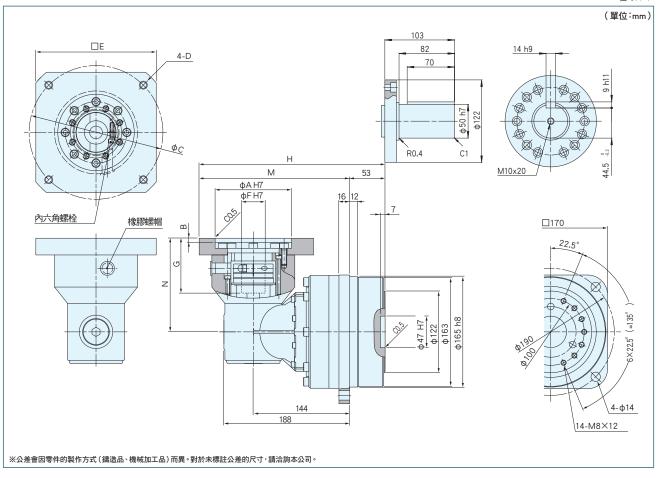

(註)1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

圖 073 -1

外觀尺寸圖-型號 50 RA3:

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

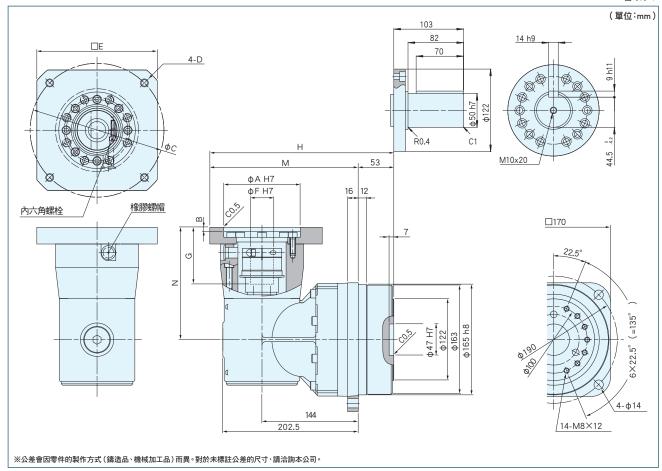
圖 074 -1

尺寸表

表 074 -1 單位:mm

	形狀記號	A (H7)	В		D	_	F (H7)	H7)	G	Н	М	N	質量	(kg)																				
	(註)1	A (n /)	В	C			Min	Max	u		IVI	IN	軸輸出	凸緣輸出																				
二、減速	ВА□	110	6.5	145	M8×25	□ 130	10	35	81	262	209	140	24	21																				
段 登 31	ВВ □	114.3		200	M12×25	□ 180				287	234	140	25	22																				
段式減速型	NF 🗆	95	10		- 10	10	10	10	10	40		10	10	10	10	10	10	10	10	10	10	10	10	115	M8×18	+125	10	0.4	F.7	2004 F	011 5	115	02.4	20.4
型 33	NJ 🗆	95		115	M6×12	φ135 12		24	57	264.5	211.5	115	23.4	20.4																				

以上為代表性產品的尺寸表。關於上述以外的產品以及減速比= 5 的產品,請洽詢本公司。


關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。

如需瞭解減速機單體及特殊安裝方法,請洽詢本公司

(註) 1. 形狀記號的口內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

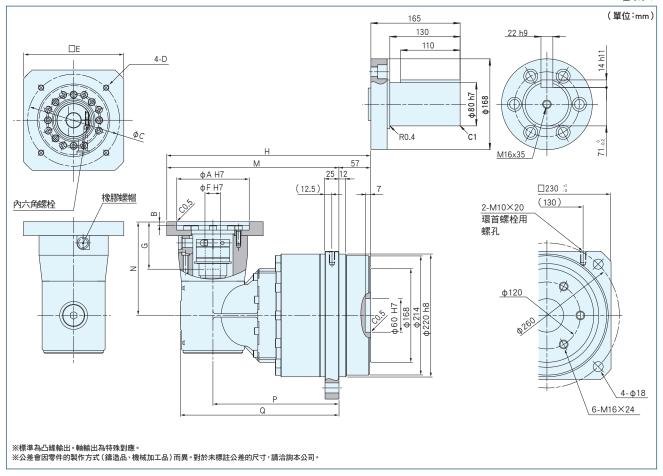
圖 075 -1

尺寸表

表 075 -1 單位:mm

	形狀記號	A (H7)	В		D	Е	F (1	H7)	G	Н	М	N	質量	(kg)
	(註)1	A (H/)	В			Min	Max	G		IVI	IN	軸輸出	凸緣輸出	
	ВА□	110		145	M8×25	□ 130		42 —	84	262	209	168	23.7	20.7
一段式減速型	вв 🗆	114.3	6.5	200	M12×25		19		04				24.9	21.9
	BF □	130	0.5	165	M10×25	□ 180			85	287	234		24.9	21.9
	СВ 🗆	114.3		200	WITU > 25				116			200	25.9	22.9
	ВА□	110		145	M8×25	□ 130			84	262	209		25.3	22.3
(滅速比=11、15、11、2、3、3、 上段式減速型	ВВ □	114.3	6.5	200	M12×25		10					168	00 F	02.5
	BF □	130	0.5	165	MATONOE	□ 180	19	42	85	287	234		26.5	23.5
	СВ 🗆	114.3		200	M10×25				116			200	27.5	24.5

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。 關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

(註)1. 形狀記號的□內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

外觀尺寸圖一型號 65 ▮

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

圖 076 -1

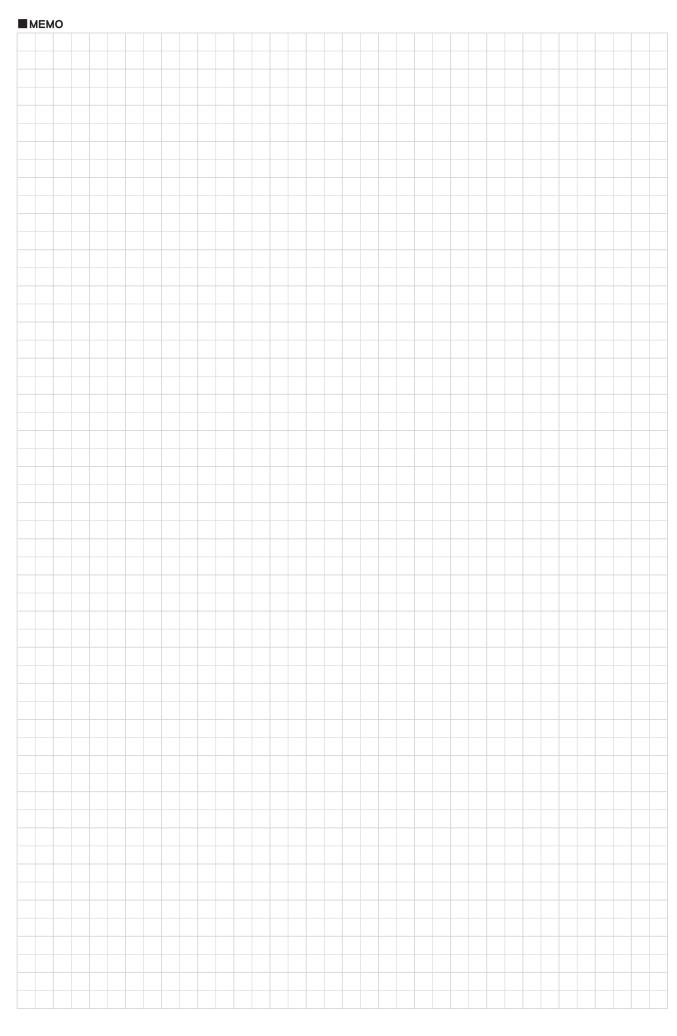
尺寸表:

表 076 -1 單位:mm

	形狀記號	A (H7)	В	С	D	Е	F(F	1 7)	G	н	М	N	Р	Q	質量	(kg)
	(註) 1	A (H/)	Ь	C	U	-	Min	Max	ď		IVI	IN		α	軸輸出	凸緣輸出
(減速比=5)	СВ 🗆	114.3	6.5	200	M12×25	□ 180	19	42	116	319	262	200	172	230.5	50.5	40.5
(減 速 比	ВА□	110		145	M8×25	□ 130			84	348	291				57.6	47.6
上 12 段式 15	вв □	114.3	6.5	200	M12×25		10	42	04			168	226	204 5	58.8	48.8
(減速比= 12、15、20、5、20、20、20、20、20、20、20、20、20、20、20、20、20、	BF □	130	0.5	165	M10×25	□ 180	19	42	85	373	316		226	284.5	56.8	40.8
40 50	СВ □	114.3		200	M12×25				116			200			59.8	49.8

以上為代表性產品的尺寸表。關於上述以外的產品,請洽詢本公司。

關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。


如需瞭解減速機單體及特殊安裝方法,請洽詢本公司。

(註)1. 形狀記號的□內為輸入軸連接器的記號。請使用官方網站的型式選擇工具(URL:https://hds-tech.jp/)。

Gearhead Series HPG Orthogonal Shaft Type

「REMAIN NOT THE PROPERTY OF

HBGAB (科羅爾塔爾) 原來的HBGBB (科圖斯里里) 原來的用語用高性能減速機系列

HarmonicPlanetary[®] 行星齒輪減速機模組系列

CONTENTS

HPF中空軸模組型

結構圖	079
選擇型號	080
額定表、性能表	082
轉矩 扭轉特性	083
外觀尺寸圖	084

HPG輸入軸模組型

結構圖	085
選擇型號	086
額定表	088
性能表	089
轉矩—扭轉特性	090
外觀尺寸圖	091

Harmonic Planetary® HPF中空軸模組型

尺寸

型號: 25、32

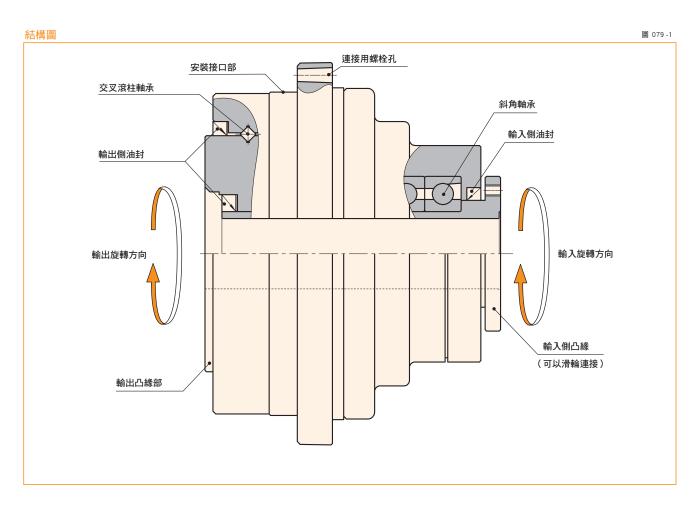
峰值轉矩

型號: 25=100N·m 型號: 32=220N·m

減速比

1/1

小背隙


標準:3分以下

中空軸內徑

型號:25=Φ25mm 型號:32=Φ30mm

開發了以HarmonicPlanetary[®]為基礎的中空結構型模組。繼承了HPG 系列的優異性能、規格,具有中空結構的形狀等優點。由於輸入 輸出軸為同軸上的貫穿孔,可精巧設計裝置,將管路、線路及雷 射光通過貫穿孔,或與滾珠螺桿組合,滿足客戶多樣化的需求。

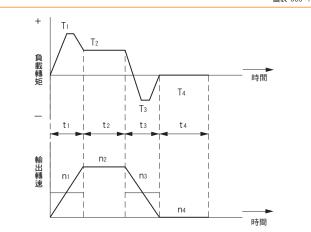
選擇型號:

為充分發揮 HarmonicPlanetary®HPF 系列擁有的優異性能,請在確認使用條件及參考選擇流程圖後再選擇型號。

一般來說,伺服系統幾乎不會出現連續固定負載的狀態。負載轉矩 會隨輸入轉速的變動而產生變化,在起動或停止時會施加較大的轉 矩。

此外,還可能會施加非預期的衝擊轉矩。

關於上述的使用條件,請參閱下圖確認負載轉矩模式後,依據右側 的流程圖選擇型號。


選擇時亦請確認交叉滾柱軸承及輸入端軸承(僅輸入軸型)的使用 壽命及靜態安全係數。

(請參閱 114 頁~ 119 頁輸出軸承及輸入端軸承的規格)

■確認負載轉矩模式

首先必須掌握負載轉矩模式。請檢查下圖所示的各項規格。

圖表 080 -1

計算各運轉模式時的條件

負載轉矩 T1∼Tn (N·m) 時間 t1∼tn (sec) 輸出轉速 n1∼nn (r/min)

<一般運轉模式>

 起動時
 T1 \ t1 \ n1

 正常運轉時
 T2 \ t2 \ n2

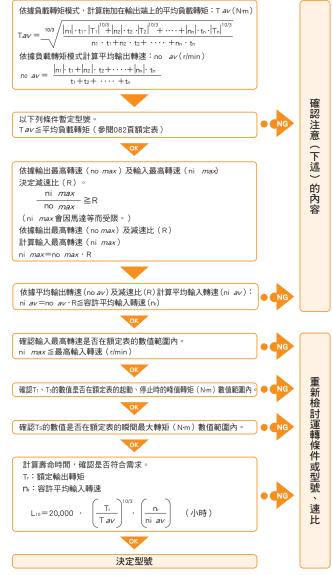
 停止(減速)時
 T3 \ t3 \ n3

 休止時
 T4 \ t4 \ n4

<最高轉速>

輸出最高轉速 no max ≧n1~nn 輸入最高轉速 ni max ≧n1×R~nn×R (因馬達等而受限) R:減速比

<衝擊轉矩>


施加衝擊轉矩時 Ts

<需求壽命> L₁₀ = L(H)

■型號選擇流程圖

選擇型號時,請依據下列流程圖進行。

只要超過任一額定表數值,便請重新檢討使用高一級的型號,或是降 低負載轉矩等條件。

注意

下述狀況請確認減速機溫度上昇、加減速時的振動等影響。

需考量安全時,請考慮「提高減速機尺寸」、「重新審視運轉條件」等。接近連續運轉 時需特別注意。

平均負載轉矩(Tav)>平均負載轉矩的容許最大值(082頁) 計算輸入平均轉速(ni av)>容許平均輸入轉速(n_r)

■型號選擇範例

各負載轉矩模式的數值

負載轉矩 T_n (N⋅m)

時間 tn (sec)

輸出轉速 nn (r/min)

<一般運轉模式>

起動時 T₁=70N·m t₁=0.3sec n₁=60r/min

正常運轉時 T₂=18N·m t₂=3sec n₂=120r/min

停止 (減速) 時 T3=35N·m t3=0.4sec n3=60r/min

休止時 T₄=0N·m t₄=5sec n₄=0r/min

<最高轉速>

輸出最高轉速 no *max* = 120r/min

輸入最高轉速 ni max = 5,000r/min : 因馬達等而受限

<衝擊轉矩>

施加衝擊轉矩時 Ts=120N·m

<需求壽命>

L₁₀ = 30,000 (小時)

依據負載轉矩模式,計算施加在輸出端上的平均負載轉矩:T av(N·m)

$$T_{av} = \sqrt{\frac{\left|60 \text{r/min}\right| \cdot 0.3 \text{sec} \cdot \left|70 \text{N} \cdot \text{m}\right|^{103} + \left|120 \text{r/min}\right| \cdot 3 \text{sec} \cdot \left|18 \text{N} \cdot \text{m}\right|^{103} + \left|60 \text{r/min}\right| \cdot 0.4 \text{sec} \cdot \left|35 \text{N} \cdot \text{m}\right|^{103}}{\left|60 \text{r/min}\right| \cdot 0.3 \text{sec} + \left|120 \text{r/min}\right| \cdot 3 \text{sec} + \left|60 \text{r/min}\right| \cdot 0.4 \text{sec}}}$$

依據負載轉矩模式計算平均輸出轉速:no av (r/min)

no av = ||60r/min| · 0.3sec +|120r/min| · 3sec +|60r/min| · 0.4sec +|0r/min| · 5sec

0.3sec + 3sec + 0.4sec + 5sec

依據輸出最高轉速(no *max*) 及輸入最高轉速(ni *max*) 決定減速比(R) 。

5,000r/min 120r/min =41.7≧11

依據輸出最高轉速(no max)及減速比(R)計算輸入最高轉速(ni max):ni max = 120r/min·11=1,320r/min

依據平均輸出轉速(no av)及減速比(R)計算平均輸入轉速(ni av):

ni av =46.2r/min·11=508r/min≦型號25的容許平均輸入轉速 3,000 (r/min)

確認輸入最高轉速是否在額定表的數值範圍內。nimax=1,320r/min≤5,600r/min(型號25的最高輸入轉速)

確認 $T_1 \times T_3$ 的數值是否在額定表的起動、停止時的峰值轉矩($N \cdot m$)數值範圍內。

T₁=70N·m≦100N·m(型號25的起動、停止時峰值轉矩)

T₃=35N·m≦100N·m(型號25的起動、停止時峰值轉矩)

確認Ts的數值是否在額定表的瞬間最大轉矩(N·m)數值範圍內。Ts=120N·m≤170N·m(型號25的瞬間最大轉矩)

計算壽命時間,確認是否符合需求。

 $L_{10} = 20,000 \cdot \left(\frac{21 \text{N·m}}{30.2 \text{N·m}} \right)^{10/3} \cdot \left(\frac{3,000 \text{ r/min}}{508 \text{ r/min}} \right) = 35,182 \text{ (小時)} \geq 30,000 \text{ (小時)}$

依據上述結果,決定為HPF-25A-11

重新檢討運轉條件或型號、速

比

確認

注

意 (P

080 下

的內

HPF 系列 中空軸模組型是唯一能夠在輸入輸出同軸型式中使用中空軸的低減速 1 / 11 高精度減速模組。

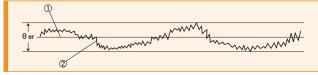
表 082 -1

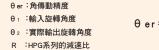
I	型號	減速比	額定轉	額定轉矩(註)1		平均負載轉矩的 容許最大值 ^{(註)2}		起動、停止時的 容許峰值轉矩 ^{(註) 3}		瞬間容許 最大轉矩 ^{(註) 4}		容許最高輸入 轉速 (註) 6	慣性力矩 凸緣輸出	質量 凸緣輸出
ı			N·m	kgf∙m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf∙m	r/min	r/min	×10 ⁻⁴ kg·m ²	kg
I	25	11	21	2.1	48	4.9	100	10.2	170	17.3	3000	5600	1.63	3.8
	32	11	44	4.5	100	10.2	220	22.4	450	45.9	3000	4800	3.84	7.2

- (註)1. 本數值是以輸入轉速為一般伺服馬達的額定轉速 3000r/min 時,壽命時間 L₁□=20000 小時為依據所設定之額定輸出轉矩。
 - 2. 此為依據負載轉矩模式(080 頁)所計算出的平均負載轉矩的容許最大值,並以「輸入轉速為 2000r/min 時,壽命可達 2000 小時以上」為設定時的參考標準。
 - 3. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值。
 - 4. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。

若超過此轉矩可能會使減速機受損。

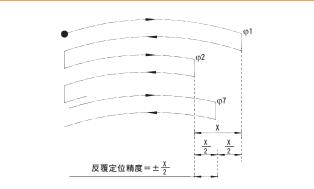
- 5. 之所以設定容許平均輸入轉速,是為了限制因減速機發熱所造成的溫度上升現象。 溫度上升值會因客戶自行準備的滅速機安裝零件(機殼)的散熱條件及環境溫度的影響而不同,請把減速機表面溫度 70℃當作上限參考標準。 尤其是型號 32,請確實注意發熱所造成的溫度上升數值,並在必要時進行冷卻,或設定會降低平均輸入轉速的運轉模式。
- 6. 此為非連續運轉條件下的容許最高輸入轉速。


表 082 -2


型號	減速比	角傳動制	青度 ^{(註) 1}	反覆定位精度 (EL) 2	起動轉	矩 ^{(註)3}	加速起動	轉矩 ^{(註)4}	無負載運轉轉矩(註)5	
		arc-min	×10⁴rad	arc-sec	cN·m	kgf·cm	N·m	kgf·m	cN·m	kgf·cm
25	11	4	11.6	±15	59	6.0	6.5	0.66	78	8.0
32	11	4	11.6	±15	75	7.7	8.3	0.85	105	10.7

(註)1. 角傳動精度係指任意旋轉角進行輸入時,①理論上旋轉的輸出旋轉角度和②實際上旋轉的輸出旋轉角度之間的差值。

另外,表內數值代表最大值。


圖 082 -1

 $\theta er = \theta_2 -$

- 止位置並求出最大差值。測量數值以角度表示,並以最大差值的 1 / 2 加上 \pm 符號表 圖 082 -2
- 2. 反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停 示該數值。另外,表內數值代表最大值。

- 3. 起動轉矩係指由輸入端施加轉矩時,輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表最大值。
 - 表 082 -3

負載	無負載
HPF 減速機表面溫度	25°C

- 4. 加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。 另外,表內數值代表最大值。
 - 表 082 -4

負載	無負載
HPF 減速機表面溫度	25℃

- 5. 無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表 內數值代表平均值。
 - 表 082 -5

輸入轉速	3000r/min
負載	無負載
HPF 減速機表面溫度	25°C

模組型

轉矩一扭轉特性 ==

■中空軸模組型標準品 表 083 -1												
		北	隙	T _R ×0.15 時的	的單側扭轉量	扭轉	剛性					
型號	減速比	Ħ	以			A/B						
		arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	×100N·m/rad					
25	11	3.0	8.7	2.0	5.8	1.7	570					
32	11	3.0	8.7	1.7	4.9	3.5	1173					

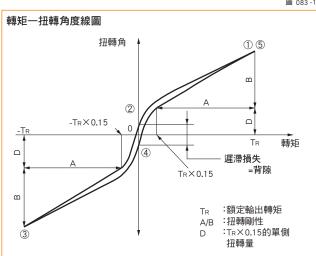
■扭轉剛性(彎曲曲線)

若固定住減速機的輸入及護殼,並對輸出部位施加轉矩,輸出部 位便會隨轉矩產生扭轉現象。若讓轉矩值依據①正轉額定輸出轉 矩→②零→③反轉額定輸出轉矩→④零→⑤正轉額定輸出轉矩的 順序逐漸變化,便可描繪出如圖 083-1「轉矩-扭轉角度線圖」的 ①→②→③→④→⑤ (回到①) 循環。

從「0.15×額定輸出轉矩」到「額定輸出轉矩」的範圍內的斜率較低, HPF 系列的扭轉剛性值便是此斜率的平均值。

從「零轉矩」到「0.15×額定輸出轉矩」的範圍內的斜率較高,是 因為咬合部位的輕微接觸不均,以及輕微負載時行星齒輪載重等間 距不均衡等所造成的現象。

■總扭轉量(彎曲)的計算方法

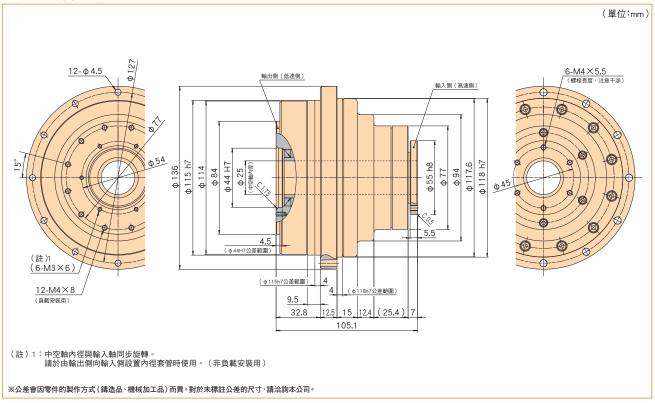

以下為減速機從無負載狀態進入施加負載狀態時的單側扭轉量計算 方法(平均值)。

公式 083 -1

●公式 $\theta = D + \frac{T - T_L}{T}$ 公式的記號 θ 總扭轉量 D 額定輸出轉矩×0.15轉矩的單側扭轉量 參閱圖083-1、表083-1 Т ΤL 額定輸出轉矩×0.15轉矩(=TR×0.15) 參閱圖083-1 A/B 扭轉剛性 參閱圖083-1、表083-1

■背隙(遲滯損失)

圖 083-1「轉矩 - 扭轉角度線圖」的零轉矩範圍②④稱為遲滯損失。 HPF 系列的背隙被定義為從「正轉額定輸出轉矩」到「反轉額定輸 出轉矩」時的遲滯損失。HPF系列的背隙在出廠時預設為3分以下。



外觀尺寸圖:

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。關於中空軸模組型的輸入端軸承的規格,請參閱 118 頁。 本產品的 CAD 數據可由本公司官網下載。URL: https://www.hds.co.jp/

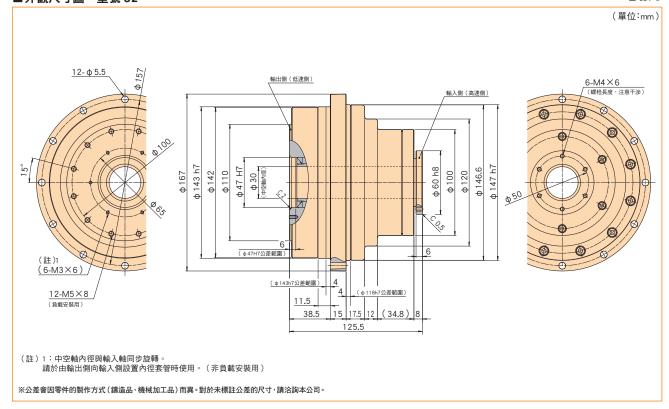

■外觀尺寸圖-型號 25

圖 084 -1

■外觀尺寸圖-型號 32

圖 084 -2

HarmonicPlanetary® HPG輸入軸模組型

尺寸

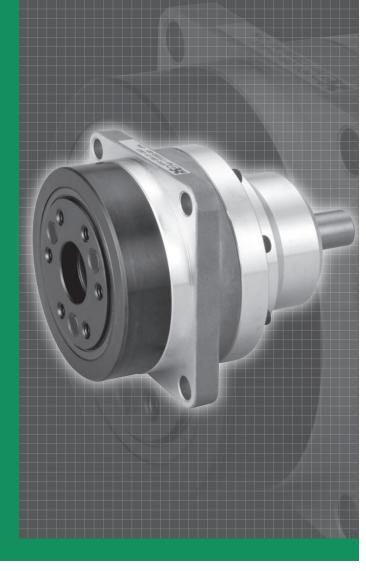
型號:11、14、20、32、50、65

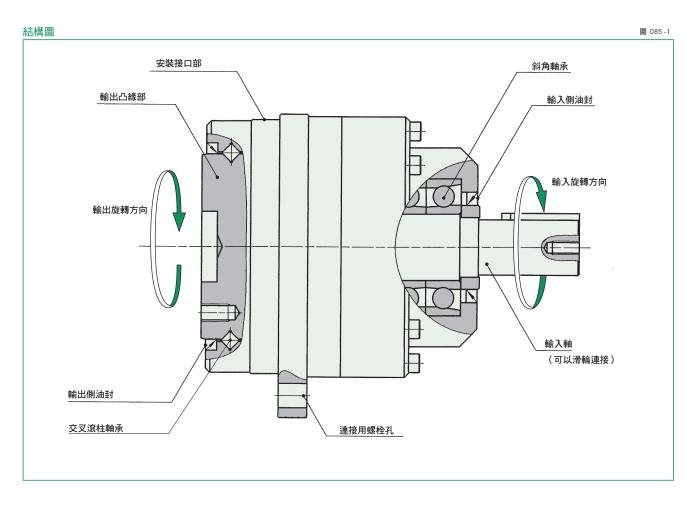
峰值轉矩

3.9N·m~2200N·m

減速比

1段減速=3~9 2段減速=11~50


小背隙


標準:3分以下 特殊:1分以下

高效率

90%以上

(型號:11、14為85%)

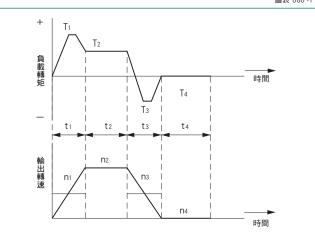
選擇型號

為充分發揮 HarmonicPlanetary®HPG 系列擁有的優異性能,請在確認使用條件及參考選擇流程圖後再選擇型號。

一般來說,伺服系統幾乎不會出現連續固定負載的狀態。負載轉矩 會隨輸入轉速的變動而產生變化,在起動或停止時會施加較大的轉 矩。

此外,還可能會施加非預期的衝擊轉矩。

關於上述的使用條件,請參閱下圖確認負載轉矩模式後,依據右側 的流程圖選擇型號。


選擇時亦請確認交叉滾柱軸承及輸入端軸承(僅輸入軸型)的使用 壽命及靜態安全係數。

(請參閱 114 頁~ 119 頁輸出軸承及輸入端軸承的規格)

■確認負載轉矩模式

首先必須掌握負載轉矩模式。 請檢查下圖所示的各項規格。

圖表 086 -1

計算各運轉模式時的條件

負載轉矩 $T_1 \sim T_n (N \cdot m)$ 時間 t1~tn (sec) 輸出轉速 $n_1 \sim n_n$ (r/min)

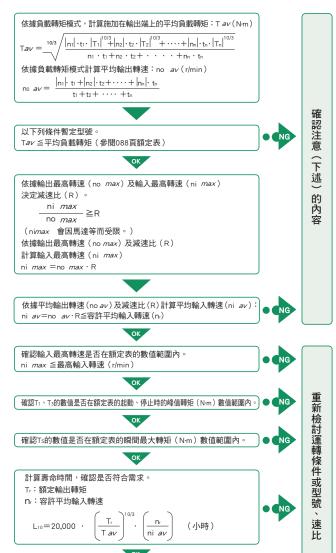
<一般運轉模式>

T1 \ t1 \ n1 正常運轉時 T2 \ t2 \ n2 停止(減速)時 T3 \ t3 \ n3 休止時 T4 \ t4 \ n4

<最高轉速>

輸出最高轉速 no *max* ≧n1~nn 輸入最高轉速 ni max ≥n1×R~nn×R R:減速比 (因馬達等而受限)

<衝擊轉矩>


施加衝擊轉矩時 Ts

<需求壽命> $L_{10} = L (H)$

■型號選擇流程圖

選擇型號時,請依據下列流程圖進行。

只要超過任一額定表數值,便請重新檢討使用高一級的型號,或是降 低負載轉矩等條件。

下述狀況請確認減速機溫度上昇、加減速時的振動等影響。

需考量安全時,請考慮「提高減速機尺寸」、「重新審視運轉條件」 等。接近連續運轉時需特別注意。

決定型號

平均負載轉矩(Tav)>平均負載轉矩的容許最大值(088頁) 計算輸入平均轉速 (ni av) >容許平均輸入轉速 (n_r)

模組型

確認注意(P86

下 的內容

重新檢討運轉條件或型號、速比

■型號選擇範例

各負載轉矩模式的數值

T_n (N·m) 自載轉矩

時間 tn (sec)

輸出轉速 nn (r/min)

<一般運轉模式>

 $T_1 = 70N \cdot m \quad t_1 = 0.3 sec \quad n_1 = 60 r/min$

正常運轉時 $T_2 = 18N \cdot m \quad t_2 = 3sec \quad n_2 = 120r/min$

停止(減速)時 T₃=35N·m t₃=0.4sec n₃=60r/min

 $T_4 = 0N \cdot m$ $t_4 = 5 \text{sec}$ $n_4 = 0 \text{r/min}$

<最高轉速>

輸出最高轉速 no *max* = 120r/min

輸入最高轉速 ni max = 5,000r/min : 因馬達等而受限

<需求壽命>

施加衝擊轉矩時 Ts=180N·m

L₁₀ = 30,000 (小時)

依據負載轉矩模式,計算施加在輸出端上的平均負載轉矩:Tav(N·m)

 $10/3 \int \left| 60 \text{r/min} \right| \cdot 0.3 \text{sec} \cdot \left| 70 \text{N·m} \right|^{10/3} + \left| 120 \text{r/min} \right| \cdot 3 \text{sec} \cdot \left| 18 \text{N·m} \right|^{10/3} + \left| 60 \text{r/min} \right| \cdot 0.4 \text{sec} \cdot \left| 35 \text{N·m} \right|^{10/3}$ |60r/min| · 0.3sec+|120r/min| · 3sec+|60r/min| · 0.4sec

依據負載轉矩模式計算平均輸出轉速:no av(r/min)

no $av = \frac{|60r/\min| \cdot 0.3\sec + |120r/\min| \cdot 3\sec + |60r/\min| \cdot 0.4\sec + |0r/\min| \cdot 5\sec}{|60r/\min| \cdot 0.4\sec + |0r/\min| \cdot 12\sec}$

0.3sec + 3sec + 0.4sec + 5sec

依據下列條件暫定型號。Tav=30.2N·m≦60N·m(型號20、減速比33的平均負載轉矩(參閱088頁額定表)**HPG-20A-33**)

依據輸出最高轉速(no *max*)及輸入最高轉速(ni *max*)決定減速比(R)。

5,000r/min =41.7≧33

依據輸出最高轉速 (no *max*) 及減速比 (R) 計算輸入最高轉速 (ni *max*):ni *max* =120r/min · 33=3,960r/min

依據平均輸出轉速(no av)及減速比(R)計算平均輸入轉速(ni av):

ni av =46.2r/min·33=1,525r/min≦型號20的容許平均輸入轉速 3,000 (r/min)

確認輸入最高轉速是否在額定表的數值範圍內。ni max = 3,960r/min≤6,000r/min(型號20的最高輸入轉速)

確認 $T_1 \times T_3$ 的數值是否在額定表的起動、停止時的峰值轉矩($N \cdot m$)數值範圍內。

T₁=70N·m≦100N·m(型號20的起動、停止時峰值轉矩)

T₃=35N·m≦100N·m(型號20的起動、停止時峰值轉矩)

確認Ts的數值是否在額定表的瞬間最大轉矩(N·m)數值範圍內。Ts=180N·m≦217N·m(型號20的瞬間最大轉矩)

計算壽命時間,確認是否符合需求。

29N·m 30.2N·m · (3,000 r/min 1,525 r/min) =34,543 (小時) ≧30,000 (小時) L₁₀=20.000 ·

依據上述結果,決定為HPG-20A-33

額定表:

HPG 系列 輸入軸模組型有 6 種型號,種類豐富。請先參考額定表再選擇型號。

表 088 -1

TII D.E.	沙油山	額定轉	矩 ^{(註)1}		战轉矩的		- - - - - - - - - - - - - - - - - - -		容許	容許平均輸入	容許最高輸入	慣性力矩(輸		-	量
型號	減速比				大值 (註) 2		轉矩(註)3		矩(註)4	轉速(註)5	轉速(註)6	軸輸出	凸線輸出	軸輸出	凸線輸出
	_	N·m	kgf∙m	N·m	kgf⋅m	N·m	kgf∙m	N·m	kgf⋅m	r/min	r/min	×10 ⁻ 4kg·m²	X10 ^{- 4} kg·m²	kg	kg
	5	2.5	0.26	5.0	0.51	7.8	0.80					0.0087	0.0072	0.24	0.20
	9	2.5	0.26	3.9	0.40	3.9	0.40					0.0063	0.0058		
11	21	3.4	0.35					20	2.0	3000	10000	0.0064	0.0063		
	37	3.4	0.35	6.0	0.61	9.8	1.0					0.0052	0.0052	0.30	0.26
	45	3.4	0.35		0.05	4.5	4.5	0.7				0.0050	0.0050		
	3	2.9	0.30	6.4	0.65	15	1.5	37	3.8		5000	0.12	0.11	0.80	0.70
	5	5.9	0.60	13	1.3							0.073	0.067		
	11	7.8	0.80									0.059	0.058		
14	15	9.0	0.90			23	2.3	56	5.7	3000	6000	0.057	0.056		
	21	8.8	0.90	15	1.5							0.049	0.049	0.90	0.80
	33 45	10 10	1.0									0.043	0.043		
	3	8.8	0.90	19	2.0	64	6.5	124	13		4000	0.80	0.69		
	5	16	1.6	35	3.6	<u> </u>	0.0			i	1000	0.44	0.40	2.4	2.0
	11	20	2.0	45	4.6	i					6000	0.32	0.31		2.1
20	15	24	2.4	53	5.4	i				3000		0.30	0.30		
	21	25	2.5	55	5.6	100	10	217	22			0.23	0.23		
	33	29	3.0			i						0.19	0.19		
	45	29	3.0	60	6.1							0.18	0.18		
	3	31	3.2	71	7.2	225	23	507	52		3600	4.2	3.4		
	5	66	6.7	150	15		2.0		02	i		2.4	2.2	6.3	4.9
	11	88	9.0	100		i					6000	2.0	1.9	6.9	5.3
32	15	92	9.4	170	17					3000		1.8	1.8		
02	21	98	10			300	31	650	66			1.5	1.5		
	33	108	11			i									
	45	108	11	200	20							1.3	1.3		
	3	97	9.9	195	20	657	67	1200	122		3000	21	18		
	5	170	17	340	35					i		11	9.2	17	14
	11	200	20	400	41	İ						7.4	7.1		
50	15	230	24	450	46	1				2000		6.8	6.7	19	16
	21	260	27			850	87	1850	189		4500	5.5	5.4		
	33	270	28	500	51	İ		İ			İ	4.4	4.3		
	45	270	28									4.3	4.3		
	4	500	51	900	92					ĺ	2500	58	44		
	5	530	54	1000	102	İ						43	34	43	33
	12	600	61	1100	112	0000	005					33	32		
(**) =	15	730	75	1300	133	2200	225					32	31	- - 58 -	
65 (註) 7	20	800	81	4500	150	1		4500	460	2000	3000	22	21		40
	25	850	87	1500	153						3000	21	21		48
	40	640	66	1300	133	1900	194					16	16		
	50	750	77	1500	153	2200	225					16	16		
(註)1.本	動信見以驗了	、 軸速	2. 信服 医達尔	物 定軸速 3	000r/min B	,幸会時間	1.0=20000	小陆为优排	よう かいかん かいかい かいかい かいかい かいかい かいかい かいかい かいか	定輸出輔拓					,

- (註)1. 本數值是以輸入轉速為一般伺服馬達的額定轉速 3000r/min 時,壽命時間 L₁₀₌20000 小時為依據所設定之額定輸出轉矩。 但型號 50、65 之額定輸出轉矩是以組合伺服馬達的額定轉速為 2000r/min,壽命時間 L₁₀₌20000 小時為依據設定的。
 - 2. 此為依據負載轉矩模式(086頁)所計算出的平均負載轉矩的容許最大值,並以「輸入轉速為 2000/min 時,壽命可達 2000 小時以上」為設定時的參考標準。
 - 3. 此為在設備的運轉週期中,在起動、停止時所施加轉矩的容許最大值。
 - 4. 此為緊急停止時的衝擊轉矩以及來自外部的衝擊轉矩之容許最大值。

- 若超過此數值可能會使減速機受損。 5. 此為運轉中的平均輸入轉速之容許最大值。當設備連續運轉的間隔時間短時,請特別注意勿超過此數值。 6. 此為非連續運轉條件下的容許最高輸入轉速。
- 7. 型號 65 的輸入軸型為接單生產商品。

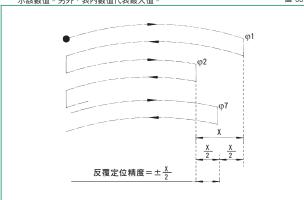
表 089 -1

Til D.E.	\#\\\ # \	角傳動精度(註)1		反覆定位精度 (註) 2	起動轉	矩 ^{(註)3}	加速起動	轉矩 ^{(註)4}	無負載運轉轉矩(註)5		
型號	減速比	arc-min	×10 ⁻⁴ rad	arc-sec	cN⋅m	kgf·cm	N·m	kgf∙m	cN·m	kgf-cm	
	5			î	7.9	0.81	0.40	0.040	8.9	0.91	
	9	ĺ			7.6	0.77	0.68	0.069	6.3	0.65	
11	21	5	14.5	±30	6.8	0.69	1.4	0.14	5.2	0.53	
	37	1			5.5	0.57	2.0	0.21	4.8	0.49	
İ	45				5.3	0.55	2.4	0.25	4.7	0.48	
	3				22	2.2	0.66	0.067	26	2.7	
	5	ĺ			17	1.7	0.83	0.085	15	1.5	
	11	1			16		1.8	0.18	10	1.0	
14	15	4	11.6	±20	15	1.6	2.3	0.23	0.0	0.04	
	21	1			13	1.4	2.9	0.30	8.2	0.84	
	33				44	1.2	3.8	0.39	7.0	0.74	
	45	1			11	1.1	4.8	0.49	7.3	0.74	
	3				46	4.7	1.4	0.14	61	6.2	
	5	ĺ		±15	34	3.4	1.7	0.17	39	4.0	
	11	[11.6		30	3.1	3.3	0.34	26	2.6	
20	15	4			27	2.8	4.0	0.41	22	2.2	
	21				24	2.5	5.1	0.52	20	2.0	
	33				21	2.2	7.1	0.72	17	1.7	
	45				20	2.0	8.9	0.91	16	1.6	
	3	4	11.6		92	9.4	2.8	0.28	146	15	
	5				69	7.1	3.5	0.35	100	10	
	11				63	6.4	6.9	0.70	66	6.8	
32	15			±15	61	6.2	9.1	0.93	57	5.9	
	21				58	6.0	12	1.3	52	5.3	
	33				52	5.3	17	1.7	42	4.3	
	45				46	4.8	21	2.1	41	4.2	
	3				197	20	5.9	0.60	300	31	
	5				140	14	7.0	0.71	180	18	
	11				110	11	12	1.2	110	11	
50	15	3	8.7	±15	100	10	15	1.5	97	9.9	
	21				98	10	21	2.1	90	9.2	
	33	ļ			88	8.9	29	3.0	74	7.6	
	45				83	8.4	37	3.8	70	7.1	
	4				406	41	16	1.7	576	59	
	5				358	36	18	1.8	517	53	
	12				243	25	29	3.0	341	35	
65	15	3	8.7	±15	228	23	34	3.5	311	32	
33	20	,	0.1	-13	213	22	43	4.3	282	29	
	25				202	21	51	5.2	262	27	
	40				193	20	77	7.9	230	24	
	50				188	19	94	9.6	219	22	

(註)1. 角傳動精度係指任意旋轉角進行輸入時,①理論上旋轉的輸出旋轉角度和②實際上旋轉的輸出旋轉角度之間的差值。 另外,表內數值代表最大值。

性能表 =

θ er:角傳動精度


θ₁:輸入旋轉角度 θ₂:實際輸出旋轉角度

R :HPG系列的減速比

圖 089 -1

$$\theta \text{ er} = \theta_2 - \frac{\theta_1}{R}$$

反覆定位精度係指從相同方向上針對任意位置反覆執行7次定位後,測量輸出軸的停止位置並求出最大差值。測量數值以角度表示,並以最大差值的1/2加上 生符號表示該數值。另外,表內數值代表最大值。

3. 起動轉矩係指由輸入端施加轉矩時·輸出端開始旋轉瞬間的「開始起動轉矩」。另外, 表內數值代表最大值。 表 089-2

負載	無負載
HPG 減速機表面溫度	25℃

加速起動轉矩係指由輸出端施加轉矩時,輸入端開始旋轉瞬間的「開始起動轉矩」。
 另外,表內數值代表最大值。

表 089 -3

負載	無負載				
HPG 減速機表面溫度	25℃				

5. 無負載運轉轉矩係指在無負載狀態下,為驅動減速機所必要的輸入端轉矩。另外,表內數值代表平均值。

表 089 -4

輸入轉速	3000r/min
負載	無負載
HPG 減速機表面溫度	25℃

轉矩一扭轉特件■

■輪↓軸檔組刑煙淮具

■輸入軸模組型 BL1 規格(背隙 1 分以下)

表 090 -2

■輸入軸模組型標準品 表 09 表 1 → 表 1 → 表 1 → 表 2 → A → A → A → A → A → A → A → A → A →										
型號	減速比	背	隙	IRXU.15 時日		イエ半寺阿川主 A/B				
空弧	/以述LL	arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N-m/rad			
	5									
	9	ĺ		2.5	7.3	0.060	20			
11	21	3.0	8.7							
	37	1		3.0	8.7	0.065	22			
	45	11								
	3			2.2	6.4	0.13	44			
	5			2.2	0.4	0.13	44			
	11									
14	15	3.0	8.7							
	21			2.7	7.9	0.14	47			
	33									
	45									
	3	l		1.5	4.4	0.50	170			
	5	1								
20	11 15	3.0	8.7			0.55				
20	21	3.0		2.0	5.8		180			
	33	ł		2.0	5.0	0.55	100			
	45	ł								
	3					1.7	570			
	5	i		1.3	3.8	2.0	670			
	11		8.7							
32	15	3.0		1.7	4.9	2.2	740			
	21	1								
	33	1								
	45									
	3				3.8	8.4	2800			
	5	1		1.3	5.0	11	3700			
	11	ļ								
50	15	3.0	8.7							
	21	1		1.7	4.9	14	4700			
	33	{								
	45									
	4			1.3	3.8	30	10000			
	5 12									
	15									
65	20	3.0	8.7							
	25			1.7	4.9	37	12500			
	40	1								
	50									

		alt.	.Dri	T _R X0.15 時的	的單側扭轉量	扭轉剛性		
型號	減速比	育				A	/B	
		arc-min	×10⁴rad	arc-min	×10⁴rad	kgf·m/arc-min	X100N·m/rad	
	3			1.1	3.2	0.13	44	
	5			1.1	3.2	0.13	44	
14	9	1.0	2.9					
14	21	1.0	2.5	1.7	4.9	0.14	47	
	33			1.7	4.5	0.14	71	
	45							
	3			0.6	1.7	0.50	170	
	5			0.0		0.00		
	11							
20	15	1.0	2.9		3.2			
	21			1.1		0.55	180	
	33							
	45					4.7		
	3			0.5	1.5	1.7	570	
32	5		2.9			2.0	670	
	11	4.0						
	15 21	1.0		1.0	2.9	2.2	740	
	33				2.5	2.2	140	
	45							
	3					8.4	2800	
	5			0.5	1.5	11	3700	
	11						3100	
50	15	1.0	2.9		2.9			
	21			1.0		14	4700	
	33							
	45							
	4			0.5	4.5		10000	
	5			0.5	1.5	30	10000	
	12							
65	15	1.0	2.9					
0.5	20	1.0	2.5	1.0	2.9	37	12500	
	25			1.0	2.5	37 1	12300	
	40							
	50							

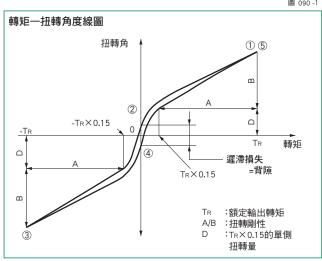
■扭轉剛性(彎曲曲線)

若固定住減速機的輸入及護殼,並對輸出部位施加轉矩,輸出部 位便會隨轉矩產生扭轉現象。若讓轉矩值依據①正轉額定輸出轉 矩→②零→③反轉額定輸出轉矩→④零→⑤正轉額定輸出轉矩的 順序逐漸變化,便可描繪出如圖 090-1「轉矩-扭轉角度線圖」的 ①→②→③→④→⑤(回到①)循環。

從「0.15×額定輸出轉矩」到「額定輸出轉矩」的範圍內的斜率較低, HPG 系列的扭轉剛性值便是此斜率的平均值。

從「零轉矩」到「0.15×額定輸出轉矩」的範圍內的斜率較高,是 因為咬合部位的輕微接觸不均,以及輕微負載時行星齒輪載重等間 距不均衡等所造成的現象。

■總扭轉量(彎曲)的計算方法

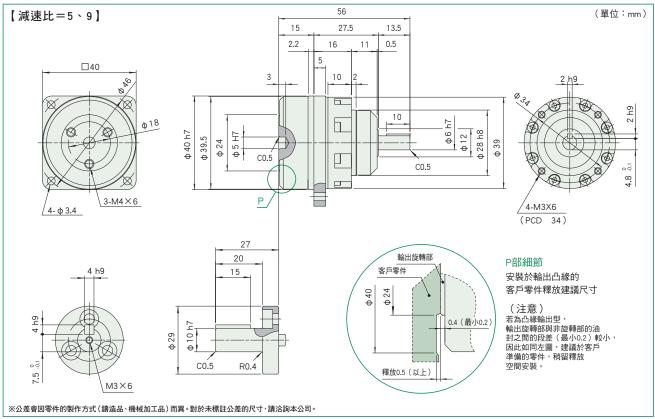

以下為減速機從無負載狀態進入施加負載狀態時的單側扭轉量計算 方法(平均值)。

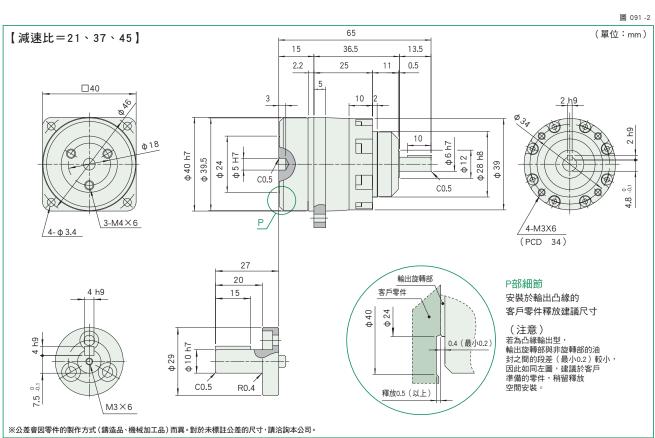
公式 090-1

●公式 $\theta = D + T - TL$ 公式的記號 θ D 額定輸出轉矩×0.15轉矩的單側扭轉量 參閱圖090-1、表090-1、表090-2 Т TL 額定輸出轉矩×0.15轉矩(=TR×0.15) 參閱圖090-1 A/B 扭轉剛性 參閱圖090-1、表090-1、表090-2

■背隙(遲滯損失)

圖 090-1「轉矩-扭轉角度線圖」的零轉矩範圍②④稱為遲滯損失。 HPG 系列的背隙被定義為從「正轉額定輸出轉矩」到「反轉額定輸 出轉矩」時的遲滯損失。HPG系列的背隙在出廠時預設為3分以下 (特殊品為1分以下)。

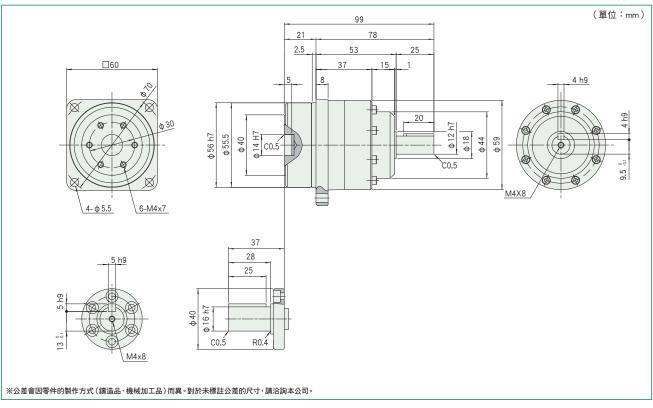



外觀尺寸圖 =

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。關於輸入軸模組型的輸入端軸承的規格,請參閱 118 頁。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

■外觀尺寸圖 - 型號 11

圖 091 -1



外觀尺寸圖:

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。 關於輸入軸模組型的輸入端軸承的規格,請參閱 118 頁。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

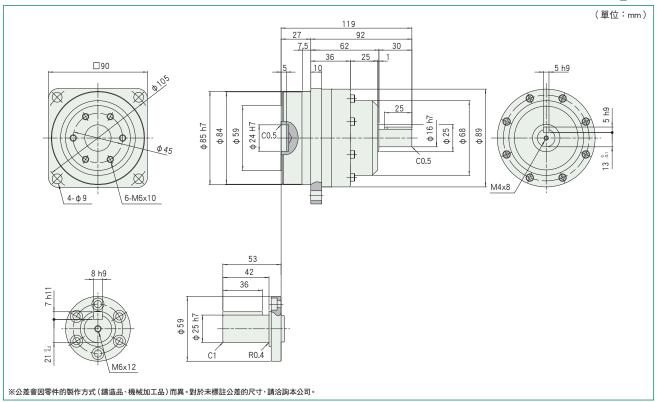
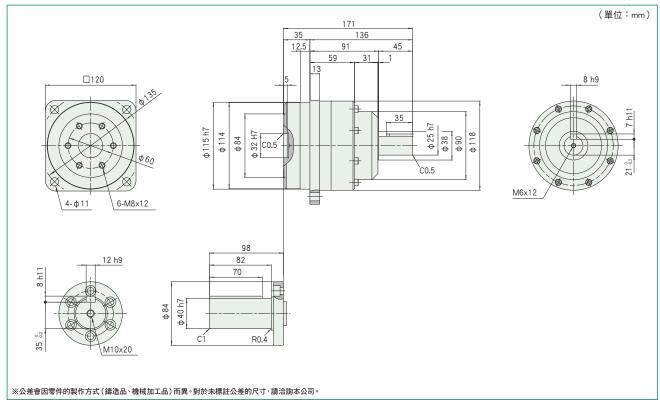

■外觀尺寸圖 - 型號 14

圖 092 -1

■外觀尺寸圖 - 型號 20

圖 092 -2



外觀尺寸圖 •

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。關於輸入軸模組型的輸入端軸承的規格,請參閱 118 頁。 本產品的 CAD 數據可由本公司官網下載。URL:https://www.hds.co.jp/

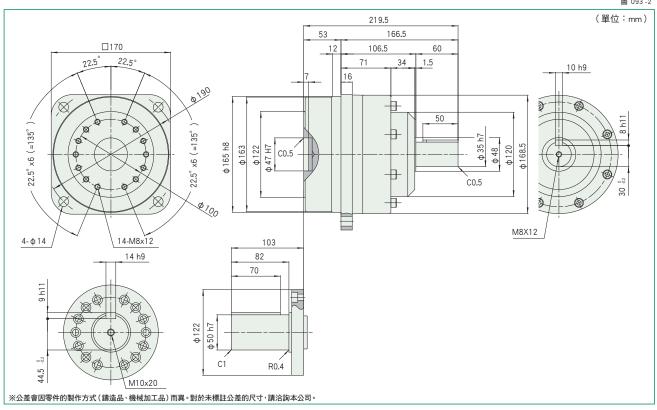

■外觀尺寸圖 - 型號 32

圖 093 -1

■外觀尺寸圖 - 型號 50

圖 093 -2

外觀尺寸圖:

本尺寸圖記載主要尺寸。關於尺寸及形狀的詳細內容,請參閱本公司提供的交貨規格圖。關於輸入軸模組型的輸入端軸承的規格,請參閱 118 頁。 本產品的 CAD 數據可由本公司官網下載。URL: https://www.hds.co.jp/

■外觀尺寸圖 - 型號 65

圖 094 -1

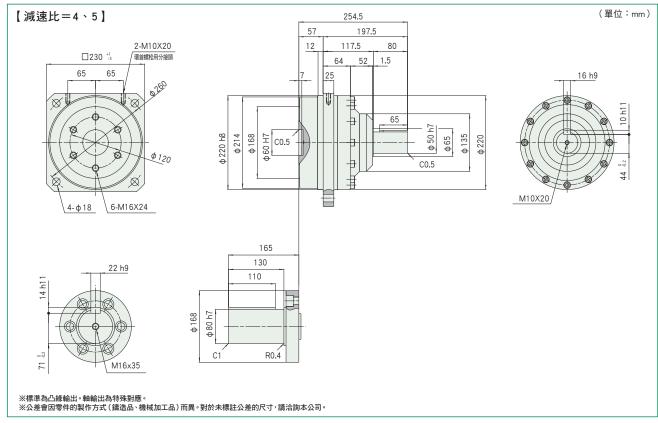
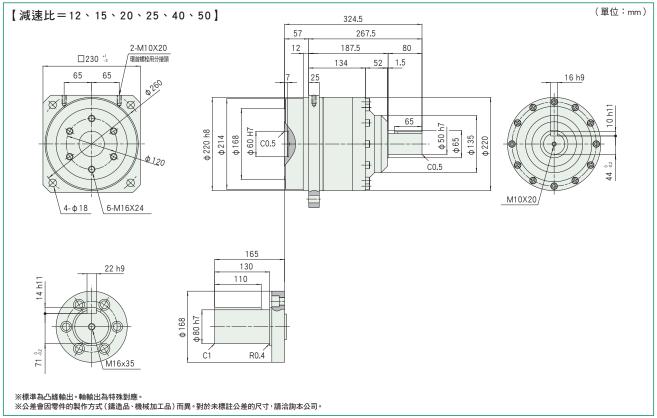
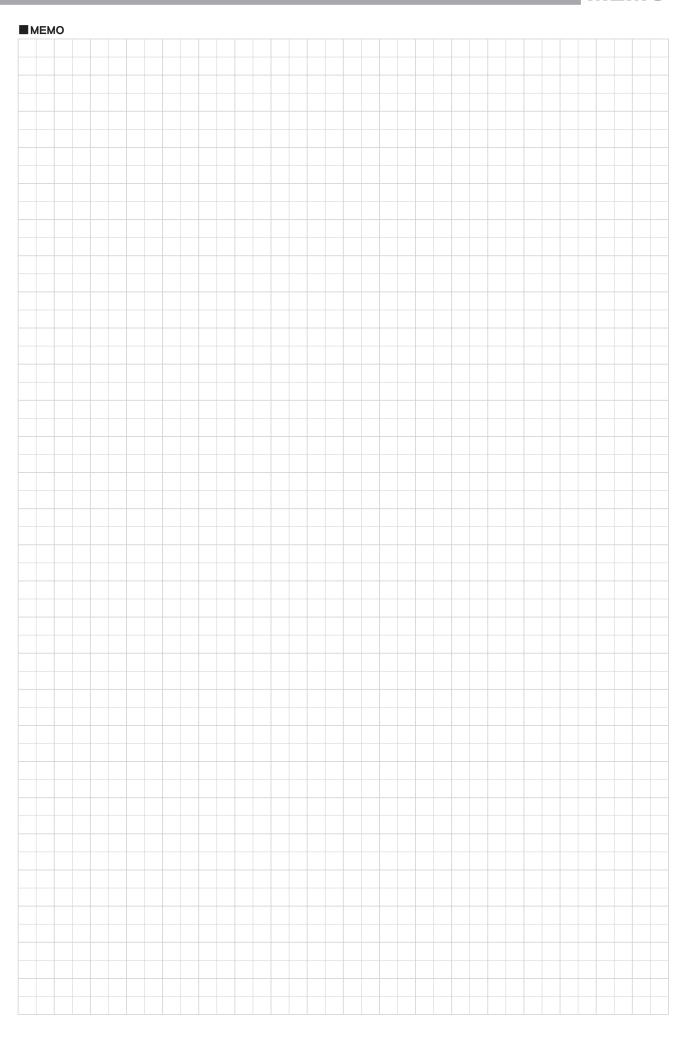




圖 094 -2

MEMO

Hammonic Paristany Hammonic Drive

技術資料

輸出車	由軸浮	的規	見格及	確i	忍步	驟		••••		••••	• • • • • •	••••	••••	1	14
輸入車	由型輔	う入作	則軸浮	的扶	見格	及確	認	步顋	Tie.					1	8
使	用	說	眀												
安裝到	Ē馬這	的步	け驟											12	20
減速模	幾的多	镂、	輸出	部的	負載	或安	裝	••••	•••					12	21
機械料	青度													12	23
:88:55														1,	

額定值及性能依各產品系列而不同。 請務必確認使用條件後,參閱適用各產品的項目。

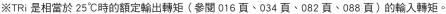
效率特性▮

減速機效率一般來說會因減速比、輸入轉速、負載轉矩、溫度、潤滑條件而異。 下一頁為下列測量條件下的各系列產品效率。圖表中的數值為平均值。

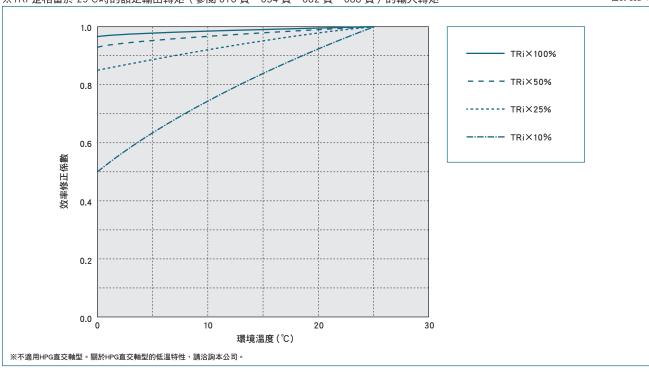
■測量條件

表 098 -1

輸入轉速	HPGP / HPG / HPF:3000r/min CSG-GH / CSF-GH:記載在各效率圖表中					
環境溫度	25°C					
潤滑劑	使用各機型的標準潤滑劑。(詳細內容請參閱 124 頁、125 頁)					


■低溫時效率修正值

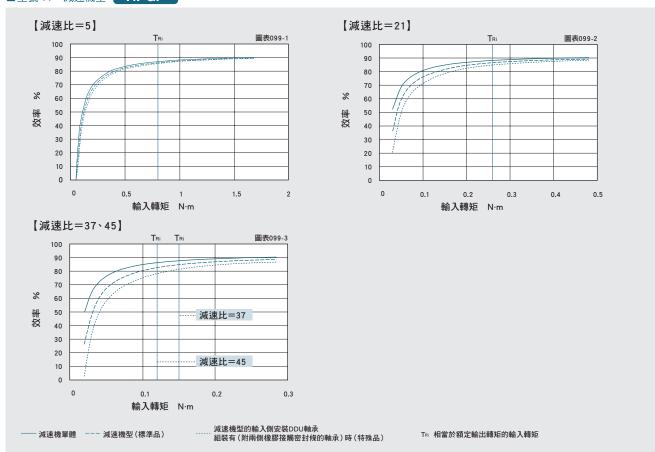
要計算環境溫度 25℃以下時的效率值時,請將 25℃時的效率值乘上低溫時效率修正值。 請使用環境溫度及相當於額定輸入轉矩(TRi ※)的數值,並比對下表後求出低溫時效率修正值。


HPGP

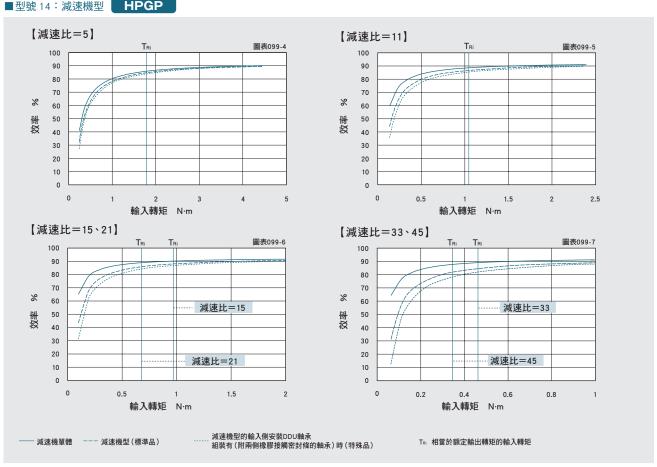
HPG

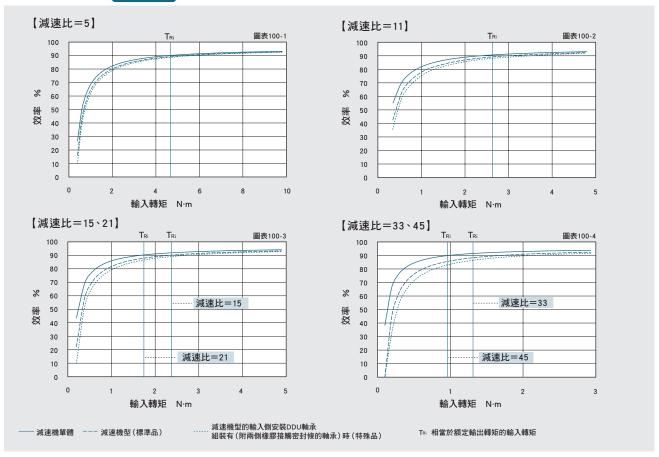
HPF

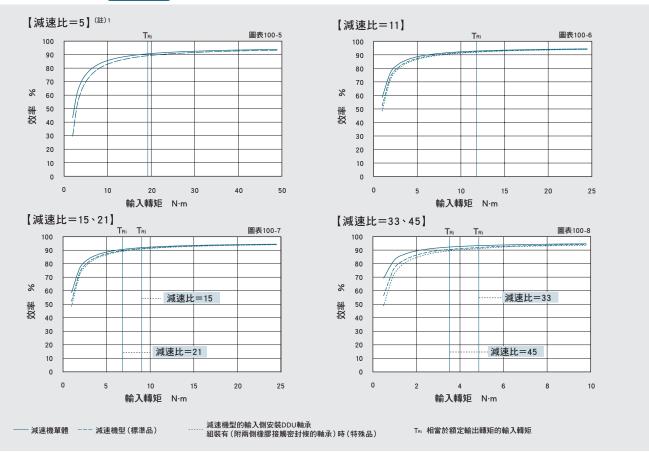
圖表 098 -1

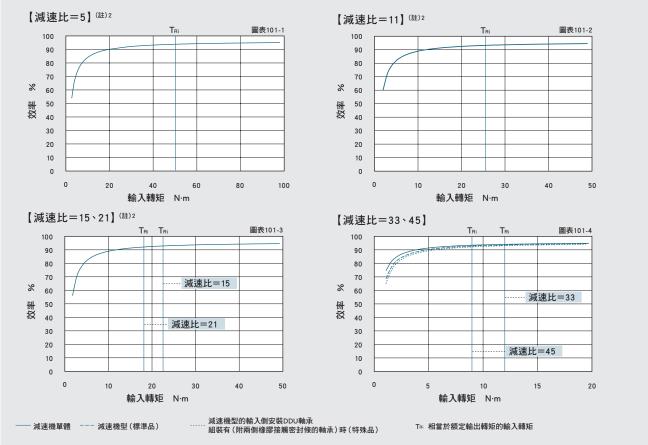

CSG-GH CSF-GH

※TRi 是相當於 25℃時的額定輸出轉矩(參閱 050 頁、058 頁)的輸入轉矩。

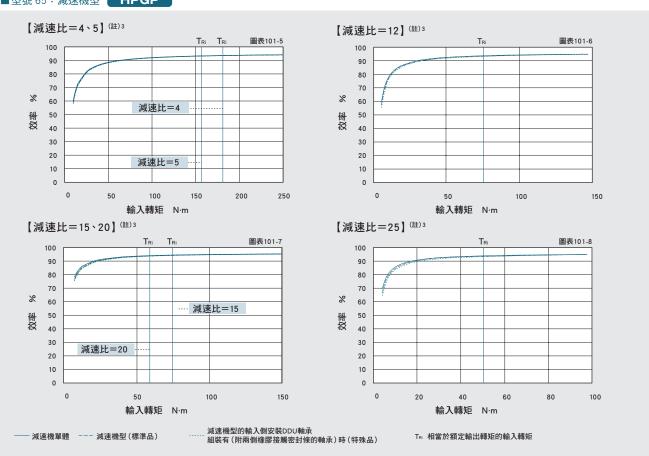

圖表 098 -2


■型號 11:減速機型 HPGP

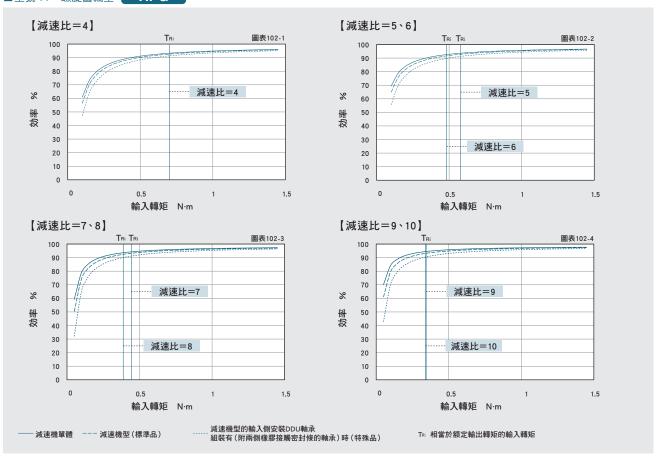

■型號 14:減速機型 HPGP



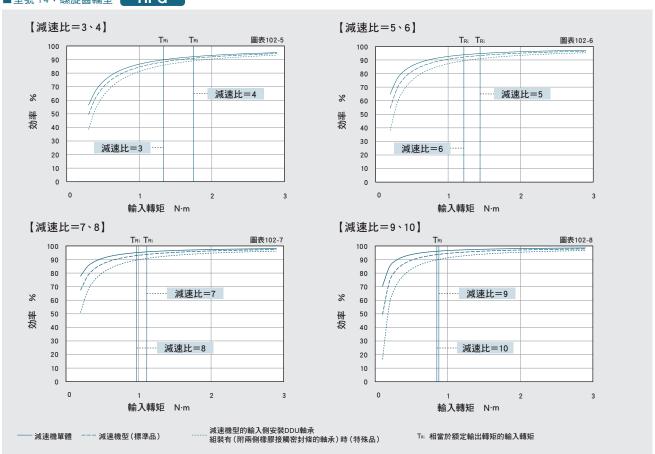
■型號 32:減速機型 HPGP


(註) 1 由於「減速機單體時」以及「在輸入端裝入軸承時」的差異較小,因此在圖表上僅以一條實線表示,並未分開呈現。

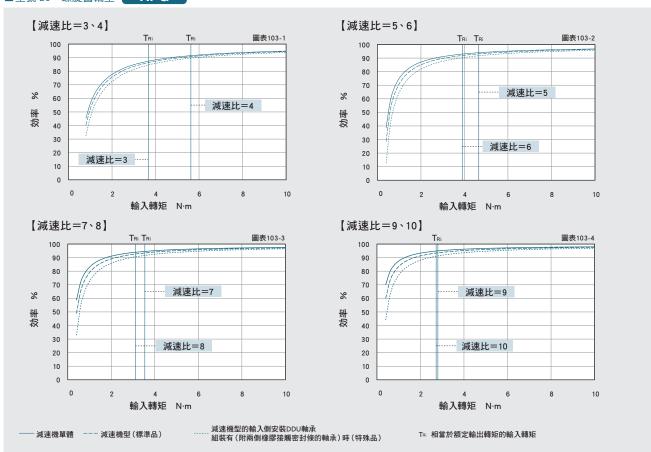
■型號 50: 減速機型 **HPGP**

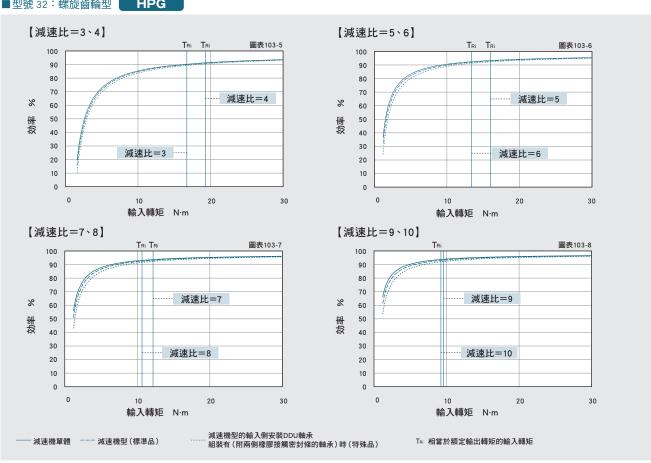

(註)2由於「減速機單體時」以及「在輸入端裝入軸承時」的差異較小,因此在圖表上僅以一條實線表示,並未分開呈現。

■型號 65:減速機型 HPGP

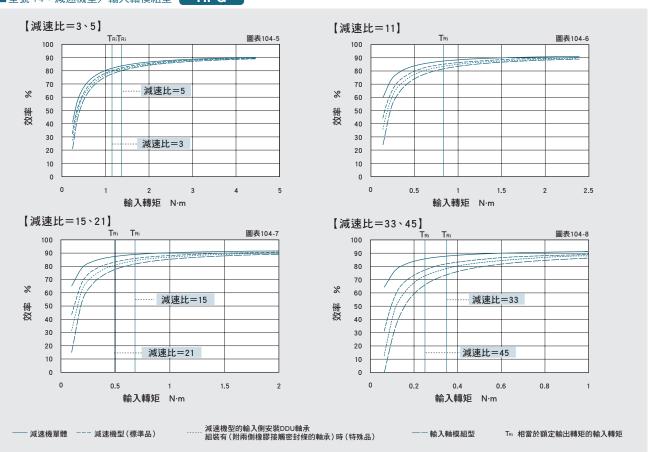


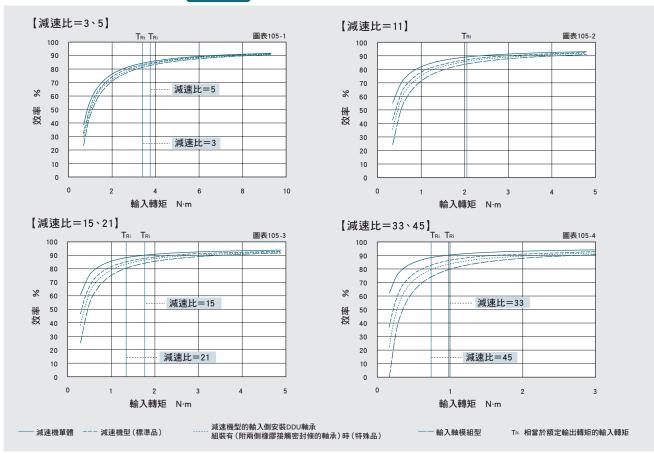
(註) 3 由於「減速機單體時」以及「在輸入端裝入軸承時」的差異較小,因此在圖表上僅以一條實線表示,並未分開呈現。

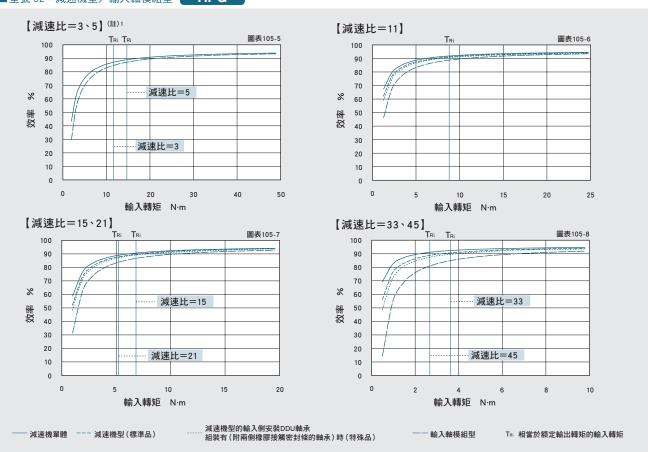

■型號 11:螺旋齒輪型 HPG


■型號 14:螺旋齒輪型 HPG

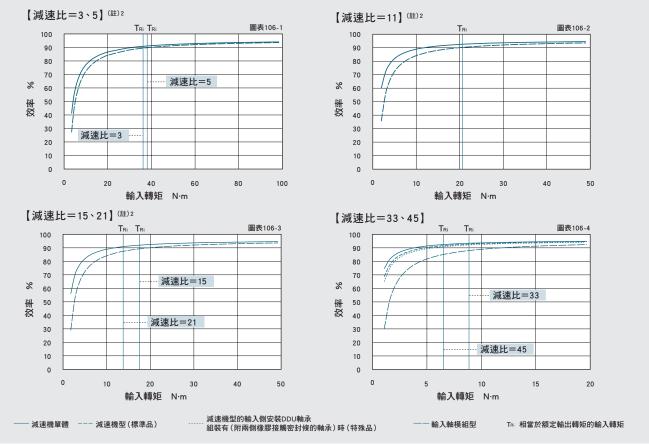

HPG ■型號 20:螺旋齒輪型


HPG ■型號 32:螺旋齒輪型

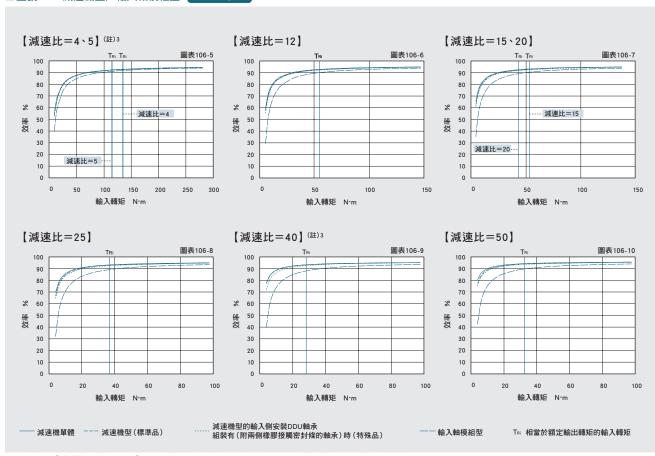

■型號 11:減速機型/輸入軸模組型 HPG


■型號 14:減速機型/輸入軸模組型 HPG

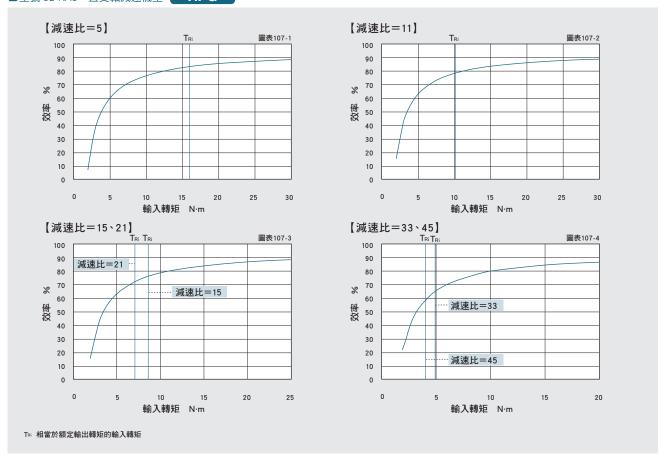
■型號 20:減速機型/輸入軸模組型 HPG

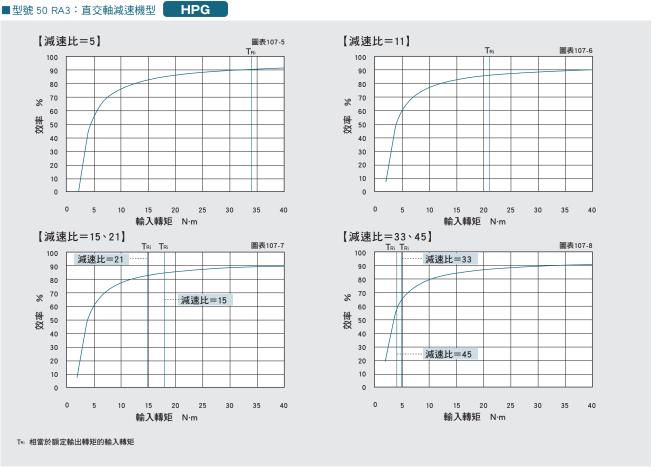


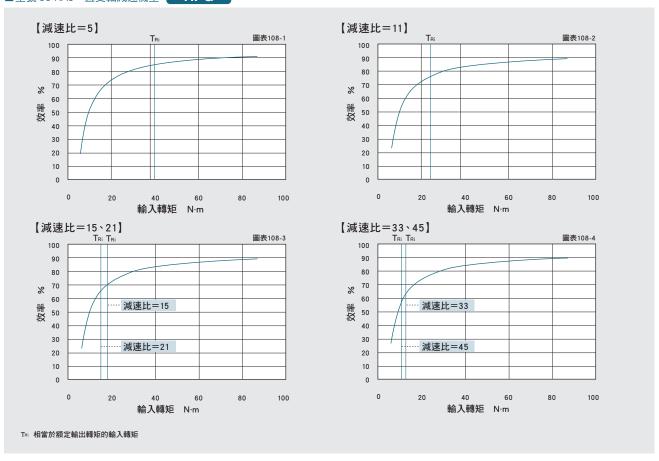
■型號 32:減速機型/輸入軸模組型 HPG


(註) 1 由於「減速機單體時」以及「在輸入端裝入軸承時」的差異較小,因此在圖表上僅以一條實線表示,並未分開呈現。

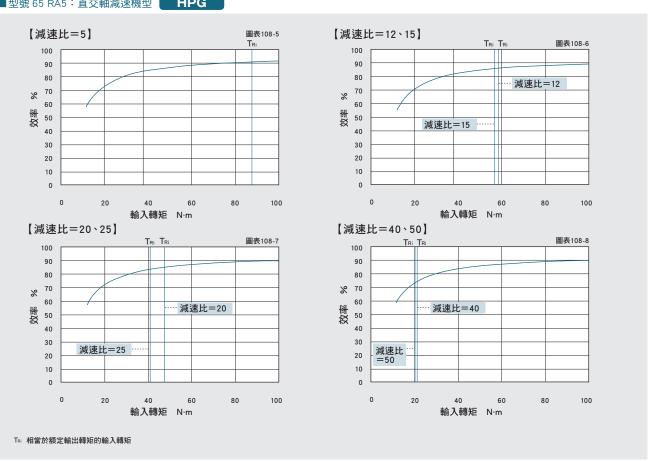
■型號 50:減速機型/輸入軸模組型 HPG


(註)2由於「減速機單體時」以及「在輸入端裝入軸承時」的差異較小,因此在圖表上僅以一條實線表示,並未分開呈現。

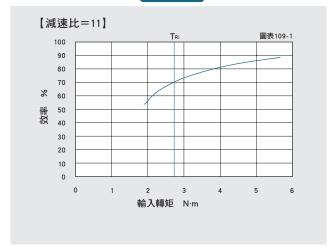

■型號 65:減速機型/輸入軸模組型 HPG


(註)3 由於「減速機單體時」以及「在輸入端裝入軸承時」的差異較小,因此在圖表上僅以一條實線表示,並未分開呈現。

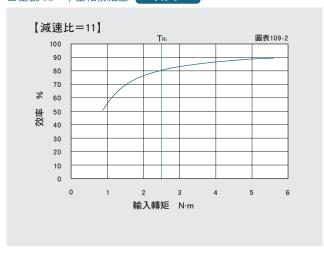
■型號 32 RA3:直交軸減速機型 HPG



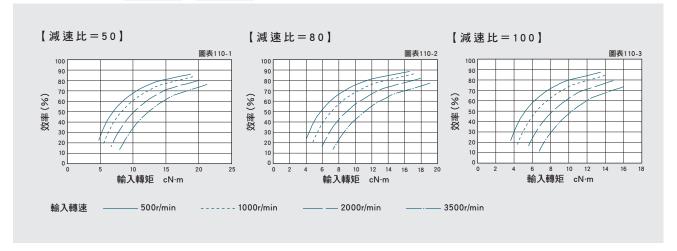
■型號 50 RA5:直交軸減速機型 HPG

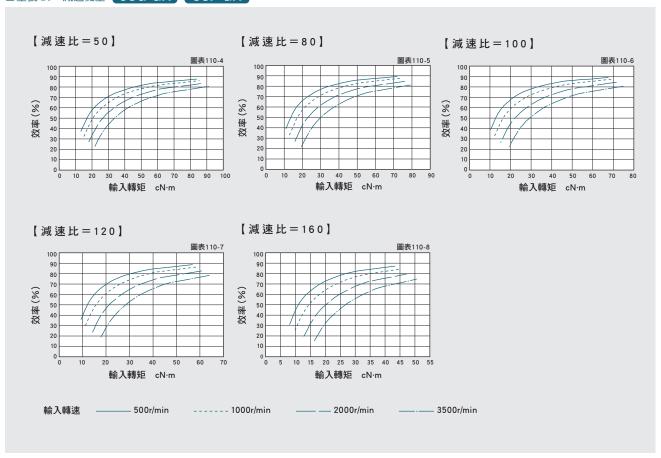


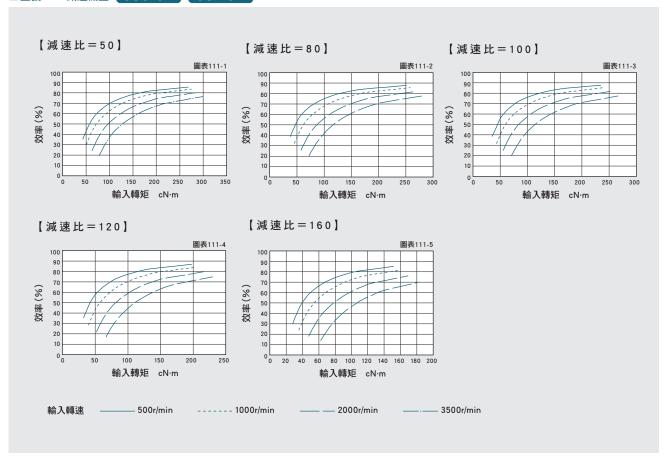
■型號 65 RA5:直交軸減速機型

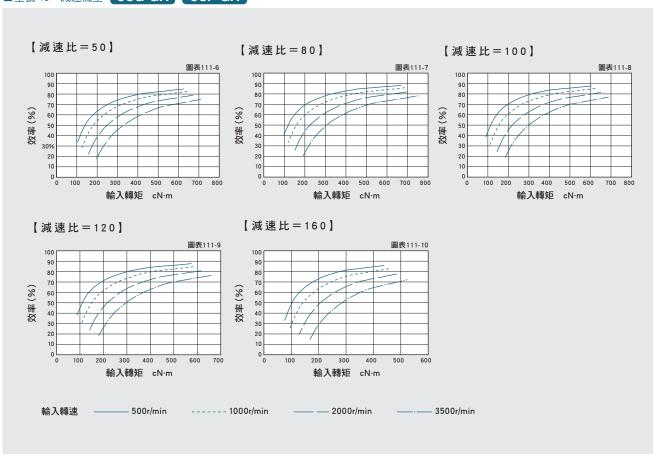


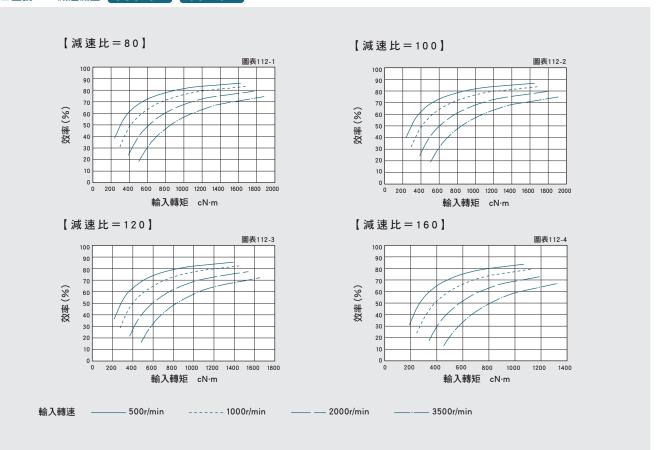
■型號 25:中空軸模組型 **HPF**




■型號 32:中空軸模組型 HPF


■型號 14:減速機型 CSG-GH CSF-GH





MEMO

輸出端軸承的規格及確認步驟!

本產品在外部負載(輸出凸緣部)的直接支撐內,組裝有精密交叉滾柱軸承。為充分發揮其性能,請檢查最大負載力矩負重、交叉滾柱軸承壽命以及靜態安全係數。

■確認步驟

❶確認最大負載力矩負重 (Mmax)

求出最大負載力矩負重 (Mmax) ●● 最大負載力矩負重 (Mmax) ≦容許力矩 (Mc)

2確認壽命

求出平均徑向負載 (Fr av)、平均軸向負載 (Fa av) ●● 求出徑向負載係數 (X)、軸向負載係數 (Y) ●● 計算並確認壽命

❸確認靜態安全係數

求出靜態等價徑向負載 (Po) ●● 確認靜態安全係數 (fs)

■輸出端軸承規格

HPGP/HPG 系列

減速機、直交、輸入軸型 交叉滾柱軸承的規格,如表 114-1、2、3 所示。

表 114 -1

	轉子節圓直徑	偏移量		基本額	定負載		容許力矩負	載 Mc ^{(註) 3}	力矩剛性	Km ^{(註) 4}
型號	dp	R	基本動額定	負載 C ^{(註)1}	基本靜額定	負載 Co (註) 2	N·m	kgf∙m	×10⁴	kgf·m/
	m	m	N	kgf	N	kgf	14.111	Kgi-iii	N·m/rad	arc-min
11	0.0275	0.006	3116	318	4087	417	9.50	0.97	0.88	0.26
14	0.0405	0.011	5110	521	7060	720	32.3	3.30	3.0	0.90
20	0.064	0.0115	10600	1082	17300	1765	183	18.7	16.8	5.0
32	0.085	0.014	20500	2092	32800	3347	452	46.1	42.1	12.5
50	0.123	0.019	41600	4245	76000	7755	1076	110	100	29.7
65	0.170	0.023	90600	9245	148000	15102	3900	398	364	108

(HPGP / HPG 標準型)

表 114-2 (HPG 螺旋齒輪型)

表 114 -3

型號	減速比	容許徑向負載(註)5	容許軸向負載(註)5		
至如	//XXALL	N	N		
	5	280	430		
	(9)	340	510		
11	21	440	660		
	37	520	780		
	45	550	830		
	(3)	400	600		
	5	470	700		
	11	600	890		
14	15	650	980		
	21	720	1080		
	33	830	1240		
	45	910	1360		
	(3)	840	1250		
20	5	980	1460		
	11	1240	1850		
	15	1360	2030		
	21	1510	2250		
	33	1729	2580		
	45	1890	2830		
32	(3)	1630	2430		
	5	1900	2830		
	11	2410	3590		
	15	2640	3940		
	21	2920	4360		
	33	3340	4990		
	45	3670	5480		
	(3)	3700	5570		
	5	4350	6490		
	11	5500	8220		
50	15	6050	9030		
	21	6690	9980		
	33	7660	11400		
	45	8400	12500		
	4	8860	13200		
	5	9470	14100		
65	12	12300	18300		
	15	13100	19600		
	20	14300	21400		
	25	15300	22900		
	(40)	17600	26300		
	(50)	18900	28200		

×	()	內的減速比數值為	HPG	系列產品的數值。	
Х	()	內的減迷比數組為	HPG	 术列産品的數值。	

(HPG 縣 灰 呂 舞 生	<u> </u>	衣 114 -3				
型號	減速比	容許徑向負載(註)5	容許軸向負載(註)5			
至加	//以丞上	N	N			
	4	260	400			
11	5	280	430			
	6	300	450			
	7	310	470			
	8	330	490			
	9	340	510			
	10	350	530			
14	3	400	600			
	4	440	660			
	5	470	700			
	6	490	740			
	7	520	780			
	8	540	810			
	9	560	840			
	10	580	860			
	3	840	1250			
	4	910	1370			
	5	980	1460			
00	6	1030	1540			
20	7	1080	1620			
	8	1130	1680			
	9	1170	1740			
	10	1200	1800			
	3	1630	2430			
	4	1770	2650			
	5	1900	2830			
	6	2000	2990			
32	7	2100	3130			
	8	2180	3260			
	9	2260	3380			
	10	2330	3480			

CSG-GH/CSF-GH 系列

交叉滾柱軸承的規格,如表 115-1 所示。

表 115 -1

型號	轉子 節圓直徑	偏移量		基本額	定負載			-力矩 //c ^{(註) 3}	力矩剛性		容許 徑向	容許 軸向
空弧	dp	R	基本動額定	負載 C ^{(註)1}	基本靜額定	負載 Co (註) 2	以與以		×10⁴	kgf·m/	負載(註)5	負載 ^{(註)5}
	m	m	Ν	kgf	N	kgf	N·m	kgf·m	N·m/rad	arc-min	Ν	N
14	0.0405	0.011	5110	521	7060	720	27	2.76	3.0	0.89	732	1093
20	0.064	0.0115	10600	1082	17300	1765	145	14.8	17	5.0	1519	2267
32	0.085	0.014	20500	2092	32800	3347	258	26.3	42	12	2938	4385
45	0.123	0.019	41600	4245	76000	7755	797	81.3	100	30	5962	8899
65	0.170	0.0225	81600	8327	149000	15204	2156	220	323	96	11693	17454

HPF 系列 交叉滾柱軸承的規格,如表 115-2 所示。

表 115 -2

型號	轉子 節圓直徑	偏移量		基本額	定負載		容許 負載 N		力矩剛性	E Km ^{(註) 4}	容許 徑向	容許 軸向
空弧	dp	R	基本動額定	負載 C ^{(註)1}	基本靜額定	負載 Co (註) 2	(単文)		×10⁴	kgf·m/	負載(註)5	負載(註)5
	m	m	N	kgf	N	kgf	N·m	kgf·m	N·m/rad	arc-min	N	N
25	0.085	0.0153	11400	1163	20300	2071	410	41.8	37.9	11.3	1330	1990
32	0.1115	0.015	22500	2296	39900	4071	932	95	86.1	25.7	2640	3940

〔註:表114-1、2、3 表115-1、2〕

- (註)1. 基本動額定負載是指軸承的基本動額定壽命達到100萬次旋轉的固定靜止徑向負載。

 - 2. 基本静額定負載是指在承受最大負載的轉動體與軌道的接觸部位中央上,給予一定水準的接觸應力(4kN/mm²)之靜態負載。 3. 容許力矩負載是指輸出軸承上可施加的最大力矩負載,只要在此範圍內便可確保基本性能及動作的數值。

■最大負載力矩負重的計算方法

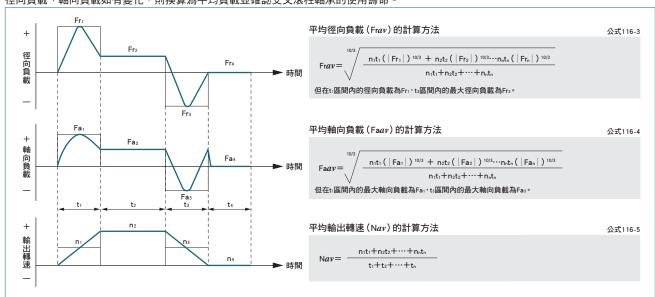
HPGP HPG CSG-GH CSF-GH

最大負載力矩負重(Mmax)的計算方法如下所示。 請確認 Mmax \leq Mc。

■徑向負載係數、軸向負載係數的計算方法

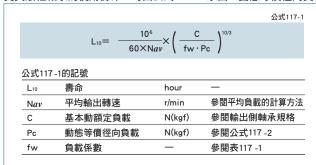
HPGP HPG CSG-GH CSF-GH HPF

表 2 徑向負載係數(X)、軸向負載係數(Y)



外部負載作用圖

■平均負載的計算方法(平均徑向負載、平均軸向負載、平均輸出轉速)

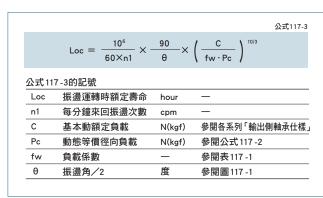

HPGP HPG CSG-GH CSF-GH HPF

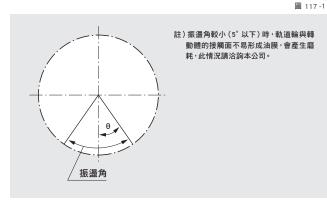
徑向負載、軸向負載如有變化,則換算為平均負載並確認交叉滾柱軸承的使用壽命。

■壽命的計算方法 HPGP HPG CSG-GH CSF-GH HPF

交叉滾柱軸承的使用壽命,可由公式 117-1 求出。動態等價徑向負載(Pc),可由公式 117-2 求出。

$c = X \cdot \left(Frav + \frac{2 \cdot (Frav)}{c} \right)$	av (Lr+R) +F		
\	dp	+Y·Faav	
-2的記號			
平均徑向負載	N(kgf)	- 參閱平均負載的計算方法	
平均軸向負載	N(kgf)	一参阅平均良戴的計算力》	
轉子節圓直徑	m	參閱輸出側軸承規格	
徑向負載係數	_	參閱徑向負載係數、軸向負	
軸向負載係數	_	_ 載係數的計算方法	
_	m	圖117-1 參閱外部負載作用圖	
偏移量	m	圖 117 -1外部負載作用圖、 參閱各系列「輸出側軸承仕樣」	
	平均徑向負載 平均軸向負載 轉子節圓直徑 徑向負載係數 軸向負載係數	平均徑向負載 N(kgf) 平均軸向負載 N(kgf) 轉子節圓直徑 m 徑向負載係數 — 軸向負載係數 — m m	


負載係數 表 117-1 平順無衝擊、振動的運轉時 $1.2 \sim 1.5$


HPF ■搖擺運動時的壽命計算方法 HPGP HPG CSG-GH CSF-GH

1.5 ~ 3

振盪運動時的交叉滾柱軸承使用壽命,可由公式 117-3 求出。

有衝擊、振動的運轉時

當要讓輸出軸的旋轉速度維持長時間的極低速運作(0.02r/min 以下)時,可能會導致軸承的潤滑不夠充分,導致軸承劣化或使傳動端的負載量上升等。要在極低速運作範圍 注意 內使用時,請洽詢本公司。

■靜態安全係數的計算方法 HPGP HPG CSG-GH CSF-GH HPF

一般會將基本靜額定負載(Co)視為靜態等價負載的容許限制,但要依據使用條件或要求條件決定限制。 此時,交叉滾柱軸承的靜態安全係數(fs)可由公式 117-4 求出。 使用條件的一般數值,如表 117-2 所示。靜態等價徑向負載(Po),可由公式 117-5 求出。

			公式117-4
		$fs = \frac{Co}{Po}$	
公式1	17-4的記號		
Со	基本靜額定負載	N(kgf)	參閱各系列「輸出側軸承仕樣」
Ро	靜態等價徑向負載	N(kgf)	參閱公式117-5

公式1	17-4的記號		
Со	基本靜額定負載	N(kgf)	參閱各系列「輸出側軸承仕樣
Ро	靜態等價徑向負載	N(kgf)	參閱公式117-5

靜態安全係數	表 117 -2
軸承使用條件	fs
需要高旋轉精度時	≧ 3
有振動、衝擊時	≧ 2
一般運轉條件時	≧ 1.5

			公式117-5
	Po=Frmax+ -	2M <i>max</i> +0.44	Fa <i>max</i>
公式 117 -!	5的記號		
Frmax	最大徑向負載	N(kgf)	
Fa <i>max</i>	最大軸向負載	N(kgf)	最大負載力矩 參閱負載的計算方法
Mmax	最大負載力矩負重	N·m(kgf·m)	多阅 只取印引 异刀本
dp	轉子節圓直徑	m	參閱各系列「輸出側軸承仕樣」

輸入端軸承的規格及確認步驟

使用 HPG 輸入軸型及 HPF 中空型時,請確認輸入端軸承的最大負載及壽命。

■確認步驟 HPG

HPF

●確認最大負載負重

最大負載力矩負重 (Mimax) 最大負載軸向負載 (Faimax) 計算最大負載徑向負載 (Frimax)

最大負載力矩負重(Mi*max*) ≦ 容許力矩負載(Mc) 最大負載軸向負載 (Faimax) ≦ 容許軸向負載 (Fac) 最大負載徑向負載(Frimax) ≦ 容許徑向負載(Frc)

2確認壽命

平均力矩負載 (Miav) 平均軸向負載 (Faiav) 計算平均輸入轉速 (Niav)

並確認壽命

■輸入端軸承規格

下列為輸入軸型的輸入端軸承規格。

輸入端軸承規格 HPG

表 118 -1

	基本額定負載								
型號	基本動額	定負載 Cr	基本靜額	定負載 Cor					
	N	kgf	N	kgf					
11	2700	275	1270	129					
14	5800	590	3150	320					
20	9700	990	5600	570					
32	22500	2300	14800	1510					
50	35500	3600	25100	2560					
65	51000	5200	39500	4050					

表 118 -2

型號	容許力知	負載 Mc	容許軸向負	載 Fac ^{(註) 1}	容許徑向負載 Frc (註) 2		
±311.	N·m	kgf·m	N	kgf	Ν	kgf	
11	0.16	0.016	245	25	20.6	2.1	
14	6.3	0.64	657	67	500	51	
20	13.5	1.38	1206	123	902	92	
32	44.4	4.53	3285	335	1970	201	
50	96.9	9.88	5540	565	3226	329	
65	210	21.4	8600	878	5267	537	

輸入端軸承規格 HPF

表 118 -3

	基本額定負載								
型號	基本動額	定負載 Cr	基本靜額定負載 Cor						
	N	kgf	N	kgf					
25	14500	1480	10100	1030					
32	29700	3030	20100	2050					

表 118 -4

型號	容許力領	拒負載 Mc	容許軸向負	載 Fac (註) 1	容許徑向負載 Frc (註) 3		
至加	N·m	kgf·m	N	kgf	N	kgf	
25	10	1.02	1538	157	522	53.2	
32	19	1.93	3263	333	966	98.5	

〔註:表118-2、4〕

- (註) 1. 容許軸向負載係指軸心上所承受的軸向負載的容許值。
 2. HPG 系列的容許徑向負載,係指軸長中央上所承受的徑向負載之容計值。
 3. HPF 系列的容許徑向負載,係指自軸端(輸入凸緣端面)起算 20mm 的位置上所承受的徑向負載之容許值。

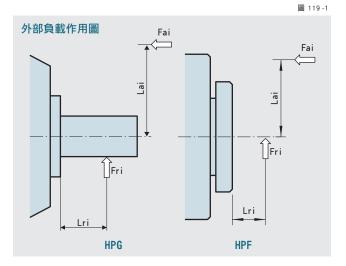
■輸入軸最大負載力矩負重的計算方法

HPG

最大負載力矩負重(Mimax)的計算方法如下所示。

請確認無論在任何狀況下皆為下列數值:

+


力矩

負重

+

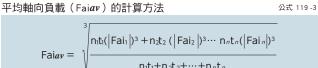
輸入轉速

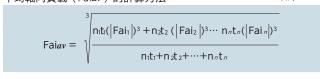
Mi*max* ≦ Mc(容許力矩負載) Fai*max* ≦ Fac(容許軸向負載)

■平均負載的計算方法(平均力矩負載、平均軸向負載、平均輸入轉速)

HPG

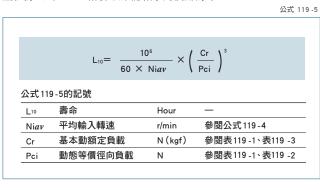
力矩負載、軸向負載如有變化,則應將其換算為平均負載並確認軸承使用壽命。


圖 119 -2


時間:+

公式 119 -2

公式 119-4



平均輸入轉速(Niav)的計算方法

 $Niav = \frac{n_1t_1 + n_2t_2 + \cdots + n_nt_n}{n_1t_n}$

■輸入端軸承壽命的計算方法

請依據公式 119-5 計算以確認軸承的使用壽命。

動態等價徑向負載	HPG	表 119 -1
型號	Pci	
11	0.444 × Mi <i>av</i> + 1.426 × Fai <i>av</i>	
14	0.137 × Mi <i>av</i> + 1.232 × Fai <i>av</i>	
20	0.109 × Mi <i>av</i> + 1.232 × Fai <i>av</i>	
32	0.071 × Mi <i>av</i> + 1.232 × Fai <i>av</i>	
50	0.053 × Mi <i>av</i> + 1.232 × Fai <i>av</i>	
65	0.041 imes Mi av + 1.232 imes Fai av	

動態等價徑向負載	HPF	表 119 -2
型號		Pci
25		121 × Mi <i>av</i> + 2.7 × Fai <i>av</i>
32		106 × Mi <i>av</i> + 2.7 × Fai <i>av</i>

Miav 平均力矩負載 N·m(kgf·m) 參閱公式 119-2 Faiav 平均軸向負載 N (kgf) 參閱公式 119-3

使用說明■

為充分發揮減速機系列產品所具有的優異性能,請正確進行安裝及組裝。 關於所使用的螺栓及鎖緊轉矩,請遵守本公司所建議內容。

■安裝在馬達上的組裝步驟 HPGP HPG CSG-GH CSF-GH

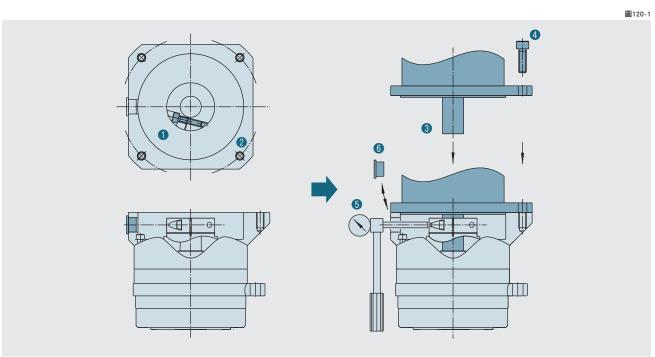
要將減速機安裝在馬達上時,請依據下列步驟進行。

- 旋轉輸入軸連接器以將螺栓頭對準橡膠螺帽孔。
- ② HPGP/HPG系列於馬達安裝面塗佈密封劑。(建議密封劑:LOCTITE 515)
- 將馬達往減速機本體慢慢插入。將減速機如下圖垂直立起,並且一面避免傾倒,一面將馬達軸往輸入軸連接處滑入。減速機無法垂直立 起時,請逐步均勻地將螺栓鎖緊,並請注意勿在馬達傾倒的狀態下連接。
- 4 以螺栓連接馬達與減速機的凸緣部。

螺栓※绀竪軸钻

矫性" 與系特化									表120-1
螺栓尺寸		M2.5	M3	M4	M5	M6	M8	M10	M12
鎖緊轉矩	N·m	0.59	1.4	3.2	6.3	10.7	26.1	51.5	89.9
政系 特化	kgf⋅m	0.06	0.14	0.32	0.64	1.09	2.66	5.25	9.17

※建臟螺栓名稱: JIS B 1176內六角螺栓、強度區分: JIS B 1051 12.9以上注意)請務必以上表的鎖緊轉矩連接。


鎖緊輸入軸連接器的螺栓。(交貨時一併附上螺栓、固定螺絲與輸入軸連接器。螺栓尺寸請參閱本公司提供的交貨規格圖。)

注意)請務必以上表的鎖緊轉矩連接。若未達到指定轉矩,則可能鬆脫。螺栓尺寸因型號、安裝馬達軸徑而不同。

HPGP/HPG系列型號11的連接部為2處固定螺絲。(參閱019頁(HPGP)、029頁(HPG) 型號11的外觀尺寸圖)請以下述鎖緊轉矩鎖緊。

		₹₹120-3
固定螺絲尺寸	M3	
△火 万 又土市 / -厂	N⋅m	0.69
鎖緊轉矩	kgf∙m	0.07

⑥ 安裝附件橡膠螺帽即完成。(HPGP/HPG系列型號11安裝附墊圈螺絲(2處))

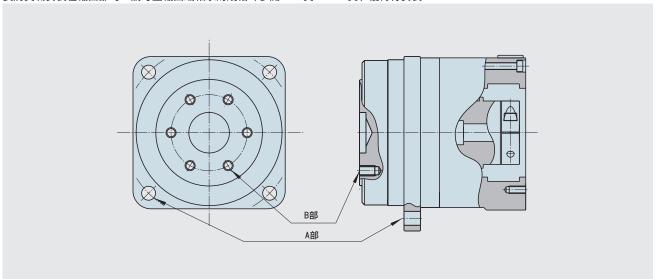
■組裝減速機 HPGP HPG CSG-GH CSF-GH HPF

直交軸型具有質量 20kg ~ 60 kg 的機型。由於安裝方向因客戶而異,因此並未設置懸掛用螺孔。安裝時請使用吊索等懸掛,並充分考量安全後再行處理後續事宜。

要將減速機安裝在裝置上時,請確認安裝面的平坦度或螺孔部是否沒有毛邊後,用螺栓鎖緊安裝凸緣(下圖的 A 部位)。

安裝凸緣(下圖 A 部位)的螺栓 ** 的鎖緊轉矩

表 121 -1


#11	型號 HPGP / HPG / CSG-GH / CSF-GH						HPF		
至	JUC	11	14	20	32	45/50	65	25	32
螺栓支數		4	4	4	4	4	4	12	12
螺栓尺寸		M3	M5	M8	M10	M12	M16	M4	M5
安裝 PCD	mm	46	70	105	135	190	260	127	157
鎖緊轉矩	N·m	1.4	6.3	26.1	51.5	103	255	4.5	9.0
亚共 <i>3</i> 代半等大比	kgf·m	0.14	0.64	2.66	5.25	10.5	26.0	0.46	0.92
傳動轉矩	N·m	26.3	110	428	868	2030	5180	531	1060
	kgf∙m	2.69	11.3	43.6	88.6	207	528	54.2	108

※ 建議螺栓名稱: JIS B 1176 內六角螺栓、強度區分: JIS B 1051 12.9 以上

■將負載安裝至輸出部

要將負載安裝在輸出部時,請考量輸出端軸承的規格(參閱 114 頁~ 115 頁)後再行安裝。

圖 121 -1

輸出凸緣型產品

輸出凸緣(圖 121-1 B 部位)的螺栓 ** 的鎖緊轉矩 HPGP

表 121 -2

型號		11	14	20	32	50	65
螺栓支數		4	8	8	8	8	8
螺栓尺寸		M4	M4	M6	M8	M12	M16
安裝 PCD	mm	18	30	45	60	90	120
鎖緊轉矩	N·m	4.5	4.5	15.3	37.2	128.4	319
项只 ₃ 条半等7℃	kgf⋅m	0.46	0.46	1.56	3.8	13.1	32.5
傳動轉矩	N·m	25.3	84	286	697	2407	5972
守里川半寺大	kgf·m	2.58	8.6	29.2	71.2	245	609

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

輸出凸緣(圖 121-1 B 部位)的螺栓 ** 的鎖緊轉矩 HPG

表 121 -3

100-1-110-1	A1 1— 7 1101-3111						
型	號	11	14	20	32	50	65
螺栓支數		3	6	6	6	14	6
螺栓尺寸		M4	M4	M6	M8	M8	M16
安裝 PCD	mm	18	30	45	60	100	120
鎖緊轉矩	N·m	4.5	4.5	15.3	37.2	37.2	319
亚共 <i>3</i> 64半等7世	kgf·m	0.46	0.46	1.56	3.8	3.80	32.5
傳動轉矩	N·m	19.0	63	215	524	2036	4480
守里川半寺大	kgf·m	1.9	6.5	21.9	53.4	207.8	457

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

輸出凸緣型產品

表 122 -1

型	號	14	20	32	45	65
螺栓支數		8	8	10	10	10
螺栓尺寸		M4	M6	M8	M12	M16
安裝 PCD	mm	30	45	60	94	120
鎖緊轉矩	N·m	4.5	15.3	37	128	319
型 ※ ¥ 等 次 2	kgf·m	0.46	1.56	3.8	13.1	32.5
傳動轉矩	N·m	84	287	867	3067	7477
	kgf⋅m	8.6	29.3	88.5	313	763

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

表 122 -2

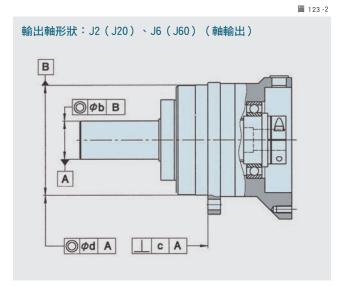
型	號	14	20	32	45	65
螺栓支數		6	6	6	16	8
螺栓尺寸		M4	M6	M8	M8	M16
安裝 PCD	mm	30	45	60	100	120
鎖緊轉矩	N·m	4.5	15.3	37.2	37.2	319
到 条等况	kgf·m	0.46	1.56	3.80	3.80	32.5
傳動轉矩 -	N·m	63	215	524	2326	5981
	kgf⋅m	6.5	21.9	53.4	237	610

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

輸出凸緣(圖 121-1 B 部位)的螺栓 ** 的鎖緊轉矩 HPF

表 122 -3

型號		25	32	
螺栓支數		12	12	
螺栓尺寸		M4	M5	
安裝 PCD mm		77	100	
鎖緊轉矩	N·m	4.5	9.0	
到米等	kgf⋅m	0.46	0.92	
傳動轉矩	N·m	322	675	
守里川半守万二	kgf⋅m	32.9	68.9	


輸出軸型產品

安裝滑輪、小齒輪等時,請勿對輸出軸施加衝擊。將導致減速機精度劣化或故障。

■機械精度

輸出端軸承採用高精度的交叉滾柱軸承,使輸出部位達到高機械精度。輸出軸及安裝凸緣的機械精度如下所示。

輸出軸形狀: F0 (凸緣)

	HPGP	HPG CSG-GH	CSF-GH		表 123 -1
ı	型號	輸出凸緣部位的面振幅	輸出凸緣接口部位或輸出軸的振幅	安裝凸緣部位的面振幅	安裝接口部位的振幅
	土加	a	b	С	d
	11	0.020	0.030	0.050	0.040
	14	0.020	0.040	0.060	0.050
	20	0.020	0.040	0.060	0.050
	32	0.020	0.040	0.060	0.050

HPGP	HPG			表 123 -2
50	0.020	0.040	0.060	0.050
65	0.040	0.060	0.090	0.080

CSG-GH (CSF-GH			表 123 -3
45	0.020	0.040	0.060	0.050
65	0.020	0.040	0.060	0.050

HPF				表 123 -4
25	0.020	0.040	0.060	0.050
32	0.020	0.040	0.060	0.050

% T.I.R. (Total Indicator Reading) :表示測量部旋轉 1 圈時的針盤量規讀值的全量。

(T.I.R.* 單位:mm)

■潤滑

防止潤滑脂及油份外漏

(全機型共涌)

- 切忌與其他潤滑脂或油類混用。
- 本公司產品雖已考量結構設計以防止外漏對策,但視使用用途及運轉條件,可能無法完全密封。想要實施完全的防外漏對策時,請客戶 另外自行採用接皿或油封等對策。
- 想要安裝在裝置上時,若減速機安裝方向為水平姿勢,請將橡膠帽部位朝上安裝。

(CSG/CSF-GH 系列)

• 用於固定負載、固定方向連續運轉時,可能引發潤滑不良。如需用於此種情形,請洽詢本公司營業據點。

密封結構

(全機型共涌)

- 本公司已檢驗輸出入軸的防漏油機制,但仍請客戶視使用用途,在組裝之裝置端另外施加防漏油的相關對策。
- ・輸出軸部位使用具除塵唇(Dust Lip)構造的氟樹脂油封(HPGP/HPG 系列的型號 11 無除塵唇);各部位的接合面使用密封圏或 O 型環; 在減速機的馬達連接聯結器部位上,HPGP/HPG 系列使用非接觸式屏蔽軸承(特殊對應品為接觸式 DDU 型 **),CSG/CSF-GH 系列使用非 接觸式屏蔽軸承及內附彈簧的氟樹脂油封。

※ DDU 型:兩端附橡膠接觸式油封的軸承

• 當馬達位置比減速機還低時,若必須執行連續運作及頻繁起動、停止設備,建議將輸入端的屏蔽軸承變更為 DDU 型。

(HPGP/HPG/HPF 系列)

- HPGP/HPG 系列減速機的輸入軸端之屏蔽軸承為 DDU 型的特殊品,其效率比標準品稍低。(請參閱 099 頁~ 109 頁)
- 要組裝 HPGP/HPG 系列減速機及馬達時,請在馬達的安裝面上塗佈密封劑。(請參閱 120 頁)
- HPG 系列輸入軸型 /HPF 系列中空軸型的輸入端使用無彈簧之油封。為提升密封可靠性,亦可變更為內附彈簧的油封。但會讓效率稍微降 低。(HPG 系列型號 14 以上的產品可支援對應品)
- ·請勿取下 HPG 系列直交軸型的螺旋塞及密封蓋(參閱 067 頁),否則恐造成潤滑脂滲漏或精度降低。

■潤滑劑

HPGP/HPG/HPF 系列

HPGP/HPG/HPF 系列的標準潤滑方式為潤滑脂潤滑。由於出貨前已封入潤滑脂,故組裝時無需再另行注入、塗佈。另外,在減速機壽命範圍 內亦無須更換潤滑脂。本產品採用了理論效率優異的行星減速結構及專用潤滑脂,具有高效率。

潤滑劑名稱

Harmonic 潤滑脂 ®SK-2 規格 (HPGP/HPG-14、20、32)

製造商:株式會社 Harmonic Drive Systems

基 油:精煉礦物油 稠 度:265~295(25℃)

滴 點:198℃ 增稠劑: 鋰皂 外 觀:綠色 添加劑:極壓添加劑、其他

規 格:NLGI 2號

Multemp AC-P 規格 (HPG 螺旋齒輪型)

製造商:協同油脂株式會社

基 油:合成烴油+二酯 稠 度:280(25℃) 增稠劑:鋰皂 滴 點:200℃以上 添加劑:極壓添加劑、其他 外 觀:黑色黏稠狀

規 格:NLGI 2號

製造商:新日本石油株式會社

基 油:精煉礦物油 稠 度:282(25℃) 增稠劑: 鋰皂 滴 點:200℃ 外 觀:淡褐色 添加劑:極壓添加劑、其他

EPNOC GREASE AP(N)2規格(HPGP/HPG-11、50、65/HPF-25、32)

規 格:NLGI 2號

PYRONOC UNIVERSAL00 規格(直交軸型)

製造商:新日本石油株式會社

基 油:精煉礦物油 稠 度:420(25℃) 增稠劑:尿素 滴 點:250℃以上 規 格:NLGI 00號 外 觀:淡黃色

使用環境溫度範圍:-10℃~+40℃

由於在低溫、高溫下使用時,可能會降低潤滑劑功能,故請洽詢本公司營業據點。

溫度上升值會因客戶自行準備的減速機安裝零件(機殼)之放熱條件及環境溫度之影響而有所出入,

請把減速機表面溫度 70℃當作上限參考標準。

CSG-GH/CSF-GH 系列

CSG-GH/CSF-GH 系列的標準潤滑方式為潤滑脂潤滑。 由於出貨前已封入潤滑脂,故組裝時無需再另行注入、塗佈。

潤滑劑名稱

Harmonic 潤滑脂 ®SK-1A 規格(型號 20、32、45、65)

製造商:株式會社 Harmonic Drive Systems

專為 Harmonic Drive® 使用而開發的潤滑脂,在耐久性及效率上比市售泛用潤滑脂更為優異。

基 油:精煉礦物油 稠 度:265~295 (25℃)

增稠劑: 鋰皂 滴 點: 197℃ 添加劑: 極壓添加劑、其他 外 觀: 黃色

規 格:NLGI 2號

Harmonic 潤滑脂 ®SK-2 規格(型號 14)

製造商:株式會社 Harmonic Drive Systems

專為 Harmonic Drive®使用而開發的潤滑脂,在將極壓添加劑液化後,確保了在波產生器旋轉時的優異順暢性。

基 油:精煉礦物油 稠 度:265~295 (25℃)

增稠劑: 鋰皂 滴 點: 198℃ 添加劑: 極壓添加劑、其他 外 觀: 綠色

規 格:NLGI 2號

使用環境溫度範圍:0℃~+40℃

由於在低溫、高溫下使用時,可能會使潤滑劑劣化,故請洽詢本公司營業據點。 溫度上升值會因客戶自行準備的減速機安裝零件(機殼)之放熱條件及環境溫度之影響而有所出入, 請把減速機表面溫度 70℃當作上限參考標準。

潤滑脂更換時期

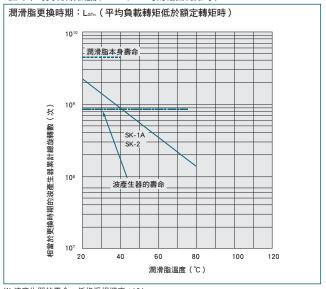
潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。 潤滑脂性能會隨溫度而變化,越高溫越容易劣化,需要儘早更換。 右方圖表是當平均負載轉矩低於 2000r/min 時的輸出轉矩時,根據潤 滑脂溫度與波產生器總旋轉數的關連性所呈現出的更換時期基準。 當平均負載轉矩超過 2000r/min 時的輸出轉矩時,可依下列公式計算 更換時期。

平均負載轉矩超過 2000r/min 時的輸出轉矩時的公式

公式 125 -1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav}\right)^3$$

公式的記號


表 125 -1

	Lgt	超過輸出轉矩的更換時期	轉數	_
١	LGTn	未超過輸出轉矩的更換時期	轉數	參閱圖 125-1
	Tr	2000r/min 時的輸出轉矩	N·m, kgf·m	請參閱 050 頁、058 頁的 額定表
l	Tav	輸出端的平均負載轉矩		公式:請參閱 048 頁

潤滑脂更換時期:

L_{GTn} (平均負載轉矩低於 2000r/min 時的輸出轉矩時)

圖 125 -1

※ 波產生器的壽命,係指受損機率 10%。

補充潤滑脂時的注意事項

由於潤滑脂的補充量及排出量可能會影響設備,造成潤滑脂滲漏或 起動轉矩增加等不良影響,故請嚴守下列事項。

- 1 次的補充量請參考表 125-2 的補充量,切忌大幅超過該數值。
- ●請在排出和補充同等份量的潤滑脂後,再進行補充。另外,在前 2 次的潤滑脂補充程序中,即使未執行排出程序,僅進行補充動作,亦不會造成不良影響,但自第 3 次補充程序起,請務必排出和補充同等份量的潤滑脂。請使用空壓等方式排出潤滑脂。

更換時的潤滑脂補充量參考標準

表 125 -2

型號	14	20	32	45	65
補充量 a	0.8	3.2	6.6	11.6	78.6

■保證、保固

以下為 Harmonic Drive® 的保固期及保固範圍。

保固期

以使用型錄所記載的正確組裝狀態及潤滑狀態為保固條件,在交貨後1年內或該產品之運轉時間達到2,000小時之其中較早達到之一方為保固期。

保固範圍

在上述保固期內,因本公司之製造瑕疵而導致故障時,由本公司負責修理、更換該項產品。

但以下情形不在本保固對象範圍內:

- 因客戶的不適當處理或不適當使用所造成
- 2 非透過本公司人員進行改裝或修理所造成
- 3 故障原因非該產品所造成
- 4 其他因天災等不得歸責於本公司之因素

另外,此處所稱之保固,係指保證該產品之意義。

因該產品之故障所導致之其他損害,以及與拆除及安裝有關之工時、費用等項目,恕不在本公司之負擔範圍內。

■廢棄

廢棄本產品時,請依據材質將零件分類後,依據各政府機關法規,將其作為工業廢棄物處理。 零件材質可分為下列 3 類。

● 橡膠零件:油封、密封墊、橡膠螺帽、輸入側防塵軸承的密封部(僅DDU型)

2 鋁製零件:外殼、馬達凸緣

❸ 鐵製零件:其他零件

■註冊商標

「Harmonic Drive」為代表本公司產品之註冊商標。

一般或學術上稱為「諧波齒輪傳動機構」。

安全使用的注意事項

警告:表示如錯誤使用,可能會造成死亡或重傷。

↑ 注意:表示如錯誤使用,可能會造成人員受傷或物品損壞。

用涂限制 : 本產品不得使用於下列用涂。

*航太設備 *飛機設備 *核能設備 *一般家用設備、器具

*真空設備 *汽車設備 *遊戲設備 *直接作用於人體的設備

*以輸送人為目的的設備 *特殊環境設備

欲使用於上述用途時,請事先與本公司諮詢。

欲將本產品使用在攸關人命之設備及預期可能會產生重大損失的設備上時,請在本產品上安裝安全裝置,

以避免本產品損壞而陷入無法控制輸出的狀況時引發事故。

設計注意事項 設計時請務必閱讀型錄。

請在規定環境下使用。

●使用Harmonic Drive®、HarmonicPlanetary®時,請遵守下列條件。

・環境温度:0~40℃ 未沾有水、油

・無金屬粉等異物

ΖŅ ·無腐蝕性、爆炸性氣體

安裝時,請依規定方式安裝。

- ●組裝時,請依據型錄的說明順序正確組裝。
- ●連接方法(使用的螺栓等)請依據本公司的建議方式。
- ●若機械在運轉時未正確組裝,可能會造成振動、降低壽命、降低精度、 捐壞等異常。

\!\

注意

請以規定精度安裝。

- ●設計、組裝各零件時,請達到型錄所標註的建議安裝精度。
- ●若精度不足,可能會造成振動、降低壽命、降低精度、捐壞等異常。

請使用規定的潤滑劑。

- ●未使用本公司建議的潤滑劑時,產品壽命可能會降低。此外,亦請在到 達規定條件時更換潤滑劑。
- ●模組型產品內已事先填入潤滑脂。請勿混入其他潤滑脂。

使用注意事項 運轉時請務必閱讀型錄。

Νİ

請勿將手指放入齒輪部旋轉。

●若將手指放入齒輪部旋轉[,]可能導致手指捲入齒輪[,]造成無法預期的 傷害。請務必禁止。

請注意使用。

●由於具有重量,使用時可能發生腰痛及掉落、傾倒、夾入等傷害。除了 安全鞋等對策,也請使用支架。

使用時請勿超過容許轉矩。

- 請勿施加高於瞬間容許最大轉矩的轉矩。否則可能會造成連接部的螺 栓產生鬆動、機身晃動、損壞設備等異常。
- ●將機械臂等直接連接在輸出軸上時,輸出軸可能會因為和機械臂碰撞 而被破壞,從而陷入無法控制的狀況。

請勿拆解模組型產品。

■請勿拆解、重新組裝模組型產品。否則將無法重現原本性能。

請小心處理本產品及零件。

■請勿以鐵鎚等物品對各零件及模組施加強烈衝擊。此外,亦請避免因 掉落等原因造成機身產生損傷、凹陷。可能會造成設備受損。

●在受損狀態下使用時,可能無法發揮正常性能。此外,亦可能造成損壞 設備等。

若察覺異常,請停止系統。

- ●若聽到異音或感到振動,請停止旋轉。若發生異常發熱或電流值異常 等狀況,請儘速停止系統。可能對系統造成不良影響。
- ●異常時,請洽詢本公司營業據點或購買地點。

請勿變更零件內容。

●本產品中之零件皆為成套製作。 若混合使用便無法發揮正堂性能。

■本產品雖已於出貨時經防鏽處理,但視客戶之保存環境,亦有可能提見 發生鏽蝕,請多加注意。

本公司之產品雖已施予部分黑色表面處理,但並不保證防鏽。

漏油注意事項

●雖然輸出軸採用了高可靠性的油封,但並不保證完全不洩漏。請客戶 依用途進行潤滑及上油防護處理。

潤滑劑使用注意事項

使用注意事項

●誤入眼睛時可能會引起發炎。處理時請戴上防護鏡等防護用具,以避

- ●接觸皮膚時可能會引起發炎。處理時請戴上防護手套等防護用具,以 避免接觸皮膚。
- ■請勿食用(食用後會腹瀉、嘔吐)。
- ●打開容器時,可能會切到手。請穿戴防護手套。
- ■請放置於孩童伸手不及之處。

/!`

廢油、廢容器之處理

- ■關於處理方式,法令上已課以規定義務。請依據法令妥善處理。 若不清楚時,請先洽詢經銷商後再行處理。
- ●請勿對空容器施加壓力。若施加壓力可能會造成破裂。
- ■請勿焊接、切斷本容器,或在本容器上開孔,或讓本容器處於過熱狀 態。否則可能會因火花而造成內部殘留物起火。

●為避免異物、水份的入機械內部,使用後請密封。 請保存於避免陽光直射的陰暗處。

急救措施

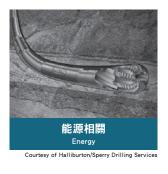
- ●誤入眼睛時,請以清水清洗15分鐘,並接受醫師診治。
- ●接觸皮膚時,請以水及肥皂充分清洗。
- ●吞入時,請勿勉強催吐,應立即接受醫師診治。

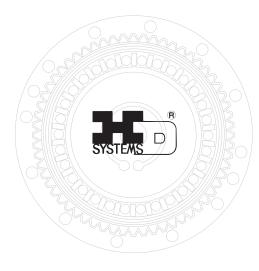
廢棄注意事項

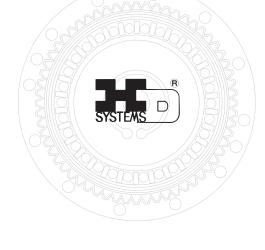
請做為工業廢棄物處理。

●廢棄時,請作為工業廢棄物處理。

採用本公司產品的主要用途

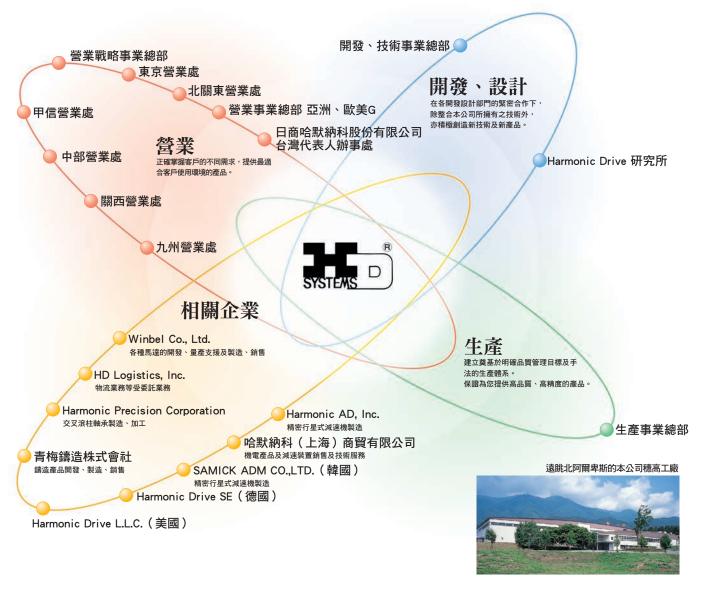








MEMO


MEMO	

精密控制領域的專家。

將開發、設計、生產、營業緊密結合, 製造合乎客戶需求的專業產品。

本公司於1995年取得品質管理與保證國際規格「ISO 9001」,並於1998年取得德國認證機構TÜV生產服務環境管理系統國際規格「ISO14001」。證明本公司之品質保證體制及環境管理系統已受到世界認可。

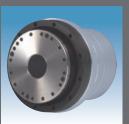
OTHER PRODUCTS

Harmonic Drive (註冊商標)

諧波齒輪傳動機構Harmonic Drive[®]透過獨特機構 達到精密的動作控制。

Beam Servo(註冊商標)

以本公司獨自開發的小型馬達及光學感測器技 術為基礎所研發的電流式掃描器。可藉由高回 應、高精度的掃描儀,進行更順暢的光學掃 描。


HarmonicLinear (註冊商標)

將精密螺絲和Harmonic Drive[®]緊密組合而成的線 性致動器。具有超精密定位用、高推力用等豐 富產品陣容。

旋轉動作

可使Harmonic Drive[®]與具備優異控制特性的各種伺服馬達達到最佳連接效果的高轉矩致動

HarmonicDrive

HarmonicPlanetary

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

HarmonicGrease

Registered Trademark in Japan

ISO 14001/ISO 9001 取得認證(TÜV Management Service GmbH)

https://www.hds.co.jp/

總 公 司 / 東京都品川區南大井6-25-3 lchigo大森大樓 〒140-0013 TEL.+81-(0)3-5471-7800(總機) FAX.+81-(0)3-5471-7811
穂 高 工 廠 / 長野縣安曇野市穂高牧1856-1 〒399-8305 TEL.+81-(0)263-83-6800(總機) FAX.+81-(0)263-83-6901
營業事業總部亞洲、歐美G / 長野縣安曇野市穂高牧1856-1 〒399-8305 TEL.+81-(0)263-83-6935(總機) FAX.+81-(0)263-83-6901
日商哈默納科股份有限公司 10351台北市大同區市民大道一段209號11樓 G219室
台灣代表人辦事處 / TEL. +886-(0)2-2181-1640(總機) FAX. +886-(0)2-2181-1641

[「]Harmonic Drive®」為表示本公司產品之註冊商標。

一般或學術上稱為「諧波齒輪傳動機構」。