FINE MECHANICS & TOTAL Motion CONTROL

monicDrive®

精密控制用減速機 /I-モニックドライフ。。綜合型錄

一項發明,改變了運動控制的世界

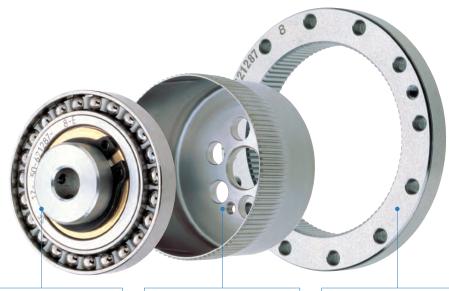
諧波齒輪傳動機構「Harmonic Drive(註冊商標)」的嶄新構想及獨特原理皆來自於美國的天才發明家 C. W. Musser。 Musser 此項運用金屬彈性變形、顛覆以往常識的發明,在當時為一種劃時代的傳動方式,一舉受到世界的注目。而在當時將夢想賭在此項 技術的商品化可能性上,勇於挑戰未來的企業,便是美國的 USM(United Shoe Machinery)公司及本公司的前身——株式會社長谷川齒輪。

Musser所發明的諧波齒輪傳動機構,在當時所發表的 名稱為「Strain wave gearing」。

Musser在發表的同時以此名稱取得專利。其後Harmonic Drive Systems Inc.成功地將此技術實用化。本裝置在學術及一般通俗上稱為「諧波齒輪傳動機構」,「Harmonic Drive®」是僅限於本公司所製造銷售的產品才可使用的註冊商標。

1964 年 Harmonic Drive® 的實用化

1964 年,本公司的前身株式會社長谷川齒輪 HD 事業部在和 USM Co.,Ltd 的技術合作下,首次在日本成功將 Harmonic Drive® 實用化,並在 1970 年於兩企業的共同出資下成立了本公司。


自 1979 年起,改組為現在的株式會社 Harmonic Drive Systems Inc。

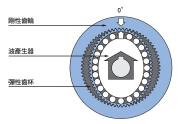
以小型、輕量的規格,實現高轉矩及準確定位。

諧波齒輪傳動機構「Harmonic Drive(註冊商標)」的最大特徵,在於僅由3種基本零件所組成,易於小型化及輕量化。此外,由於齒槽的嚙合數量高,因此能夠產生更強的轉矩並進行非常準確的定位。

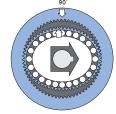
本公司在「更為小型輕量化」的開發理念之下,一邊活用產品原有的特性,一邊推動Harmonic Drive®的精巧化。目前本公司備有多達31種形狀、轉矩容量從0.5Nm~9180Nm(#3~#100)的豐富產品類型,可滿足不同客戶的使用需求。本公司透過獨自研究的齒形理論,研發出出齒形,可降低齒根的彎曲應力及因齒面負重而產生的齒根應力,此外亦投入了本公司至今所累積的所有高精度加工技術,提高了產品的強度及性能。

Harmonic Drive® 今後仍將持續進化。

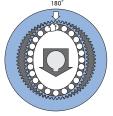
波產生器

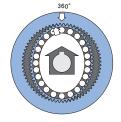

本零件是將薄型滾珠軸承組合進欄圍狀凸輪外圈內的零件。軸承的內輪雖固定在凸輪上,但 外輪可透過滾珠產生彈性變形。一般會安裝在 輸入軸上。

彈性齒杯

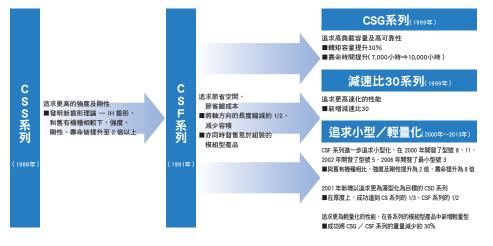

本零件為薄型杯狀的彈性金屬零件。在開口部的外圈刻有齒槽。彈性齒杯的底部(杯狀底部)稱之為隔板,一般會安裝在輸出軸上。

剛性齒輪


本零件為剛性環狀零件。在內圈刻有齒槽,齒 輪數較彈性齒杯多2個。一般會固定在護殼上。


彈性齒杯會受波產生器拉寬為橢圓狀。因 此在長輪部位上,彈性齒杯的齒槽會和剛 性齒輪互相嚙合;但在短軸部位上,齒槽 則是呈完全分離的狀態。

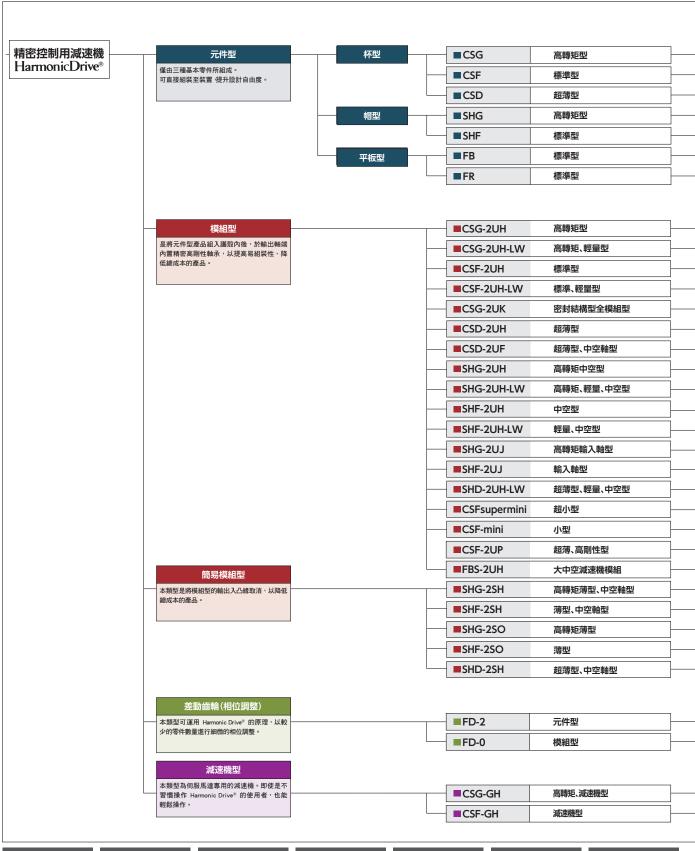
將剛性齒輪固定,並使波產生器朝順時針 方向旋轉後,彈性齒杯會產生彈性變形, 並逐漸移動至能夠和剛性齒輪的齒槽嚙合 的位置。



當波產生器朝順時針方向移動 180 度後,彈性齒杯會朝逆時針方向移動 1 片齒槽的

當波產生器旋轉1圈(360度)後,由於彈 性齒杯的齒槽數量比剛性齒輪還少2片,因 此會朝逆時針方向移動2片齒槽的距離。在 一般狀態下,會將此動作作為輸出進行利 用。

■ Harmonic Drive®的進化



Harmonic Drive[®] 自從誕生以來,便持續進化。與 1981 年的 CS 系列相比,目前主力商品 CSF 系列的厚度降為 5 分之 3、動力傳動亦達到 2 倍,在次世代的 CSD 系列上,更是 將厚度縮減到 CS 系列的 3 分之 1、並成功達到高轉矩及高 旋轉精度的高性能。

產品系統圖

系列名稱

產品特徵

	凡例 ◎:最優 ○·優良 △·良									
種: 峰值轉矩(N·m)	瀬 速 比	轉矩、重量比	扭轉剛性 力矩剛性	旋轉精度	輕量	薄型	中空結構	自訂	壽命	刊載 頁數
23~3400	50~160	0	0	0	0	0	Δ	0	0	035
1.8~9200	30~160	0	0	0	0	0	Δ	0	0	035
12~820	50~160	0	0	0	0	0	0	0	0	061
23~3400	50~160	0	0	0	0	0	0	0	0	079
9.0~1840	30~160	0	0	0	0	0	0	0	0	079
7.8~330	50~160	Δ	Δ	Δ	0	0	0	0	Δ	103
9.8~4000	50~320	Δ	Δ	Δ	Δ	Δ	0	0	Δ	111
種	類	轉矩、重量比	扭轉剛性 力矩剛性	旋轉精度	輕量	薄型	中空結構	自訂	壽命	刊載
峰值轉矩(N·m)	減速比						^			頁數
23~3400 23~3400	50~160	0	0			0	^	0	0	123
9.0~2600	50 ~ 160 30~160	0	0		0	0	Δ	0	0	123
9.0~2600	30~160 30~160	0	0					0	0	123
127~3419	50 ~ 160		0				_	0	0	145
12~823	50~160	0	0				0	0	0	157
12~453	50~160		0				0	0	0	157
23~3400	50~160		0					0	0	177
23~3400	50 ~ 160		0				0	0		177
9.0~1800	30~160		0					0	0	177
9.0~1800	30 ~ 160	0	0				0	0	0	177
23~3400	50~160	0	0				_	0	0	177
9.0~1800	30~160	0	0				_	0	0	177
12 ~ 450	50 ~ 160	0	0	0	0	0	0	0	0	213
0.13~0.30	30~100	0	Δ		0	0	_	0	0	235
0.5~28	30~100	0	Δ			0	_	0	0	249
1.8~28	50~100	0	0	0	0	0	_	0	0	275
25~106	30~100	0	0	0	0	0	0	0	0	289
23~3400	50~160	0	0	0	0	0	0	0	0	177
9.0~1800	30~160	0	0	0	0	0	0	0	0	177
23~3400	50~160	0	0	0	0	0	_	0	0	177
9.0~1800	30~160	0	0	0	0	0	_	0	0	177
12~450	50~160	0	0	0	0	0	0	0	0	213
種	. 類		扭轉剛性	* * * * * * * * * * * * * * * * * * *		漆刑	中空結構	ΔĒT	÷ 4	刊載
峰值轉矩(N·m)	減 速 比	□ 轉矩、重量比	力矩剛性	旋轉精度	輕量	薄型	丁工和 特	自訂	壽命	頁數
23~3400	50~160	Δ	Δ		0	0	0	0	\triangle	301
9.0~1800	30~160	Δ	Δ	Δ	Δ	0	_	\triangle	\triangle	301
極症 (N)		轉矩、重量比	扭轉剛性 力矩剛性	旋轉精度	輕 量	薄型	中空結構	自訂	壽命	刊載
峰值轉矩(N·m) 23~3400	減速比50~160	0	0	0			_	Δ	0	317
18~2600	50~160	0	0	0	Δ	Δ	_	Δ	0	317
		I	·	1	ı	ı	1	※產品	 品優劣為本公司產品	

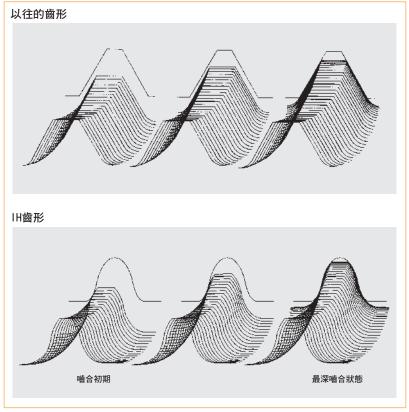
■技術資料	008
Component Type	_
■元件型	 035
• CSG/CSF系列 ····································	035
• CSD系列	061
• SHG / SHF系列	079
• FB系列 ·······	103
• FR系列 ····································	111
VI 1. 70	
Unit Type	
■模組型 ─────	 123
• CSG/CSF系列	123
• CSD系列····································	157
• SHG / SHF系列····································	177
• SHD系列 ·······	213
• CSF supermini系列 ····································	235
• CSF-mini系列	249
• FBS-2UH 系列 ···································	289
DIW 4.16	
Differential Gear	
■差動齒輪 ────	301
• FD系列	301
Gear Head Type	
■減速機型	 317
• CSG-GH / CSF-GH系列 ····································	317
	200
■ 保固、商標 ····································	
Hallionic Drive 使用女主注息争填	321

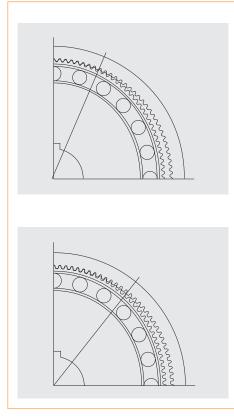
Engineering Data —

技術資料

Engineering Data	
	00
	01
	杯型 01
	帽型 01
	平板型01
額定表用語	01
壽命	01
強度	01
選擇型號	01
潤滑劑	01
	潤滑脂潤滑劑 01
	Harmonic潤滑脂® 4B No.2的
	使用注意事項 01
	潤滑油01
	特殊環境用潤滑劑 01
	02
	02
	02
	02
	02
	02
	02
設計注意事項	02
	設計指南02
	輸入及輸出軸的軸承支撐02
	波產生器 02
組裝注意事項	02
	密封機構02
	組裝注意事項 02
	空轉狀態 02
檢查主軸承	03
	確認步驟 03
	最大負載力矩負重計算方法 03
	平均負載的計算方法 03
	徑向負載係數(X)、
	推力負載係數 (Y) 的計算方法 ··········· 03
	壽命的計算方法 ····································
	振盪運動時的壽命計算方法 03
	靜態安全係數的計算方法 03

齒形

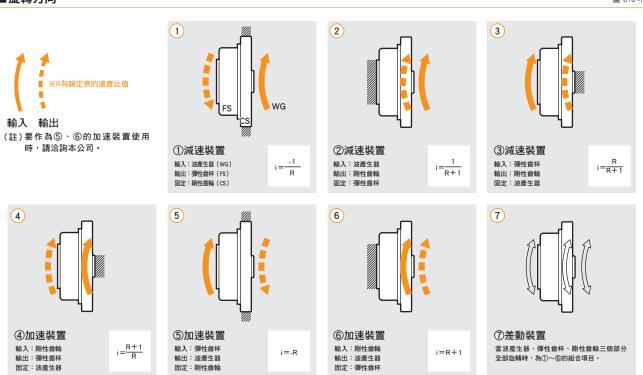

■IH 齒形的機構


IH 齒形是一種為滿足 Harmonic Drive® 的要求所獨創的齒形機構。IH 齒形獨具的特殊曲線,能讓同類齒形相互連續接觸。此外,針對齒厚擴大了相應的齒溝寬度以及齒根的 R 角,緩和了應力集中的情況。圖為相對於固定的剛性齒輪齒,彈性齒杯反覆發生彈性變形並進行移動的示意圖。

齒與齒的接觸從嚙合初期就一直持續進行。而這種齒與齒的連續接觸,能讓同時嚙合齒數幾近達到總齒數的 30%。使用 IH 齒形的 Harmonic Drive® 既保持了使用漸開線齒形的傳統機型的流暢性,並在精度、強度、剛性、使用壽命等方面達到飛越性的技術革新。

※ 已獲專利

 齒嚙合路徑
 圖 009-1
 齒嚙合區域
 圖 009-2



旋轉方向與減速比 :

杯型

杯型 Harmonic Drive®的旋轉方向與減速比如下所示。 杯型 Harmonic Drive®包括下列系列產品。 CSG、CSF、CSD、CSF-mini、CSF-GH

※ 用作加速機時,將發生轉矩脈動。詳情請洽詢本公司。

■減速比

Harmonic Drive® 的減速比,由彈性齒杯與剛性齒輪的齒數決定。

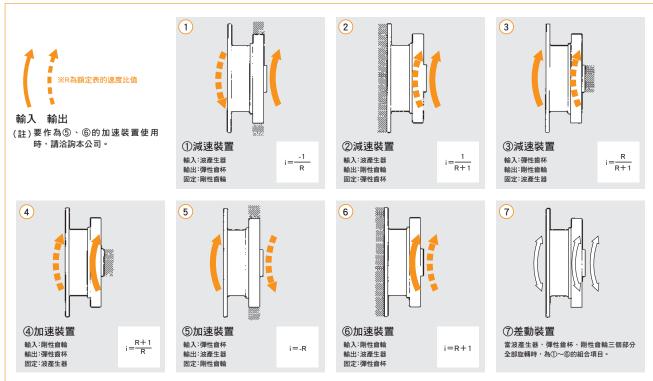
彈性齒杯的齒輪數:Zf 剛性齒輪的齒輪數:Zc

▶輸入:波產生器 輸出:彈性齒杯 固定:剛性齒輪減速比 i₁= 1/R₁ = Zf-Zc/Zf

 輸入:波產生器 輸出:剛性齒輪 固定:彈性齒杯
 減速比 i₂= 1/R₂ = Zc-Zf/Zc

■額定表的減速比數值以R₁表示。

「例」彈性齒杯的齒輪數:200 剛性齒輪的齒輪數:202


 輸入:波產生器 輸出:彈性齒杯 固定:剛性齒輪
 減速比 i₁= 1/R₁ = 200-202/200 = -1/100

▶ 輸入: 波產生器 輸出: 剛性齒輪 固定: 彈性齒杯 $i_2 = \frac{1}{R_2} = \frac{202-200}{202} = \frac{1}{101}$

帽型

帽型 Harmonic Drive® 的旋轉方向與減速比如下所示。 帽型 Harmonic Drive® 包括下列系列產品。 SHG、SHF、SHD

■ 旋轉方向

※ 用作加速機時,將發生轉矩脈動。詳情請洽詢本公司。

■減速比

Harmonic Drive® 的減速比,由彈性齒杯與剛性齒輪的齒數決定。

彈性齒杯的齒輪數:Zf 剛性齒輪的齒輪數:Zc

▶輸入:波產生器 輸出:彈性齒杯 固定:剛性齒輪

$$\left. \right\}$$
 減速比 $i_1 = \frac{1}{R_1} = \frac{Zf-Zc}{Zf}$

▶輸入:波產生器 輸出:剛性齒輪 固定:彈性齒杯

減速比
$$i_2 = \frac{1}{R_2} = \frac{Zc-Zf}{Zc}$$

■額定表的減速比數值以R₁表示。

「例」彈性齒杯的齒輪數:200 剛性齒輪的齒輪數:202

▶輸入:波產生器 輸出:彈性齒杯 固定:剛性齒輪

$$\left. \right\}$$
 減速比 $i_1 = \frac{1}{R_1} = \frac{200-202}{200} = \frac{-1}{100}$

▶輸入:波產生器 輸出:剛性齒輪 固定:彈性齒杯

$$\left. \left. \right\}$$
 減速比 $i_2 = \frac{1}{R_2} = \frac{202-200}{202} = \frac{1}{101} \right.$

平板型

平板型 Harmonic Drive® 的旋轉方向與減速比請參閱各系列相關頁數內容。平板型 Harmonic Drive® 包括下列系列產品。 FB、FR

額定表用語:

Harmonic Drive®額定表內容包括6項數值以及慣性力矩。額定表的數值,請參閱各系列相關頁數內容。

■額定轉矩

輸入轉速為 2000r/min 時的容許連續負載轉矩。

■起動、停止時的容許峰值轉矩(參閱圖表 012-1)

起動、停止時,將因負載慣性力矩導致 Harmonic Drive® 承受較恆定轉矩更大的負載。

額定表中的數值,為此時的峰值轉矩容許值。

■平均負載轉矩的容許最大值

當負載轉矩或輸入轉速變化時,需要另外求出負載轉矩的平均值。額定表中的數值,為此一平均負載轉矩的容許值。

當平均負載轉矩(公式:014頁)超過額定表中數值時,將因發熱 導致潤滑劑提早劣化,或是齒磨耗加劇。務請注意。

■瞬間容許最大轉矩(參閱圖表 012-1)

除了通常負載轉矩、起動或停止時負載轉矩外,也會有來自外部無 法預期的衝擊轉矩。但衝擊轉矩的最大值不得超過額定表的瞬間最 大轉矩。

另外,衝擊轉矩的施加頻率設有限制。請參閱「壽命」、「強度」 等項目。

若有可能施加此種轉矩時,請參閱各系列的「如何以螺栓鎖緊彈性 齒杯」相關內容。

■容許最高輸入轉速、容許平均輸入轉速

使用時,輸入轉速請勿超過額定表所示容許值的範圍。 (平均輸入轉速公式:014 頁)

■慣性力矩

表示各型號波產生器軸上的慣性力矩。

負載轉矩模式範例 圖表 012-1 異常時的衝擊轉矩 起動 恆定 負載轉矩 →時間 峰值轉矩 恆定狀態的轉矩 起動、停止時的 瞬間最大轉矩 停止 起動 (速度週期) -轉速 標達生器I →時間

壽命

■波產生器的壽命

Harmonic Drive $^{\otimes}$ 的使用壽命,由波產生器軸承的壽命決定。和一般滾珠軸承相同,由轉速與負載轉矩計算求出。

表 012-1

	壽命時間				
系列名稱	CSF , CSD , SHF , SHD , CSF-mini , CSF-GH	CSG , SHG			
L10(10% 受損機率)	7,000 小時	10,000 小時			
L50 (平均壽命)	35,000 小時	50,000 小時			

※ 額定表記載之額定轉速、額定轉矩下的運轉壽命。

依據實際運轉條件的壽命時間(Lh)公式

公式 012-1

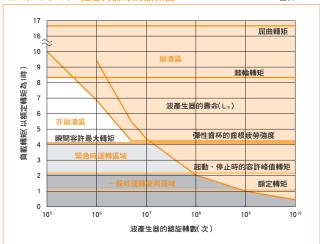

$$Lh = Ln \cdot \left(\frac{Tr}{Tav}\right)^3 \left(\frac{Nr}{Nav}\right)$$

表 012 -2

Ln	L10 或 L50 時的壽命時間
Tr	額定轉矩
Nr	額定轉速
T <i>av</i>	輸出端的平均負載轉矩(公式:014頁)
Nav	平均輸入轉速(公式:014頁)

Harmonic Drive® 強度與壽命的關係圖

圖表 012-2

(注)

Harmonic Drive®請維持在「一般時運轉使用區域」中使用。若超出「一般時運轉使用區域」 使用範圍,將加速 Harmonic Drive® 的損壞。

- ※ 上述圖表未考慮齒面磨耗等潤滑壽命。
- ※請以上述圖表作為參考值。

強度

■彈性齒杯的強度

彈性齒杯會反覆發生彈性變形,所以 Harmonic Drive® 的傳動轉矩以彈性齒杯的齒根疲勞強度為基準。

額定轉矩、起動與停止時的容許峰值轉矩等數值,為彈性齒杯的齒 根疲勞極限之內的數值。

若施加超過起動或停止峰值轉矩的衝擊轉矩,恐將產生疲勞破壞。 為了避免產生疲勞破壞,設有衝擊轉矩的施加次數限制。但衝擊轉 矩的最大值不得超過瞬間容許最大轉矩。

在波產生器承受衝擊轉矩時,彈性齒杯的彈性變形次數限制: 1.0×10^4 (次)

基於此一彈性變形次數限制,可求出衝擊轉矩施加的容許次數。

公式 013-1

$$N = \frac{1.0 \times 10^4}{2 \times \frac{n}{60} \times t}$$

表 013 -1

容許次數	N次					
衝擊轉矩的施加時間	t sec					
當時的波產生器轉速	n r/min					
波產生器旋轉 1 次,將使彈性齒杯產生	波產生器旋轉 1 次,將使彈性齒杯產生 2 次彈性變形。					

當衝擊轉矩超過容許次數,彈性齒杯可能產生疲勞破壞。

■屈曲轉矩

波產生器為固定狀態下,對彈性齒杯(輸出)施加過度轉矩時,將 引起彈性齒杯的塑性變形,並將導致彈性齒杯胴部發生屈曲,進而 破損。

此時的轉矩,稱為屈曲轉矩。

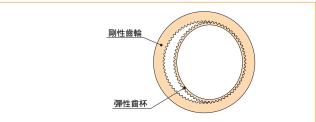
※ 屈曲轉矩的數值,請參閱各系列相關頁數內容。

Harmonic Drive®無法在彈性齒杯產生屈曲的狀態下使用, 請特別注意。

■棘輪轉矩

運轉中若施加過度的衝擊轉矩,可能出現彈性齒杯未破損,但剛性 齒輪與彈性齒杯的嚙合瞬間脫開的情況。此一現象稱為棘輪效應, 此時的轉矩稱為棘輪轉矩(數值請參閱各系列相關頁數內容)。如 果發生棘輪效應卻繼續運轉,將受到棘輪效應發生時產生的磨屑影 響,導致齒輪早期磨耗或縮短波產生器軸承的使用壽命。

- ※ 棘輪轉矩的數值,請參閱各系列相關頁數內容。
- ※ 棘輪轉矩受到剛性齒輪安裝之外殼剛性的影響。詳情請洽詢本公司。


發生棘輪效應時,無法正常嚙合,可能如圖 013-1 般偏往單側。如在此狀態下運轉,將因產生振動引起彈性齒杯破損,務請注意。

一旦發生棘輪效應,齒尖將會磨耗,第二次以後的棘輪 效應發生轉矩值將會降低。這一點也務請注意。

圖 013 -1

此一情況,稱為空轉。

選擇型號:

一般來說,伺服系統幾乎不會出現連續固定負載的狀況。輸入轉速 或負載轉矩會發生變化,起動或停止時會施加較大的轉矩。此外, 還可能會承受非預期的衝擊轉矩。

將這些變動負載轉矩換算成平均負載轉矩後,再選擇型號。 此外,模組型在外部負載的直接支撐(輸出凸緣部)組裝了精密交 叉滾柱軸承,請一併檢查最大負載力矩負重、交叉滾柱軸承壽命以 及靜態安全係數。(參閱030頁「檢查主軸承」)

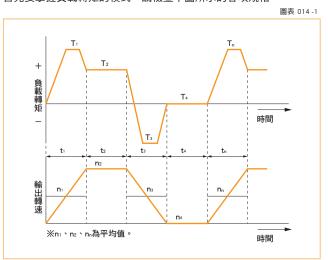
■型號選擇流程圖

選擇型號時,請依下列流程圖進行。

計算平均輸出轉速:

只要超過任一額定表數值,請重新檢討使用高一級的型號,或是降 低負載轉矩等條件。

> 依據負載轉矩模式計算施加在Harmonic Drive輸出端上的平均 負載轉矩: Tav (N·m)


$$Tav = \sqrt[3]{\frac{|n_1| \cdot t_1| \cdot |T_1|^3 + n_2| \cdot t_2| \cdot |T_2|^3 + \cdots + n_n| \cdot t_n| \cdot |T_n|^3}{|n_1| \cdot t_1| + n_2| \cdot t_2| + \cdots + n_n| \cdot t_n|}}$$

根據下列條件暫定型號。Tav ≤ 平均負載轉矩的容許最大值

(參閱各系列額定表)

n1 *t1 +n2 *t2 + * * * nn *tn

■確認負載轉矩模式

首先要掌握負載轉矩的模式。請檢查下圖所示的各項規格。

求出各負載轉矩模式的數值

負載轉矩 T_n (N·m) tn (sec) n_n (r/min) 輸出轉速

<一般運轉模式>

起動時 $T_1 > t_1 > n_1$ 恆定運轉時 T2 \ t2 \ n2 停止(減速)時 T3 * t3 * n3 休止時 T₄ \ t₄ \ n₄

<最高轉速>


最高輸出轉速 no max 最高輸入轉速 ni *max* (會因馬達等而受限。)

<衝擊轉矩>

施加衝擊轉矩時 Ts 'ts 'ns

<需求壽命>

L₁₀= L (小時)

確認暫定型號的數值是否在 ni av ≦ 容許平均輸入轉速 (r/min) ni max≦ 容許最高輸入轉速 (r/min) 額定表的數值範圍內。

OK

確認Ti、Ti的數值是否在額定表的起動、停止時的容許峰值轉矩 (N·m)數值範圍內。

OK

確認TS的數值是否在額定表的瞬間容許最大轉矩(N·m)數值範圍內

依據施加衝擊轉矩時的輸 許次數(Ns),並確認是 否符合使用條件。

重新檢討運轉條件或型號

出轉速ns與時間ts,計算容 Ns= 104 (次)·····Ns ≤ 1.0×10⁴ (次) 2. <u>ns · R</u> · t 60

OK

 $L_{10}=7000\cdot(\frac{Tr}{Tav})^3\cdot(\frac{nr}{niav})$ (小時) 計算壽命時間。

檢查計算的壽命時間是否超過波產生器的壽命時間。 (參閱013百)

決定型號

重新檢討運轉條件或型號

■型號選擇範例

各負載轉矩模式的數值

T_n (N·m) 負載轉矩 時間 tn (sec) 輸出轉速 n_n (r/min)

<一般運轉模式>

起動時 $T_1 = 400 \text{N·m} \cdot t_1 = 0.3 \text{sec} \cdot n_1 = 7 \text{ r/min}$ 恆定運轉時 $T_2 = 320 \text{N·m} \cdot t_2 = 3 \text{sec} \cdot$ $n_2 = 14 \text{ r/min}$ 停止 (減速) 時 T₃=200N·m、 t₃=0.4sec、 n₃=7 r/min $T_4 = 0 \text{ N·m}$ $t_4 = 0.2 \text{sec}$ $n_4 = 0 \text{ r/min}$

<最高轉速>

最高輸出轉速 no max = 14 r/min最高輸入轉速 ni max = 1800 r/min(會因馬達等而受限。)

施加衝擊轉矩時 $T_s = 500 \text{N} \cdot \text{m} \cdot t_s = 0.15 \text{sec} \cdot n_s = 14 \text{ r/min}$

<需求壽命>

<衝擊轉矩>

L₁₀=7000(小時)

依據負載轉矩模式計算施加在Harmonic Drive輸出端上的平均負載轉矩:Tav (N·m)

$$Tav = \sqrt[3]{\frac{7r/\min \cdot 0.3 \sec \cdot |400N \cdot m|^3 + 14r/\min \cdot 3 \sec \cdot |320N \cdot m|^3 + 7r/\min \cdot 0.4 \sec \cdot |200N \cdot m|^3}{7r/\min \cdot 0.3 \sec + 14r/\min \cdot 3 \sec + 7r/\min \cdot 0.4 \sec}}$$

根據下列條件暫定型號。 Tav =319N·m≤451N·m(型號CSF-40-120的平均負載轉矩容許最大值:參閱額定表 ·0399頁) 故暫定為CSF-40-120-2A-GR

計算平均輸出轉速:no av (r/min)

no
$$av = \frac{7r/\text{min} \cdot 0.3\text{sec} + 14r/\text{min} \cdot 3\text{sec} + 7r/\text{min} \cdot 0.4\text{sec}}{0.3\text{sec} + 3\text{sec} + 0.4\text{sec} + 0.2\text{sec}} = 12r/\text{min}$$

決定減速比(R)。

1800r/min - = 128.6 ≥ 120

依據平均輸出轉速(no av)與減速比(R)

ni $av = 12r/min \cdot 120 = 1440r/min$

計算平均輸入轉速:ni av (r/min)

ni max = 14r/min • 120 = 1680r/min 依據最高輸出轉速(no max)與減速比(R)

計算最高輸入轉速:ni max (r/min)

確認暫定型號的數值是否在額定表的數值範圍內。

ni av =1440r/min≤3600r/min(型號40的容許平均輸入轉速) ni max=1680r/min≤5600r/min(型號40的容許最高輸入轉速)

OK

確認Ti、To的數值是否在額定表的起動、停止時的容許峰 值轉矩(N·m)數值範圍內。

T₁=400N·m≤617N·m (型號40的起動、停止時容許峰值轉矩) T₃=200N·m≤617N·m(型號40的起動、停止時容許峰值轉矩)

確認T.的數值是否在額定表的瞬間容許最大轉矩(N·m)數值範圍內。 T.=500N·m≤1180N·m(型號40的瞬間容許最大轉矩)

依據施加衝擊轉矩時的輸出轉速n.與時間t.,計算容許次數 (N:), 並確認是否符合使用條件。

N_s =
$$\frac{10^4}{2 \cdot \frac{14r/\text{min} \cdot 120}{60}}$$
 = 1190 ≤ 1.0×10⁴ (次)

294N·m_)*(-2000r/min 計算壽命時間。 L10= 7000 · (--)(小時) 319N·m

> 檢查計算的壽命時間是否超過波產生器的壽命時間。(參閱012頁) L10=7610小時≧7000(波產生器的壽命時間:L10)

根據上述結果,決定為CSF-40-120-2A-GR

潤滑劑

元件型產品的潤滑方式分為潤滑脂潤滑以及潤滑油潤滑等 2 種。 模組型、減速機型的潤滑方式則以潤滑脂潤滑為標準。出貨前已封 入潤滑脂,組裝時無需另行注入、塗佈。但是,簡易模組型並未灌 入潤滑脂,務請注意。

右列溫度範圍以外的潤滑劑,請參閱 019 頁內容。

※ 若因維修需要,希望使用稠度 0(NLGI No.0)的油品時,請洽詢本公司營業據點。

BBAD	त क्या	43	557
	ヨ凹川	名	熚

表 016 -1

潤滑脂	Harmonic 潤滑脂 ® SK-1A
	Harmonic 潤滑脂® SK-2
/11/月/1日	Harmonic 潤滑脂® 4B No.2
	Harmonic 潤滑脂 ® HFL-1
潤滑油	工業用 2 種齒輪油(極壓)ISO VG68

使用環境溫度節圍

主 016

	庆		
	潤滑脂	SK-1A 0°C∼+40°C	
		SK-2 0°C∼+40°C	
		4B No.2 -10°C∼+70°C	
		HFL-1 0°C∼+ 40°C	
	潤滑油	ISO VG68 0°C~+40°C	

(註)高溫側請於環境溫度溫升 40℃以內使用。

潤滑脂潤滑劑

■潤滑脂種類

Harmonic 潤滑脂® SK-1A -

專為 Harmonic Drive® 使用而開發的潤滑脂,在耐久性、效率特性上較市售泛用黃油更為優異。

Harmonic 潤滑脂® SK-2 -

專為小型 Harmonic Drive® 使用而開發,將極壓添加劑液化,確保波 產生器旋轉時的優異順暢性的潤滑脂。

Harmonic 潤滑脂® 4B No.2 -

專為 CSF、CSG 系列使用而開發,具有適於較長使用壽命的流動特性,並可於廣泛溫度範圍內使用的潤滑脂。

Harmonic 潤滑脂® HFL-1 -

專為 Harmonic Drive® 使用而開發的食品機械用(登錄為 NSF H1 等級)潤滑脂。

(注)1. 潤滑脂潤滑需具備密封機構。

對於旋轉部分與連結接觸面,請採取下列對策。

尤其是使用 Harmonic 潤滑脂®4B No.2、HFL-1 時,必須嚴格採用密封機構。 旋轉部…請使用帶彈簧的油封。

連結接觸部…注意平面不均整或損傷,使用 〇 型環或密封劑。

2. 4B No.2 在運轉初期,承受剪力部位(波產生器附近處)的潤滑脂也會變得柔軟。 其硬度雖然要看各種運轉條件而定,但 NLGI 稠度會在 No.0 至 00 左右。

表 016 -3

混合稠度範圍
355 ~ 385
400 ~ 430

■機種別適用潤滑脂

根據型號、速度比,適用不同的潤滑脂。請參閱下列適用表。一般情況,建議使用 SK-1A 及 SK-2。

減速比 30 的適用潤滑脂

表 016 -4

型號	8	11	14	17	20	25	32
SK-1A	_	_	-	-	0	0	0
SK-2	0	0	0	0	-	-	_
4B No.2	Δ	Δ	Δ	Δ			

減速比 50 以上的適用潤滑脂

表 016 -5

型號	8	11	14	17	20	25	32
SK-1A	-	_	_	_	0	0	0
SK-2	0	0	0	0	Δ	Δ	Δ
4B No.2	_	-					

型號	40	45	50	58	65	80	90	100
SK-1A	0	0	0	0	0	0	0	0
SK-2	Δ	-	-	-	-	-	-	_
4B No.2								

※○:標準潤滑脂

△:次標準潤滑

□ · 長使用壽命以及高負載情況的建議潤滑脂

潤滑脂規格 表 016-6

潤滑脂	SK-1A	SK-2	4B No.2	HFL-1
基礎油	精煉礦物油	精煉礦物油	合成烴油	精煉礦物油
增稠劑	鋰皂基	鋰皂基	尿素	磺酸鈣
添加劑	極壓添加劑、其他	極壓添加劑、其他	極壓添加劑、其他	極壓添加劑、其他
NLGI 稠度 No.	No.2	No.2	No.1.5	No.0
稠度 (25℃)	265 ~ 295	265 ~ 295	290 ~ 320	355 ~ 385
滴點	197°C	198°C	247°C	280℃以上
外觀	黃色	綠色	淡黃色	淡褐色
保存壽命	密封狀態下 5 年	密封狀態下 5 年 密封狀態下 5 年		密封狀態下 2 年

潤滑脂特性 表 016-7

潤滑脂	SK-1A	SK-2	4B No.2	HFL-1		
耐久性	0	0	0	0		
耐磨耗	0	0	0	0		
低溫性	Δ	Δ	0	Δ		
潤滑脂滲漏	©	©	Δ	Δ		

※ 性能優異: ◎性能適用: ○需注意 : △

表 017-1

■潤滑脂更換時期

潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。 潤滑脂性能會隨溫度而變化,越高溫劣化越劇烈,需要儘早更換。 下方圖表 017-1 是根據平均負載轉矩低於額定轉矩時,潤滑脂溫度 與波產生器總旋轉數關連性所表示的更換時期基準。

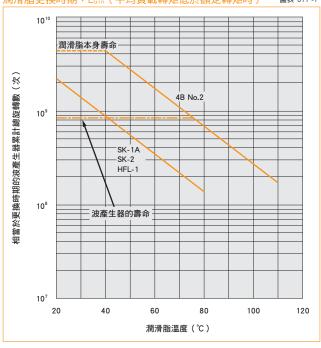
當平均負載轉矩超過額定轉矩,可依下列公式計算更換時期。

平均負載轉矩超過額定轉矩時的公式

公式 017-1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav}\right)^3$$

公式的記號


 Lot
 超過額定轉矩的更換時期
 轉數

 Loth
 未超過額定轉矩的更換時期
 轉數
 參閱圖表 017-1

 Tr
 額定轉矩
 N·m,kgf·m
 參閱各系列「額定表」

 Tav
 輸出端的平均負載轉矩
 公式:參閱 014 頁

※ 波產生器的壽命,係指受損機率 10%。

■其他注意事項

- 切忌與其他潤滑脂混用。此外,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。
- 2. 用於固定負載、固定方向連續運轉時,可能引發潤滑不良。如需 用於此種情形,請洽詢本公司營業據點。
- 模組型的潤滑脂滲漏 模組型雖已於結構上慮及潤滑脂滲漏對策,但仍請依據所使用的 環境強化密封機構。

■「機殼內壁建議尺寸」、「塗佈要領」、「塗佈量」請參閱各系列的設計指南相關頁數內容。

Harmonic 潤滑脂® 4B No.2 的使用注意事項 |

Harmonic 潤滑脂®4BNo.2 活用了適於 Harmonic Drive®的流動特性(因剪力的軟化與均匀性),並於實施下列項目後提升潤滑壽命。

- ①運轉初期讓潤滑脂確實流入各接觸部
- ②去除各接觸部磨合階段的初期磨屑
- ③為接觸部補充潤滑脂

■而為確實執行前述各項機制,使用上須留意幾點

①填充潤滑脂時

儲存容器內的 4B No.2 潤滑脂稠度,會隨靜置時間的加長而變硬。

填充之前,應充分攪拌儲存容器內的潤滑脂直到軟化,再進行填充。

②關於燒機 (磨合運轉)

正式運轉前先燒機,能讓填充的潤滑脂軟化,流往 Harmonic Drive® 的各接觸部,可獲得更具效果的潤滑性能。因此,建議以下列方式進行燒機。

- · 內部溫度維持在 80°C以下(不可進行急遽高溫燒機)。
- · 輸入轉數:1000r/min \sim 3000r/min,但前述範圍內的轉數越低,越有效果。
- · 燒機時間: 20 分鐘以上。
- · 燒機動作範圍:盡可能拉大輸出旋轉角度。

如對上述說明有任何不清楚之處,敬請洽詢本公司。

潤滑油

■潤滑油種類

標準指定的潤滑油為「工業用 2 種齒輪油(極壓) ISO VG68」。 市售潤滑油則建議使用下列品牌。

表 018 -1

標準	美孚石油	埃索	昭和殼牌石油	Cosmo 石油	日本能源	ENEOS	出光興產	通用石油	NOK 克魯勃
工業用2種	Mobil	Spartan	Omala	Cosmo gear	ES gear	BONNOC TS68	Daphne	General Oil	SYNTHESO
齒輪油(極壓)	gear	EP68	Oil	SE68	G68	BONNOC AX68	super gear	SP gear	D-68EP
ISO VG68	600XP68		68				LW68	roll 68	

■潤滑油更換時期

第 1 次 ……………開始運轉後 100 小時

第 2 次起 …… 每運轉 1000 小時或每 6 個月

但若使用環境狀況嚴苛,應考慮提早更換。

■「油面位置」、「彈性齒杯油槽加工尺寸」、「油量」請參閱各系列的設計指南相關頁數內容。

■其他注意事項

- 1. 切忌與其他潤滑油混用。此外,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。
- 型號50以上且用於額定表容許輸入轉速附近時,可能因為使用條件而發生潤滑不良,請洽詢本公司。

特殊環境用潤滑劑

環境溫度特殊時(表 016-2「使用環境溫度範圍」以外情形),請考慮下列所示潤滑劑使用溫度範圍以及使用條件,選擇合適的潤滑劑。

Harmonic 潤滑脂 ®4B No.2

表 019

潤滑種類	使用溫度範圍	可使用溫度範圍
潤滑脂	-10°C∼+110°C	-50°C∼+130°C

高溫用潤滑劑

表 019-2

潤滑種類	潤滑劑及其製造商	可使用溫度範圍
潤滑脂	Mobil grease 28:美孚石油	-5℃~+160℃
潤滑油	Mobil SHC-626:美孚石油	-5°C∼+140°C

低溫用潤滑劑

表 019 -3

潤滑種類	潤滑劑及其製造商	可使用溫度範圍
潤滑脂	Multemp SH-K II:協同油脂	-30°C∼+50°C
/1月/月/1日	ISOFLEX LDS-18 SPECIAL A: NOK 克魯勃	-25°C∼+80°C
測溫油	SH-200-100CS: Toray Silicone	-40°C∼+140°C
潤滑油	SYNTHESO D-32EP:NOK 克魯勃	-25℃~+90℃

- · Harmonic 潤滑脂 ® 4B No.2 的使用溫度範圍,為考慮 Harmonic Drive® 的性能與特性之下的潤滑部溫度(非環境溫度)。
- · 可使用溫度範圍為潤滑劑單獨的溫度,應為 Harmonic Drive® 的運轉條件(負載轉矩、轉速、運轉週期等)設限。此外,環境溫度為極低溫或極高溫時,也需要檢討 Harmonic Drive® 各部分的材質,請洽詢本公司。
- ·如能考量到 Harmonic 潤滑脂 ®4B No.2 低溫時黏度上升造成 Harmonic Drive® 運轉轉矩增加,以及高溫氧化劣化時的潤滑脂壽 命,也可以在可使用溫度範圍內使用。

食品機械用潤滑劑

Harmonic 潤滑脂® HFL-1

- ·與 SK-1A、SK-2 具備同等的壽命/效率特性
- ·取得 NSF H1 認證

類別: Non-Foodcompound H-1

登錄編號:156753

※ 若考慮於 Harmonic Drive® 使用食品機械用潤滑脂時,請洽詢本公司營業據點。

剛性

就伺服系統而言,驅動系的剛性與背隙將大幅影響系統性能。 設計裝置以及選擇型號時,應就前述各項進行詳細檢討。

■剛 性

固定輸入端(波產生器)並對輸出端(彈性齒杯)施加轉矩,輸出端將產生與轉矩幾乎等比例的扭轉。

圖 020-1 是將施加於輸出端的轉矩,從 0 開始向正方向以及負方向分別增減 $+T_0$ 至 $-T_0$ 時的輸出端扭轉角度量後繪製而成。這張圖稱為「轉矩 — 扭轉角度線圖」,一般情況會描繪出 0 — A — B — A'—B'— A的循環。Harmonic Drive®的剛性,將「轉矩 — 扭轉角度線圖」的斜率表示為彈簧常數。(單位:N·m/rad)

如圖 020-2 所示,此一「轉矩 — 扭轉角度線圖」可分為 3 部分,各區域的彈簧常數各以 K₁、K₂、K₃表示。

 K_1 ……轉矩從「0」至「 T_1 」為止的彈簧常數 K_2 ……轉矩從「 T_1 」至「 T_2 」為止的彈簧常數 K_3 ……轉矩在「 T_2 」以上的彈簧常數

■各彈簧常數 $(K_1 \times K_2 \times K_3)$ 以及轉矩一扭轉角 $(T_1 \times T_2 - \theta_1 \times \theta_2)$ 的數值,請參閱各系列相關頁數內容。

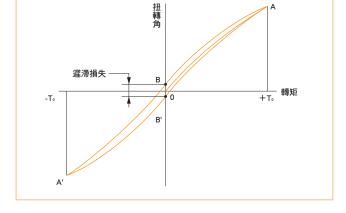
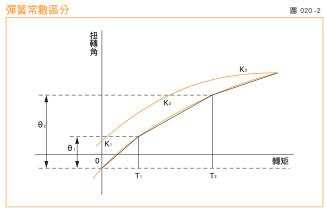



圖 020 -1

■扭轉量計算範例

以 CSF-25-100-2A-GR 為例,計算扭轉量(θ)。

負載轉矩極小,T」=2.9N⋅m 時 -

轉矩在 T₁ 以下,因此扭轉量 θ_{L1} 為

 $\theta_{L1}{=}T_{L1}/K_1$

 $=2.9/3.1\times10^{4}$

 $=9.4\times10^{-5}$ rad (0.33 arc-min)

負載轉矩為 T_{L2}=39N·m 時 轉矩在 T₁ 與 T₂ 之間,扭轉量 θ_{L2} 為 θ_{L2}=θ₁+ (T_{L2}-T₁) /K₂ =4.4×10⁻⁴+ (39-14) /5.0×10⁻⁴ =9.4×10⁻⁴rad (3.2 arc-min)

此外,負載若加上正逆方向,其總扭轉量值將是前述求出數值的 2 倍加上背隙量。

※該扭轉量為元件單體的數值。
並不包含輸出軸等的扭轉量,務請注意。

■遲滯損失

如圖 020-1 的線圖,轉矩加至額定後恢復為「0」,扭轉角並不會 完全為「0」,仍然殘留些許餘量 (B — B')。這稱為遲滯損失。

■遲滯損失量請參閱各系列相關頁數內容。

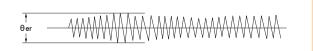
■背隙

轉矩 一 扭轉角度線圖

遲滯損失主要因內部摩擦而產生,轉矩極小時則幾乎不存在,線圖 上只會顯示細小的背隙。這個量即顯示為背隙量。

Harmonic Drive® 將齒嚙合部的背隙量抑制在「0」,因此背隙量是由 波產生器的 Oldham 聯結器(自動校準機構)間隙所導致。剛性型則 無間隙。固定輸入端後測量輸出端的數值極小,如各系列相關頁數 所載。

※ 背隙量請參閱各系列相關頁數內容。


角度伝達精度

角傳動精度為任意旋轉角進行輸入時,理論旋轉的輸出旋轉角度與 實際旋轉的輸出旋轉角度之間的差,並以角傳動誤差表示。

■角傳動精度的數值,請參閱各系列相關頁數內容。

圖表 021 -1

	32 021 -1
θer	角傳動誤差
θ1	輸入旋轉角度
θ2	實際輸出旋轉角度
R	Harmonic Drive® 的減速比(i =1:R)

公式 021 -1

表 021 -1

$$\theta er = \theta_{2} - \frac{\theta_{1}}{R}$$

震動

Harmonic Drive $^{\otimes}$ 帶有的角傳動誤差成分,有時會顯現為負載端的慣性旋轉振動。

尤其是包含 Harmonic Drive® 的振動系固有振動數與機體或負載慣性 固有振動數重疊時,將形成共振狀態,Harmonic Drive® 的角傳動誤 差成分將會增幅,因此請嚴格遵守各系列的設計指南。

另外,Harmonic Drive®的角傳動誤差成分主要來源,是由於 Harmonic Drive®結構上輸入軸旋轉1次會出現2次誤差成分。因此, 誤差主要成分的頻率是輸入頻率的2倍。

假設包含 Harmonic Drive® 的振動系固有振動數為 $f=1\,5Hz$,此時的輸入轉速(N)為

公式 021 -2

$$N = \frac{15}{2} \cdot 60 = 450 \text{r/min}$$

,且於該轉速帶(450r/min)發生共振。

包含 Harmonic Drive® 的振動系固有振動數的計算方法(概述) 公式 021-3

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{J}}$$

ファクロル	ロレが元			₹₹ UZI-Z
			l .	

f	包含 Harmonic Drive® 的振動系固有振動數	Hz	
K	Harmonic Drive® 的彈簧常數	N·m/rad	參閱各系列相關頁數內容
J	負載慣性	kg·m²	

起動轉矩:

起動轉矩係指 Harmonic Drive® 組裝入機殼,並由輸入端(高速端) 施加轉矩時,輸出端(低速端)開始旋轉瞬間的「開始起動轉矩」。 各系列表中數值為最大值,下限值則為最大值的約 1/2 ~ 1/3 左右。

測量條件 無負載,環境溫度:+20℃

■起動轉矩的數值,請參閱各系列相關頁數內容。 ※ 各系列表中數值會因使用條件不同而異,僅作參考值之用。

加速起動轉矩

加速起動轉矩係指 Harmonic Drive® 組裝入機殼,並由輸出端(低速 端)施加轉矩時,輸入端(高速端)開始旋轉瞬間的「開始起動轉 矩」。各系列表中數值為最大值,下限值則為最大值的約 1/2 左右。

測量條件 無負載,環境溫度:+20℃-

■加速起動轉矩的數值,請參閱各系列相關頁數內容。 ※ 各系列表中數值會因使用條件不同而異,僅作參考值之用。

表 023 -1

無負載運轉轉矩 =

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所需之輸入 端(高速軸端)必要轉矩。

本型錄所示的無負載運轉轉矩圖表,係基於表 023-1 的測量條件。 關於減速比 100 以外的減速比,請加上各系列所示修正量後計算。

■無負載運轉轉矩的數值,請參閱各系列相關頁數內容。

州里味叶			£ 025 -1
		洞	速比 100
	200 to 814	潤滑脂 名稱 潤滑	Harmonic 潤滑脂® SK-1A
潤滑條件	潤滑脂潤滑		Harmonic 潤滑脂® SK-2
		塗佈量	適當塗佈量(參閱各系列相關頁數內容)
轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值			

※ 如為潤滑油潤滑,請洽詢本公司。

効率特性■

效率將因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

本型錄所示的各系列效率特性,係基於表 023-2 的測量條件。

■效率數值,請參閱各系列相關頁數內容。

※ 如為潤滑油潤滑,請洽詢本公司

■效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。 請依據各系列效率修正係數圖表求出修正係數 Ke, 並參考下列計算

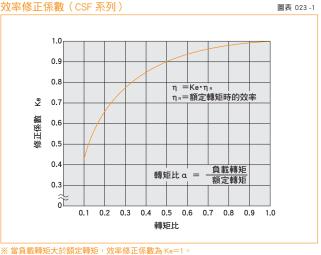
範例計算效率。

計算例 -

以 CSF-20-80-2A-GR 為例,計算下列條件下的效率 η(%)。

輸入轉速: 1000r/min 負載轉矩 19.6N·m

潤滑方式:潤滑脂潤滑(Harmonic 潤滑脂® SK-1A)

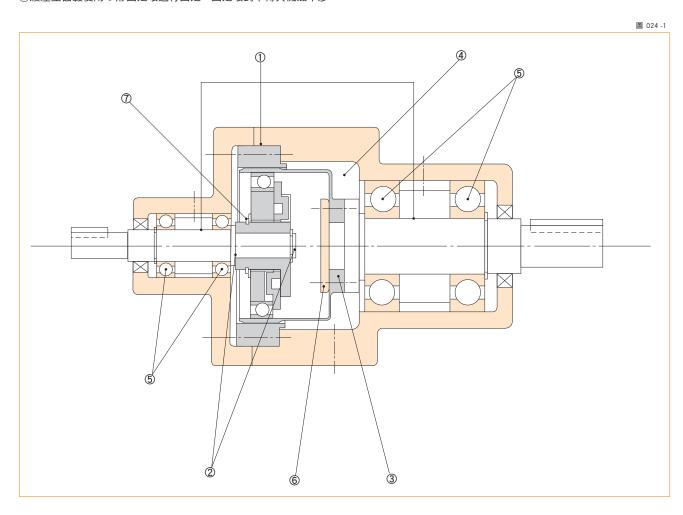

潤滑劑溫度:20℃

型號 20、減速比 80 的額定轉矩為 34N·m (額定表:039 頁),轉

矩比 α 為 0.58。(α=19.6/34=0.58)

- ■依據圖表 023-1,得知效率修正係數 Ke=0.93
- ■負載轉矩 19.6N·m 時的效率 n 為 $\eta = \text{Ke} \cdot \eta R = 0.93 \times 78 = 73\%$ °

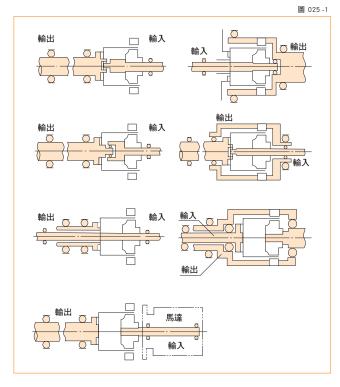
效率修正係數(CSF系列)



設計注意事項 =

設計指南

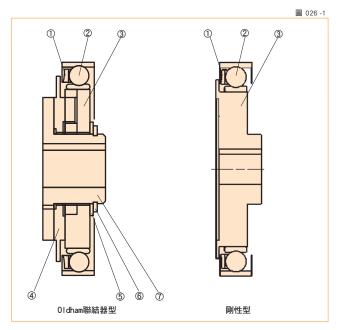
為充分發揮 Harmonic Drive® 性能,敬請注意下列各點。


- ①輸入軸、剛性齒輪、輸出軸及機殼應對正同心。
- ②波產生器會產生推力。輸入軸應採用可支撐該力的結構。關於推力,請參閱 027 頁。
- ③ Harmonic Drive® 雖為小型體積卻能傳動大轉矩,連結彈性齒杯與輸出軸的螺栓部分應以相應鎖緊轉矩加以鎖緊。
- ④彈性齒杯會彈性變形,機殼內壁尺寸應按照建議尺寸。
- ⑤輸入軸與輸出軸必須為合適軸承間隔的2點支撐結構,可完全承受作用於軸的徑向負載、推力負載,且不會為波產生器與彈性齒杯施加多餘力量。
- ⑥安裝彈性齒杯用凸緣的直徑不得超過彈性齒杯凸軸直徑,密接隔板的凸緣部分應取「R」面。各部分尺寸應符合建議尺寸。
- ⑦波產生器轂使用 C 形固定環進行固定,固定環鉤不得與機殼干涉。

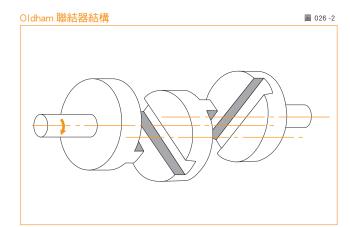
輸入及輸出軸的軸承支撐

元件型產品為承受來自外部的負載,輸入軸與輸出軸必須為合適軸 承間隔的 2 點支撐結構,可完全承受作用於軸的徑向負載、推力負 載,且不會為波產生器與彈性齒杯施加多餘力量。

此外,為了去除軸承間隙,請對徑向及推力方向使用已預載的軸承。 圖 025-1 為軸承配置例示意圖。



波產生器


■波產生器的結構

Harmonic Drive®的波產生器,可分具自動校準機構的 Oldham 聯結 器型以及不具自動校準結構的一體型剛性型,各系列各有不同。 詳情請參閱各系列外觀圖。

波產生器的基本結構以及形狀顯示如下。

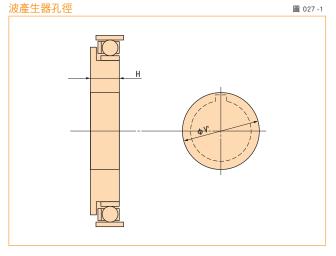
- ①保持器 ②波產生器軸承 ③波產生器栓 ④插入孔
- ⑤橡膠墊圈 ⑥ C 型固定環
- ⑦波產生器轂

公式 027-1

■元件型的最大孔徑尺寸

波產生器的標準孔徑如各型號外觀尺寸圖,但可在表中所示的最大 尺寸範圍內變更。

此時的鍵槽尺寸,建議為 JIS 規格。鍵槽的有效長度尺寸,應可充 分承受傳動轉矩。


※ 亦可為圓錐孔等特殊形狀。

如果要讓孔徑大於最大尺寸,亦有取消 Oldham 聯結器機構的使用方

此時的最大孔徑,考慮負載轉矩造成波產生器栓變形等情況,最大 僅能至下表所示的值。

(該值為包含鍵槽深度尺寸等的數值。)

若希望為其他孔徑,請洽詢本公司。

波產生器轂孔徑

表 027 -1 單位:mm

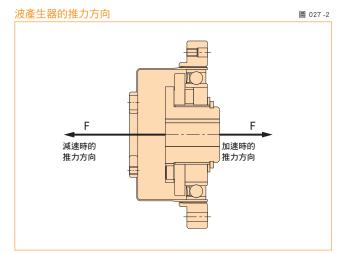
型號	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
標準尺寸(H7)	3	5	6	8	9	11	14	14	19	19	22	24	28	28	28
下孔尺寸	-	-	3	4	5	6	6	10	10	10	13	16	16	19	22
最大尺寸	_	_	8	10	13	15	15	20	20	20	25	30	35	37	40

將波產生器栓直接安裝至輸入軸時的最大栓孔徑

表 027-2

//////////////////////////////////////	() () ()	田野ノ ヘ十四ヶ日	ロリロスノく	T101 T											→
型號	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
最大孔徑 φV'	10	14	17	20	23	28	36	42	47	52	60	67	72	84	95
最小栓厚 ⁰	5.7	6.7	7.2	7.6	11.3	11.3	13.7	15.9	17.8	19	21.4	23.5	28.5	31.3	34.9

■波產生器的推力與軸固定


Harmonic Drive® 因為彈性齒杯彈性變形,運轉中會對波產生器施加 推力。

用於減速機(010頁①、②、③)時,推力將對彈性齒杯隔板方向 作用。(圖 027-2)

此外,用於加速機(010頁④、⑤、⑥)時,其推力作用方向與減 速時的方向相反。(圖 027-2)

波產生器的推力(最大值)可由下列公式求出。此外,推力會隨運 轉條件而改變。高轉矩時、極低速時、固定連續旋轉時有增大的傾 向,幾乎如同公式求出的值。無論任何情況,設計時務必採用阻止 波產生器推力的結構。

(註)若希望於波產生器轂加裝固定螺絲以固定輸入軸時,請務必洽詢本公司。

推力計算公式

表 027-3

減速比	公式
30	$F=2\times \frac{T}{D} \times 0.07 \times tan 32^{\circ}$
50	F=2× T/D ×0.07×tan 30°
80 以上	$F=2\times \frac{T}{D} \times 0.07 \times tan \ 20^{\circ}$

公式的記號

表 027 -4

- 11 TITE			
F	推力	N	參閱圖 027-2
D	(型號)×0.00254	m	
Т	輸出轉矩	N⋅m	

計算例

機種名稱:CSF系列

型 號:32

減速比:50

輸出轉矩:382N·m (瞬間容許最大轉矩)

382 $F=2\times\frac{}{(32\times0.00254)}$ - ×0.07×tan 30°

F=380N

組裝注意事項 =

密封機構|

為防止潤滑脂滲漏並維護 Harmonic Drive® 的高度耐久性,需要下列 模組型的密封處與建議密封方式 密封機構。

·旋轉滑動部······ 油封(含彈簧)。此時請注意勿 使軸側出現損傷等不良。

· 凸緣重合面、嵌合………… O 型環、密封劑。此時請注意平 面不均整、O型環遭咬入等情

形。

·螺孔部……………… 具封止效果的螺絲固定劑(建

議使用 LOCTITE 242) 或密封膠

(註)尤其是使用 Harmonic 潤滑脂 ®4B No.2 時,必須嚴格採用前述機構。

表 028 -1

需要密封處		建議密封方式			
輸出端	輸出凸緣中央的 貫穿孔,以及 輸出凸緣重合面	使用 〇 型環(本公司產品隨附)			
100	安裝螺絲處	具封止效果的螺絲固定劑 (建議使用 LOCTITE 242)			
	凸緣重合面	使用 〇 型環(本公司產品隨附)			
輸入端	馬達輸出軸	請選擇附油封的型號。如果沒有油封,必須 採用馬達安裝凸緣可安裝油封的結構。			

|組裝注意事項 |

Harmonic Drive®可能因組裝時的不良,產生震動或異音。組裝時, 請務必注意下列各點。

■波產生器注意事項

- 1. 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可 順利插入。
- 2. 沒有 Oldham 機構的波產生器,尤應注意讓偏心、垂直的影響落 在建議值範圍內(參閱各系列「組裝精度」)。

■剛性齒輪注意事項

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查剛性齒輪組裝進外殼後是否可旋轉,有無干涉卡住。
- 5. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與剛性齒輪干涉,導致螺栓旋轉困難。
- 6. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫 時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將 螺栓鎖緊。
- 7. 盡量避免釘扎剛性齒輪,以免降低旋轉精度。

■彈性齒杯注意事項

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對彈性齒杯彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與彈性齒杯干涉,導致螺栓旋轉困難。
- 5. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫 時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將 螺栓鎖緊。
- 6. 檢查彈性齒杯與剛性齒輪組合時,有無極度偏往單側、嚙合不良 的情形。如果偏往單側,應為該兩個零件出現偏心或垂直。
- 7. 組裝彈性齒杯時,避免敲打開口部齒尖或過度用力壓入。

■防鏽對策

Harmonic Drive®表面並無防鏽處理。

如需防鏽,應塗佈防鏽劑。

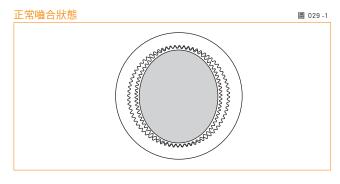
另外,如需本公司進行防鏽表面處理,請洽詢本公司。

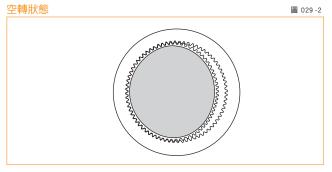
※ 另請參閱 321 頁的 "HarmonicDrive® 元件&模組使用安全注意事項"。

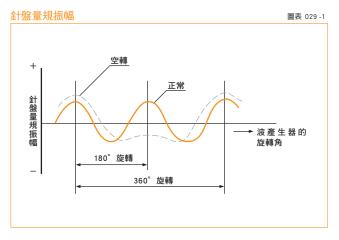
空轉狀態

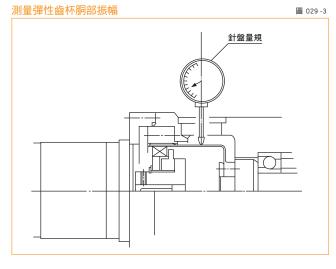
彈性齒杯與剛性齒輪如圖 029-1 般呈現對稱嚙合,為正常現象。但如 013 頁所述,當發生棘輪效應或三項零件勉強壓入組裝的情况下,齒輪可能如圖 029-2 般偏向單邊嚙合。這就稱為空轉狀態。發生空轉卻依舊繼續運轉,將提早引發彈性齒杯疲勞破壞,務請注意。

■空轉的檢查方法


請用下列方法檢查是否發生空轉。


①以轉動波產生器時的轉矩差異進行判別的方法


- 無負載狀態下,請徒手輕轉輸入軸。若以平均力量旋轉,為正常現象。若發現極端差異,就有可能發生空轉。
- 2)波產生器已安裝至馬達時,請以無負載使其旋轉。馬達的平均電流值如果與正常嚙合時數值相比為2~3倍,就有可能發生空轉。


②測量彈性齒杯胴部振幅進行判別的方法

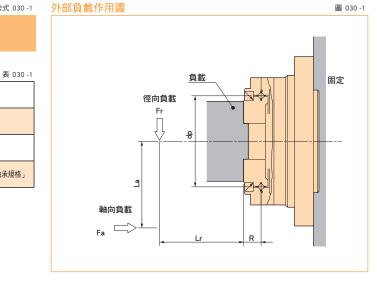
正常組裝時,針盤量規的振幅應如圖表 029-1 的實線所示描繪出正弦波,但發生空轉時,因為彈性齒杯偏向一側,將以虛線描繪出振幅。

檢查主軸承■

模組型以及減速機型在外部負載(輸出凸緣部)的直接支撐組裝了 精密交叉滾柱軸承。(CSF-mini 系列為精密 4 點接觸滾珠軸承) 為充分發揮模組型的性能,請檢查最大負載力矩負重、軸承壽命以 及靜態安全係數。

■主軸承的規格,請參閱各系列相關頁數內容。

確認步驟


最大負載力矩負重計算方法

最大負載力矩負重(Mmax)的計算方法如下所示。 請確認 M*max* ≦ Mc。

公式 030-1 的記號

Fr <i>max</i>	最大徑向負載	N (kgf)	參閱圖 030-1
Famax	最大軸向負載	N (kgf)	參閱圖 030-1
Lr, La		m	參閱圖 030-1
R	偏移量	m	參閱圖 030-1、各系列「主軸承規格」

平均負載的計算方法

(平均徑向負載、平均軸向負載、平均輸出轉數) 徑向負載、軸向負載如有變化,則換算為平均負載確認軸承使用壽 命。

平均徑向負載(Frav)的計算方法

公式 031 -1

圖表 031 -1

$$Fr \, \textit{av} = \sqrt[103]{\frac{n_1t_1(|Fr_1|)^{10/3} + n_2t_2(|Fr_2|)^{10/3} \cdots + n_nt_n(|Fr_n|)^{10/3}}{n_1t_1 + n_2t_2 \cdots + n_nt_n}}$$

(4點接觸軸承)

$$Fr \, av = \sqrt[3]{\frac{n_1 t_1 (|Fr_1|)^3 + n_2 t_2 (|Fr_2|)^3 \cdots + n_n t_n (|Fr_n|)^3}{n_1 t_1 + n_2 t_2 \cdots + n_n t_n}}$$

但在ti區間內的最大徑向負載為Fri,ts區間內的最大徑向負載為Fri。

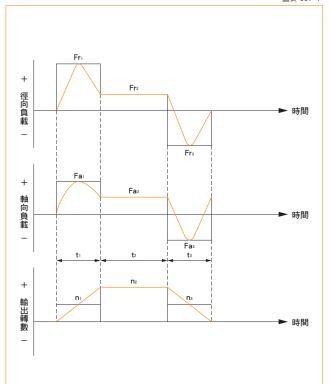
平均軸向負載(Faav)的計算方法

公式 031 -2

(交叉滾柱軸承)

$$Fa \, av = \sqrt[103]{\frac{n_1t_1(|Fa_1|)^{10/3} + n_2t_2(|Fa_2|)^{10/3} \cdots + n_nt_n(|Fa_n|)^{10/3}}{n_1t_1 + n_2t_2 \cdots + n_nt_n}}$$

(4點接觸軸承)


$$Fa av = \sqrt[3]{\frac{n_1t_1(|Fa_1|)^3 + n_2t_2(|Fa_2|)^3 \cdots + n_nt_n(|Fa_n|)^3}{n_1t_1 + n_2t_2 \cdots + n_nt_n}}$$

但在ti區間內的最大軸向負載為Fai,ti區間內的最大軸向負載為Fai。

平均輸出轉數(Nav)的計算方法

公式 031 -3

$$Nav = \frac{n_1t_1 + n_2t_2 \cdots + n_nt_n}{t_1 + t_2 \cdots + t_n}$$

徑向負載係數(X)、推力負載係數(Y)的計算方法

公式 031 -4

負載係數的計算方法	х	Y
Faav ≤ 1.5	1	0.45
Faav Frav+2 (Frav(Lr+R) + Faav • La)/dp > 1.5	0.67	0.67

公式 031-4 的記號

表 031 -1

Frav	平均徑向負載	N (kgf)	參閱「平均負載的計算方法」 (參閱公式 031-1)
Faav	平均軸向負載	N (kgf)	參閱「平均負載的計算方法」 (參閱公式 031-2)
Lr, La		m	參閱圖 030-1
R	偏移量	m	參閱圖 030-1、各系列「主軸承規格」
dp	轉子節圓直徑	m	參閱圖 030-1、各系列「主軸承規格」

壽命的計算方法

軸承的使用壽命,可由公式 032-1 求出。 動態等價徑向負載(Pc),可由公式 032-2 求出。

公式 032 -1

(交叉滾柱軸承)

$$L_{10} = \frac{10^6}{60 \times Nav} \times \left(\frac{C}{fw \cdot Pc} \right)^{10/3}$$

(4點接觸軸承)

$$L_{10} = \frac{10^6}{60 \times Nav} \times \left(\frac{C}{\text{fw} \cdot \text{Pc}}\right)^3$$

公式 032-1 的記號

表 032 -1

•	1.0 1.0 1.0		
L10	壽命	hour	
Nav	平均輸出轉速	r/min	參閱「平均負載的計算方法」
С	基本動定格荷重	N (kgf)	參閱各系列「主軸承規格」
Pc	動態等價徑向負載	N (kgf)	參閱公式 032-2
fw	負載係數		參閱表 032-3

負載係數 表 032 -3

負載狀態	fw
平順無衝擊、振動的運轉時	1 ~ 1.2
一般運轉時	1.2 ~ 1.5
有衝擊、振動的運轉時	1.5 ~ 3

	,	2(Francis - D.) . Francis -)	\
Pc = X•	Frav +	2(Frav (Lr + R)+ Faav • La) dp	+Y•Faav
		чр	

公式 032 -2

公式 03	2-2 的記號	表 032 -2	
Frav	平均徑向負載	N (kgf)	參閱「平均負載的計算方法」 (參閱公式 031-1)
Faav	平均軸向負載	N (kgf)	參閱「平均負載的計算方法」 (參閱公式 031-2)
dp	轉子節圓直徑	m	參閱圖 030-1、各系列 「主軸承規格」
Х	徑向負載係數		參閱公式 031-4
Y	軸向負載係數		參閱公式 031-4
Lr,La		m	參閱圖 030-1
R	偏移量	m	參閱圖 030-1、各系列 「主軸承規格」

圖 033 -1

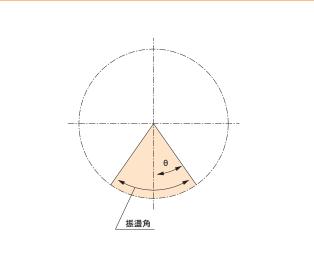
振盪運動時的壽命計算方法

振盪運動時的軸承使用壽命,可由公式 033-1 求出。

公式 033 -1

(交叉滾柱軸承)

$$Loc = \frac{10^6}{60 \times n1} \times \frac{90}{\theta} \times \left(\frac{C}{\text{fw} \cdot \text{Pc}}\right)^{10/3}$$


(4點接觸軸承)

Loc =
$$\frac{10^6}{60 \times n1} \times \frac{90}{\theta} \times \left(\frac{C}{\text{fw-Pc}}\right)^3$$

公式 033-1 的記號

表 033 -1

Lo	ос	振盪運動時的額定壽命	hour	
n	1	每分鐘來回振盪次數	cpm	
C		基本動定格荷重	N (kgf)	參閱各系列「主軸承規格」
P	O	動態等價徑向負載	N (kgf)	參閱公式 032-2
fv	^	負載係數		參閱表 032-3
e	9	振盪角/ 2	度	參閱圖 033-1

(註)振盪角較小(5°以下)時,軌道輪與轉動體的接觸面不易形成油膜,會產生磨耗, 此情況請治詢本公司。

靜態安全係數的計算方法

一般會將基本靜額定負載(Co)視為靜態等價負載的容許限制,但要依據使用條件或要求條件求出限制。

此時,軸承的靜態安全係數(fs)可由公式 034-1 求出。

使用條件的一般數值,如表 034-3 所示。靜態等價徑向負載(Po),可由公式 034-2 求出。

公式 034 -1

fs= Co

公式 034 -2 $Po = Frmax + \frac{2Mmax}{dp} + 0.44Famax$

公式 034-1 的記號

表 034 -1

Со	基本靜額定負載	N (kgf)	參閱各系列「主軸承規格」
Ро	靜態等價徑向負載	N (kgf)	參閱公式 034-2

公式 034-2 的記號

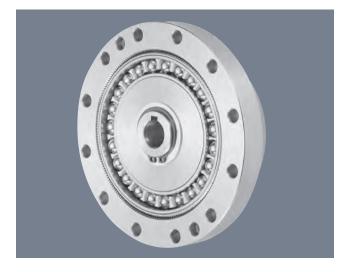
表 034 -2

Frmax	最大徑向負載	N (kgf)	_
Famax	最大軸向負載	N (kgf)	030頁 參閱「最大負載力矩負重的 計算方法」
Mmax	最大負載力矩負重	N·m (kgf·m)	***************************************
dp	轉子節圓直徑	m	參閱圖 030-1、各系列 「主軸承規格」

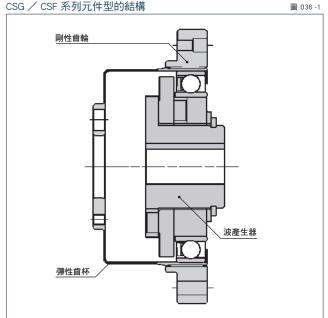
靜態安全係數

表 034 -3

軸承使用條件	fs
需要高旋轉精度時	≧3
有振動、衝擊時	≧2
一般運轉條件時	≧1.5



□ CSG ······	035
□ CSF	035
□ CSD	061
■ SHG	079
■ SHF	079
■ FB ······	103


CSG/CSF系列

Compone	ent Type CSG/CSF
特 徵	036
	037
技術資料 …	038
	額定表038
	外觀圖040
	尺寸表041
	角傳動精度 042
	遲滯損失 042
	最大背隙量······042
	剛性 (彈簧常數)
	起動轉矩 043
	加速起動轉矩 043
	鬆脫轉矩·······044
	屈曲轉矩 044
	無負載運轉轉矩 044
	效率特性046
設計指南 …	048
	潤 滑 ······· 048
	組装精度 051
	密封機構 051
	基本三零件之組裝·············· 052
— 確田家例	

特徵:

CSG / CSF 系列元件型的結構

■CSG / CSF 系列元件型

CSG / CSF 系列元件型能夠對應追求高功能化、高速化、高負載容 量、高密度化及微小化等加速技術創新的需求,呈現充實的產品陣 容,客戶可根據要求選擇最佳機種。

CSG / CSF 系列元件型僅以三項基礎零件組成。可直接組裝至機械、 裝置,提升設計自由度。

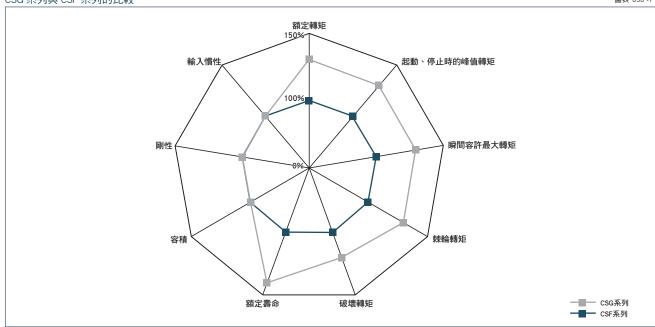
CSG / CSF 系列的特徵

- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

新種類-

CSG 系列:高轉矩用

- · 較 CSF 系列提升 30% 轉矩容量
- · 較 CSF 系列延長 43% 使用壽命(10,000 小時)


減速比 30: 高速用

·保留無背隙 Harmonic Drive® 的優點,實現減速比 30

CSF-8、11 系列: 小型化

- ·讓 IH 齒形的優勢亦展現於小型型號
- · 較舊有 CS 系列提升 30% 轉矩容量
- · 較舊有 CS 系列加強 100% 剛性
- ·大幅提升使用壽命

CSG 系列與 CSF 系列的比較 圖表 036 -1

· ·	· ·	V	 表 037 -1

機種名稱	型號			減速比 (註)			型	具籍世 Harmonic Drive			
	14	50	80	100	_	_					
	17	50	80	100	120	-]				
	20	50	80	100	120	160]	l <u>-</u>			
	25	50	80	100	120	160	I				
CSG	32	50	80	100	120	160	【2A=〒作型		SP=形狀或性能等特殊規格		
CSG	40	50	80	100	120	160			無記載=標準品		
	45	50	80	100	120	160					
	50	-	80	100	120	160]				
	58	-	80	100	120	160					
	65	-	80	100	120	160					
/=> > \ - >++++++++++++++++++++++++++++++++++++				200 141 15 15					·		

(註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

型式、記號

991					70IH I	770 IH —
:	<u> </u>	-	:		:	
	•		:			
			•••••	• • • • • • • • • • • • • • • • • • • •		
	•					•
	•					•
₩	*	\dot		4		* .
	•	<u> </u>			•	表 037 -2

機種名稱	型號			減速上	七(註)			型	式	特殊規格
	8	30	50	_	100	_	_			
	11	30	50	_	100	_	_			
	14	30	50	80	100	_	_			
	17	30	50	80	100	120	_			
	20	30	50	80	100	120	160			
	25	30	50	80	100	120	160		精度等級	
	32	30	50	80	100	120	160	2A=元件型	GR=	SP=形狀或性能等特殊規格
CSF	40	_	50	80	100	120	160	01.11.1	局有度 Harmonic Drive	無記載=標準品
	45	_	50	80	100	120	160		※ 型號 8 \ \	M1C±1,─1x+111
	50	_	50	80	100	120	160		※ 2UH 上不標示	
	58	_	50	80	100	120	160			
	65	_	50	80	100	120	160			
	80	_	50	80	100	120	160]		
	90	_	50	80	100	120	160			
	100	-	50	80	100	120	160			
(計)減速比美元为	於1・油宮井里	田中・岡	사 사들	まぐ山・388を	+ 45 + 7 .					

(註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

技術資料■

額定表

■CSG 系列 表 038 -1

型號	減速比		000r/min i定轉矩		亭止時的 :值轉矩		戴轉矩的 最大值	瞬間容許	最大轉矩	容許最 轉 r/n	速		均輸入 速 nin	慣性	力矩
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑油	潤滑脂	潤滑油	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²
	50	7.0	0.7	23	2.3	9.0	0.9	46	4.7						
14	80	10	1.0	30	3.1	14	1.4	61	6.2	14000	8500	6500	3500	0.033	0.034
	100	10	1.0	36	3.7	14	1.4	70	7.2						
	50	21	2.1	44	4.5	34	3.4	91	9						
17	80	29	2.9	56	5.7	35	3.6	113	12	10000	7300	6500	3500	0.079	0.081
	100	31	3.2	70	7.2	51	5.2	143	15	10000	1300	0300	3300	0.013	0.001
	120	31	3.2	70	7.2	51	5.2	112	11						
	50	33	3.3	73	7.4	44	4.5	127	13						
	80	44	4.5	96	9.8	61	6.2	165	17						
20	100	52	5.3	107	10.9	64	6.5	191	20	10000	6500	6500	3500	0.193	0.197
	120	52	5.3	113	11.5	64	6.5	191	20						
	160	52	5.3	120	12.2	64	6.5	191	20						
	50	51	5.2	127	13	72	7.3	242	25						
	80	82	8.4	178	18	113	12	332	34						
25	100	87	8.9	204	21	140	14	369	38	7500	5600	5600	3500	0.413	0.421
	120	87	8.9	217	22	140	14	395	40						
	160	87	8.9	229	23	140	14	408	42						
	50	99	10	281	29	140	14	497	51						
	80	153	16	395	40	217	22	738	75	ļ					
32	100	178	18	433	44	281	29	841	86	7000	4800	4600	3500	1.69	1.72
	120	178	18	459	47	281	29	892	91	[
	160	178	18	484	49	281	29	892	91						
	50	178	18	523	53	255	26	892	91						
	80	268	27	675	69	369	38	1270	130						
40	100	345	35	738	75	484	49	1400	143	5600	4000	3600	3000	4.50	4.59
	120	382	39	802	82	586	60	1530	156						
	160	382	39	841	86	586	60	1530	156						
	50	229	23	650	66	345	35	1235	126						
	80	407	41	918	94	507	52	1651	168	ļ					
45	100	459	47	982	100	650	66	2041	208	5000	3800	3300	3000	8.68	8.86
	120	523	53	1070	109	806	82	2288	233	ļ					
	160	523	53	1147	117	819	84	2483	253						
	80	484	49	1223	125	675	69	2418	247						
50	100	611	62	1274	130	866	88	2678	273	4500	3500	3000	2500	12.5	12.8
	120	688	70	1404	143	1057	108	2678	273	4000	0000	5000	2000	12.0	12.0
	160	688	70	1534	156	1096	112	3185	325						
	80	714	73	1924	196	1001	102	3185	325	[
58	100	905	92	2067	211	1378	141	4134	422	4000	3000	2700	2200	27.3	27.9
	120	969	99	2236	228	1547	158	4329	441	1000	0000	2,00			21.0
	160	969	99	2392	244	1573	160	4459	455						
	80	969	99	2743	280	1352	138	4836	493						
65	100	1236	126	2990	305	1976	202	6175	630	3500	2800	2400	1900	46.8	47.8
- 00	120	1236	126	3263	333	2041	208	6175	630	5500	2000	2400	1300	10.0	41.0
	160	1236	126	3419	349	2041	208	6175	630						

- (注) 1. 元件型的型號 50 以上、减速比 50 的機種使用潤滑油。如以潤滑脂進行潤滑,請在額定轉矩的 ½ 以內使用。

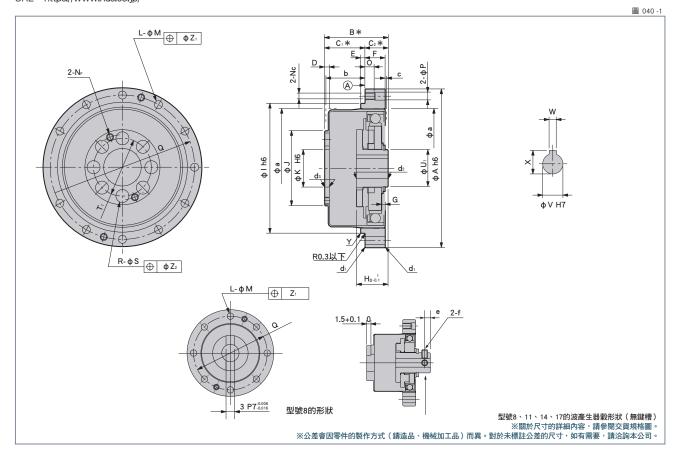
 - 1. 乃仁王的主號 10 反上,例这上30 的现在使用加州加州,如此利用加速门利州,前往開放 2. 情性力矩 1= ¼ GD² 3. 相關用語詳情,請參閱 012 頁「技術資料」內容。 4. 若可能施加瞬間容許最大轉矩,請參閱各系列「如何以螺栓鎖緊彈性齒杯」相關內容。

■CSF 系列

表 038 -2

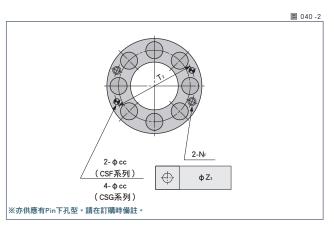
型號	減速比	輸入 20 時的額	00r/min 定轉矩		亭止時的 值轉矩	平均負	战轉矩的 侵大值	瞬間容許	最大轉矩		:高輸入 速 nin		均輸入 速 nin	慣性	力矩
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑油	潤滑脂	潤滑油	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²
	30	0.9	0.09	1.8	0.18	1.4	0.14	3.3	0.34						
8	50	1.8	0.18	3.3	0.34	2.3	0.24	6.6	0.67	14000	8500	6500	3500	0.003	0.0031
	100	2.4	0.25	4.8	0.49	3.3	0.34	9.0	0.92						
100 30 11 50	30	2.2	0.22	4.5	0.46	3.4	0.35	8.5	0.87						
	3.5	0.36	8.3	0.85	5.5	0.56	17	1.7	14000	8500	6500	3500	0.012	0.012	
	100	5.0	0.51	11	1.1	8.9	0.91	25	2.6						
	30	4.0	0.41	9.0	0.92	6.8	0.69	17	1.7						
14	50	5.4	0.55	18	1.8	6.9	0.70	35	3.6	14000	8500	6500	3500	0.033	0.034
14	80	7.8	0.80	23	2.4	11	1.1	47	4.8	14000	6500	6500	3500	0.033	0.034
	100	7.8	0.80	28	2.9	11	1.1	54	5.5						

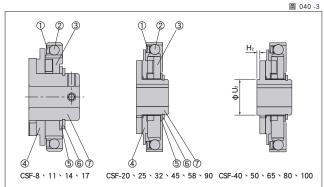
■CSF 系列


表 039 -1

型號	減速比		000r/min i定轉矩		亭止時的 :值轉矩		試轉矩的 最大值	瞬間容許	最大轉矩	容許最 轉 r/n	速		均輸入 速 nin	慣性	力矩
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑油	潤滑脂	潤滑油	潤滑脂	l X10⁴kg·m²	J X10 ⁻⁵ kaf·ms²
	30	8.8	0.9	16	1.6	12	1.2	30	3.1						
	50	16	1.6	34	3.5	26	2.6	70	7.1						
17	80	22	2.2	43	4.4	27	2.7	87	8.9	10000	7300	6500	3500	0.079	0.081
	100	24	2.4	54 54	5.5	39	4.0	108	11						
	120 30	24 15	2.4 1.5	27	5.5 2.8	39 20	4.0 2.0	86 50	8.8 5.1						
	50	25	2.5	56	5.7	34	3.5	98	10						
	80	34	3.5	74	7.5	47	4.8	127	13	10000	0500	0500	2500	0.400	0.107
20	100	40	4.1	82	8.4	49	5.0	147	15	10000	6500	6500	3500	0.193	0.197
	120	40	4.1	87	8.9	49	5.0	147	15						
	160	40	4.1	92	9.4	49	5.0	147 95	15						
	30 50	27 39	2.8 4.0	50 98	5.1 10	38 55	3.9 5.6	186	9.7						
	80	63	6.4	137	14	87	8.9	255	26						
25	100	67	6.8	157	16	108	11	284	29	7500	5600	5600	3500	0.413	0.421
	120	67	6.8	167	17	108	11	304	31						
	160	67	6.8	176	18	108	11	314	32						
	30	54	5.5	100	10	75	7.7	200	20						
	50	76	7.8 12	216 304	22 31	108	11 17	382	39						
32	100	118 137	14	333	34	167 216	22	568 647	58 66	7000	4800	4600	3500	1.69	1.72
	120	137	14	353	36	216	22	686	70						
	160	137	14	372	38	216	22	686	70	ĺ					
	50	137	14	402	41	196	20	686	70						
	80	206	21	519	53	284	29	980	100						
40	100	265	27	568	58	372	38	1080	110	5600	4000	3600	3000	4.50	4.59
	120 160	294 294	30 30	617 647	63 66	451 451	46 46	1180 1180	120						
	50	176	18	500	51	265	27	950	97						
	80	313	32	706	72	390	40	1270	130	ĺ					
45	100	353	36	755	77	500	51	1570	160	5000	3800	3300	3000	8.68	8.86
	120	402	41	823	84	620	63	1760	180						
	160	402	41	882	90	630	64	1910	195						
	50 80	245 372	25 38	715 941	73 96	350 519	36 53	1430 1860	146 190						
50	100	470	48	980	100	666	68	2060	210	4500	3500	3000	2500	12.5	12.8
	120	529	54	1080	110	813	83	2060	210	1000	5555	0000	2000	12.0	12.0
	160	529	54	1180	120	843	86	2450	250						
	50	353	36	1020	104	520	53	1960	200						
	80	549	56	1480	151	770	79	2450	250						
58	100 120	696 745	71 76	1590 1720	162 176	1060	108 121	3180 3330	325	4000	3000	2700	2200	27.3	27.9
	160	745	76	1840	188	1190 1210	123	3430	340 350						
	50	490	50	1420	145	720	73	2830	289						
	80	745	76	2110	215	1040	106	3720	380						
65	100	951	97	2300	235	1520	155	4750	485	3500	2800	2400	1900	46.8	47.8
	120	951	97	2510	256	1570	160	4750	485						
	160 F0	951	97	2630	268	1570	160	4750	485						
	50 80	872 1320	89 135	2440 3430	249 350	1260 1830	129 187	4870 6590	497 672						
80	100	1700	173	4220	431	2360	241	7910	807	2900	2300	2200	1500	122	124
	120	1990	203	4590	468	3130	319	7910	807						
	160	1990	203	4910	501	3130	319	7910	807			L			
	50	1180	120	3530	360	1720	176	6660	680						
	80	1550	158	3990	407	2510	256	7250	740						
90	100	2270	232	5680	580	3360	343	9020	920	2700	2000	2100	1300	214	218
	120	2570	262	6160	629	4300	439	9800	1000						
	160 50	2700 1580	276 161	6840 4450	698 454	4300 2280	439 233	11300 8900	1150 908						
	80	2380	243	6060	618	3310	338	11600	1180						
100	100	2940	300	7350	750	4630	472	14100	1440	2500	1800	2000	1200	356	363
	120	3180	324	7960	812	5720	584	15300	1560						
	160	3550	362	9180	937	5720	584	15500	1580						
(注)1. 亓	件型的型號	50 以上、》	咸速比 50 的	機種使用潤	滑油。如以	潤滑脂進行	潤滑,請在	額定轉矩的	· 以內使用	0					

 ⁽注) 1. 元件型的型號 50 以上、減速比 50 的機種使用潤滑油。如以潤滑脂進行潤滑,請在額定轉矩的½以內使用。
 2. 慣性力矩 I=¼ GD²
 3. 相關用語詳情,請參閱 012 頁「技術資料」內容。
 4. 若可能施加瞬間容許最大轉矩,請參閱各系列「如何以螺栓鎖緊彈性齒杯」相關內容。


外觀圖


本產品的 CAD 數據(DXF)可由本公司官網下載。 URL:https://www.hds.co.jp/

■彈性齒杯的螺栓與 Pin 併用安裝(選項)

若預測會施加額定表所示的瞬間容許最大轉矩,則建議併用彈性齒 杯鎖緊螺栓與 Pin。Pin 孔為鉸孔加工,孔徑及位置度如圖 040-2。 此外,CSF 系列與 CSG 系列的 Pin 孔數不同。 CSG 系列的詳情,請參閱 056 頁。

■波產生器的形狀

波產生器的結構為 Oldham 聯結器結構。

- ①保持器
- ②波產生器軸承
- ③波產生器栓
- ④插入孔
- ⑤橡膠墊圈
- ⑥C型固定環
- ⑦波產生器轂

尺寸表

表 041 -1 單位:mm

記號	型號	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
фА Һ6		30	40	50	60	70	85	110	135	155	170	195	215	265	300	330
B*	CSG 系列	_	_	28.5 0	32.5 0	33.5 0	37 -0.5	44 -0.6	53 _{-0.6}	58.5 _{-0.6}	64 -0.6	75.5 _{-0.6}	83 -0.6			_
	CSF 系列	22.1 -0.3	25.8 -0.7	28.5 0	32.5 0	33.5 -1.0	37 -1.0	44 -1.1	53 _{-1.1}	58.5 ⁰ _{-1.2}	64 -1.3	75.5 -1.3	83 -1.3	101 -1.3	112.5 0	125 -1.6
C1*		12.5 +0.2	14.5 +0.4	17.5 ^{+0.4}	20 +0.5	21.5 +0.6	24 +0.6	28 +0.6	34 +0.6	38 +0.6	41 ^{+0.6}	48 ^{+0.6}	52.5 ^{+0.6}	64 ^{+0.6}	71.5 +0.8	79 +1.0
C2*		9.6	11.3	11	12.5	12	13	16	19	20.5	23	27.5	30.5	37	41	46
D		2.7	2	2.4	3	3	3	3.2	4	4.5	5	5.8	6.5	8	9	10
E		_	2	2	2.5	3	3	3	4	4	4	5	5	6	6	6
F		4.5	5	6	6.5	7.5	10	14	17	19	22	25	29	36	41	46
G	CSG 系列		_	1.4	1.6	1.5	3.5	4.2	5.6	6.3	7	8.2	9.5			_
	CSF 系列	_	-	0.4	0.3	0.1	2.1	2.5	3.3	3.7	4.2	4.8	5.8	6.6	7.5	8.3
H _{1-0.1}	CSG 系列			18.5	20.7	21.5	21.6	23.6	29.7	30.5	34.8	38.3	44.6			_
	CSF 系列	12	16	17.6	19.5	20.1	20.2	22	27.5	27.9	32	34.9	40.9	49.1	48.2	56.7
H2		_	_	_	_	_	_	_	0.4	_	0.8	_	2.2	3.1	_	4.5
ф1 h6	減速比30以外		31	38	48	54	67	90	110	124	135	156	177	218	245	272
Ψσ	減速比 30		31	38	48	55	68	90		_	_					_
φЈ		12.3	17.8	23	27.2	32	40	52	64	72	80	92.8	104	128	144	160
фК Н6		6	6	11	10	16	20	26	32	36	40	46	52	65	72	80
	CSG 系列	_	_	8	16	16	16	16	16	16	16	16	16	_	_	_
_	CSF 系列	8	8	6	12	12	12	12	12	12	12	12	12	16	16	16
φМ		2.2	2.9	3.5	3.4	3.5	4.5	5.5	6.6	9	9	11	11	11	14	14
NC		M2	M2.5	M3	M3	M3	M4	M5	M6	M8	M8	M10	M10	M10	M12	M12
NF				M3	M3	M3	M4	M5	M6	M6	M8	M8	M8	M8	M12	M10
0		3	3	6	6.5	4	6	7	9	12	13	15	15	15	18	20
φР		2.2	2.9		_	3.5	4.5	5.5	6.6	9	9	11	11	11	14	14
Q (PCD))	25.5	35	44	54	62	75	100	120	140	150	175	195	240	270	300
R		_	6	6	6	8	8	8	8	8	8	8	8	10	8	12
φЅ		_	3.4	4.5	5.5	5.5	6.6	9	11	13.5	15.5	15.5	18	18	22	22
T1 (PCD		_	12	17	19	24	30	40	50	54	60	70	80	100	110	130
T2 (PCD))	_	15.2	18.5	21.5	27	34	45	56	61	68	79	90	114	120	142
φU1		7	11	14	18	21	26	26	32	32	32	40	48	55	60	65
φU2		_	-	_	_	_	_	_	32	-	32	_	48	55	_	65
ΦV	標準(H7)	3	5	6	8	9	11	14	14	19	19	22	24	28	28	28
Ψ,	最大尺寸		_	8	10	13	15	16	20	20	20	25	30	35	37	40
WJs9		_	-	_	_	3	4	5	5	6	6	6	8	8	8	8
Х						10.4 +0.1	12.8 +0.1	16.3 ^{+0.1}	16.3 ^{+0.1}	21.8 +0.1	21.8 +0.1	24.8 +0.1	27.3 +0.2	31.3 +0.2	31.3 +0.2	31.3 +0.2
Υ		_	C0.2	C0.3	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.8	C0.8	C0.8	C0.8	C0.8	C0.8
φZ1		0.1	0.2	0.25	0.20	0.25	0.25	0.25	0.3	0.5	0.5	0.5	0.5	0.5	1.0	1.0
фZ2		_	0.2	0.25	0.25	0.25	0.3	0.5	0.5	0.75	0.75	0.75	1.0	1.0	1.0	1.0
φΖ3			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
фа		21.5	30	38	45	53	66	86	106	119	133	154	172	212	239	265
b	機殼內壁	11.34	14	17.1	19	20.5	23	26.8	33	36.5	39	46.2	50	61	68.5	76
С		0.5	0.5	1	1	1.5	1.5	1.5	2	2	2	2.5	2.5	3	3	3
фссН7	CSG 系列	_		3	3	3	4	5	6	6	8	8	8	_		
4 3 3 1 1 1	CSF 系列		2	3	3	3	4	5	6	6	8	8	8	8	12	10
d1		C0.3	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4
d2		C0.3	C0.3	C0.4	C0.5	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4
d3		C0.3	C0.3	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5	C0.5
е		2	3	2.5	3	_	_	_	_	_	_	_	_	_	_	_
f		M2×3	M3×4	M3×4	M3×6	-	-	-	_	-	-	-	-	-	-	_
質量(kg	,)	0.026	0.05	0.09	0.15	0.28	0.42	0.89	1.7	2.3	3.2	4.7	6.7	12.4	17.6	23.5

- ●剛性齒輪的安裝面為圖中函面。安裝至機殼等處時,請貼合此面。
- ●下述尺寸可變更或追加加工。

波產生器:尺寸V 彈性齒杯:尺寸R、S 剛性齒輪:尺寸L、M

- * 記號的尺寸 B、C₁、C₂ 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。 ●由於彈性齒杯會彈性變形,為了避免與機殼接觸,內壁的尺寸請保持在 φa、b、c 以上。

角傳動精度 (相關用語說明,請參閱「技術資料」內容。)

表 042 -1

減速比	規格	型號	8		14	17	20		32	40 ∼ 100
	標準品	×10⁴rad	5.8	5.8	5.8	4.4	4.4	4.4	4.4	_
30	保华吅	arc-min	2	2	2	1.5	1.5	1.5	1.5	_
30	杜雅口	×10⁴rad	_	-	_	_	2.9	2.9	2.9	_
	特殊品	arc-min	_	-	-	_	1	1	1	_
	標準品	×10⁴rad	5.8	5.8	4.4	4.4	2.9	2.9	2.9	2.9
EO N L	保华加	arc-min	2	2	1.5	1.5	1	1	1	1
50以上	50 以上 特殊品 -	×10⁴rad	_	_	2.9	2.9	1.5	1.5	1.5	1.5
	付水值	arc-min	-	1	1	1	0.5	0.5	0.5	0.5

※ 型號 11 的減速比 100 為角傳動精度 4.4×10⁻⁴rad/1.5arc-min。

遲滯損失 (相關用語說明 ·請參閱「技術資料」內容。)

表 042 -2

減速比	型號	8	11	14	17	20	25	32	40 以上
30	X10⁴rad	8.7	8.7	8.7	8.7	8.7	8.7	8.7	_
30	arc-min	3.0	3.0	3.0	3.0	3.0	3.0	3.0	-
50	×10⁴rad	8.7	5.8	5.8	5.8	5.8	5.8	5.8	5.8
50	arc-min	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
80 以上	X10⁴rad	5.8	5.8	2.9	2.9	2.9	2.9	2.9	2.9
80 以上	arc-min	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0

最大背隙量 (相關用語說明,請參閱「技術資料」內容。)

表 042 -3

減速比	型號	8	11	14	17	20	25	32	40	45		58		80	90	100
30	X10⁻⁵rad	28.6	23.8	29.1	16.0	13.6	13.6	11.2	_	_	_	_	_	_	-	-
30	arc-sec	59	49	60	33	28	28	23	_	_	-	_	-	_	_	_
50	X10⁻⁵rad	17.0	14.1	17.5	9.7	8.2	8.2	6.8	6.8	5.8	5.8	4.8	4.8	4.8	3.9	2.9
50	arc-sec	35	24	36	20	17	17	14	14	12	12	10	10	10	8	6
80	X10⁻⁵rad	-	_	11.2	6.3	5.3	5.3	4.4	4.4	3.9	3.9	2.9	2.9	2.9	2.4	2.4
80	arc-sec	-	_	23	13	11	11	9	9	8	8	6	6	6	5	5
100	X10 ⁻⁵ rad	8.7	7.3	8.7	4.8	4.4	4.4	3.4	3.4	2.9	2.9	2.4	2.4	2.4	1.9	1.5
100	arc-sec	18	15	18	10	9	9	7	7	6	6	5	5	5	4	3
100	×10⁻⁵rad	_	_	_	3.9	3.9	3.9	2.9	2.9	2.4	2.4	1.9	1.9	1.9	1.5	1.5
120	arc-sec	-	_	_	8	8	8	6	6	5	5	4	4	4	3	3
160	×10⁻⁵rad	-	_	_	_	2.9	2.9	2.4	2.4	1.9	1.9	1.5	1.5	1.5	1.0	1.0
160	arc-sec	_	-	_	-	6	6	5	5	4	4	3	3	3	2	2

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

表 042 -4

記號		型號		11	14	17	20	25	32		45		58	65	80		100
	T1	N·m	0.29	0.80	2.0	3.9	7.0	14	29	54	76	108	168	235	430	618	843
		kgf·m	0.03	0.082	0.20	0.40	0.70	1.4	3.0	5.5	7.8	11	17	24	44	63	86
	T2	N·m	0.75	2.0	6.9	12	25	48	108	196	275	382	598	843	1570	2260	3040
	12	kgf⋅m	0.077	0.20	0.7	1.2	2.5	4.9	11	20	28	39	61	86	160	230	310
	K ₁	×10⁴N·m/rad	0.034	0.084	0.19	0.34	0.57	1.0	2.4	_	_	_	_	_	_	_	_
	IXI	kgf·m/arc-min	0.010	0.025	0.056	0.10	0.17	0.30	0.70	-	-	-	-	_	_	-	_
	K ₂	X10⁴N·m/rad	0.044	0.13	0.24	0.44	0.71	1.3	3.0	_	_	_	_	_	_	_	_
	IX2	kgf·m/arc-min	0.013	0.037	0.07	0.13	0.21	0.40	0.89	_	_	_	_	_	_	_	_
減速比	K ₃	X10⁴N·m/rad	0.054	0.16	0.34	0.67	1.1	2.1	4.9	_	_	_	_	_	_	_	_
30	1//3	kgf·m/arc-min	0.016	0.047	0.10	0.20	0.32	0.62	1.5	_	_	_	_	_	_	_	_
	Δ.	×10⁴rad	8.5	9.5	10.5	11.5	12.3	14	12.1	_	_	_	_	_	_	_	_
θ1	01	arc-min	3.0	3.3	3.6	4.0	4.1	4.7	4.3	_	_	_	_	_	_	_	_
	Α.	×10⁴rad	19	19	31	30	38	40	38	_	_	_	_	_	_	_	_
	θ2	arc-min	6.6	6.5	10.7	10.2	12.7	13.4	13.3	_	_	_	_	_	_	_	_
	K ₁	X10 ⁴ N·m/rad	0.044	0.22	0.34	0.81	1.3	2.5	5.4	10	15	20	31	44	81	118	162
	N1	kgf·m/arc-min	0.013	0.066	0.1	0.24	0.38	0.74	1.6	3.0	4.3	5.9	9.3	13	24	35	48
	K ₂	X10 ⁴ N·m/rad	0.067	0.30	0.47	1.1	1.8	3.4	7.8	14	20	28	44	61	115	162	222
	N2	kgf·m/arc-min	0.020	0.090	0.14	0.32	0.52	1.0	2.3	4.2	6.0	8.2	13	18	34	48	66
減速比	K ₃	X10 ⁴ N·m/rad	0.084	0.32	0.57	1.3	2.3	4.4	9.8	18	26	34	54	78	145	206	283
50	N3	kgf·m/arc-min	0.025	0.096	0.17	0.4	0.67	1.3	2.9	5.3	7.6	10	16	23	43	61	84
θ1	×10⁴rad	6.6	3.6	5.8	4.9	5.2	5.5	5.5	5.2	5.2	5.5	5.2	5.2	5.2	5.2	5.2	
	01	arc-min	2.3	1.2	2.0	1.7	1.8	1.9	1.9	1.8	1.8	1.9	1.8	1.8	1.8	1.8	1.8
	θ2	X10⁴rad	13	8	16	12	15.4	15.7	15.7	15.4	15.1	15.4	15.1	15.1	15.1	15.4	15.1
	02	arc-min	4.7	2.6	5.6	4.2	5.3	5.4	5.4	5.3	5.2	5.3	5.2	5.2	5.2	5.2	5.2

※ 本表數值為參考值。下限值約為標示數值的 80%。

表 043 -2

																表 043 -1
	型號		11	14	17	20	25	32	40	45		58	65	80	90	100
т.	N·m	0.29	0.80	2.0	3.9	7.0	14	29	54	76	108	168	235	430	618	843
11	kgf⋅m	0.03	0.082	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24	44	63	86
_	N·m	0.75	2.0	6.9	12	25	48	108	196	275	382	598	843	1570	2260	3040
12	kgf·m	0.077	0.2	0.7	1.2	2.5	4.9	11	20	28	39	61	86	160	230	310
V	X10⁴N·m/rad	0.091	0.27	0.47	1	1.6	3.1	6.7	13	18	25	40	54	100	145	200
N1	kgf·m/arc-min	0.027	0.080	0.14	0.3	0.47	0.92	2.0	3.8	5.4	7.4	12	16	30	43	59
1/	X10⁴N·m/rad	0.10	0.34	0.61	1.4	2.5	5.0	11	20	29	40	61	88	162	230	310
K2	kgf·m/arc-min	0.031	0.10	0.18	0.4	0.75	1.5	3.2	6.0	8.5	12	18	26	48	68	93
1/	X10⁴N·m/rad	0.12	0.44	0.71	1.6	2.9	5.7	12	23	33	44	71	98	185	263	370
K 3	kgf·m/arc-min	0.036	0.13	0.21	0.46	0.85	1.7	3.7	6.8	9.7	13	21	29	55	78	110
0	×10 ⁻⁴ rad	3.2	3.0	4.1	3.9	4.4	4.4	4.4	4.1	4.1	4.4	4.1	4.4	4.4	4.4	4.4
O 1	arc-min	1.1	1.0	1.4	1.3	1.5	1.5	1.5	1.4	1.4	1.5	1.4	1.5	1.5	1.5	1.5
0	×10 ⁻⁴ rad	8	6	12	9.7	11.3	11.1	11.6	11.1	11.1	11.1	11.1	11.3	11.3	11.6	11.3
U 2	arc-min	2.6	2.2	4.2	3.3	3.9	3.8	4.0	3.8	3.8	3.8	3.8	3.9	3.9	4.0	3.9
	T ₁ T ₂ K ₁ K ₂ K ₃ θ ₁	T ₁	T1 N·m 0.29 kgf·m 0.03 T2 kgf·m 0.075 kg·m 0.077 K1 X10*N·m/rad 0.091 kgf·m/arc-min 0.027 K2 X10*N·m/rad 0.10 kgf·m/arc-min 0.031 K3 X10*N·m/rad 0.12 kgf·m/arc-min 0.036 01 X10*-frad 3.2 arc-min 1.1 02 X10*-frad 8	N-m 0.29 0.80 kgf·m 0.03 0.082 T ₂ N·m 0.75 2.0 kgf·m 0.077 0.2 kgf·m 0.091 0.27 kgf·m/arc-min 0.027 0.080 kgf·m/arc-min 0.031 0.10 kgf·m/arc-min 0.031 0.10 kgf·m/arc-min 0.031 0.10 kgf·m/arc-min 0.031 0.10 kgf·m/arc-min 0.036 0.13 kgf·m/arc-min 0.036 0.13 kgf·m/arc-min 0.036 0.13 arc-min 1.1 1.0 1.0 42 x10·4rad 8 6	N·m 0.29 0.80 2.0 kgf·m 0.03 0.082 0.2 T ₂ N·m 0.75 2.0 6.9 kgf·m 0.077 0.2 0.7 K ₁ X10°Nm/rad 0.091 0.27 0.47 kgf·m/arc-min 0.027 0.080 0.14 K ₂ X10°Nm/rad 0.10 0.34 0.61 kgf·m/arc-min 0.031 0.10 0.18 K ₃ X10°Nm/rad 0.12 0.44 0.71 kgf·m/arc-min 0.036 0.13 0.21 K ₃ X10°1-frad 3.2 3.0 4.1 arc-min 1.1 1.0 1.4 K ₄ X10°rad 8 6 12 R ₅ R ₇ R ₇	N-m 0.29 0.80 2.0 3.9 kgf·m 0.03 0.082 0.2 0.4 T ₂ N-m 0.75 2.0 6.9 12 kgf·m 0.077 0.2 0.7 1.2 K ₁ X10°Nm/rad 0.091 0.27 0.47 1 kgf·m/arc-min 0.027 0.080 0.14 0.3 K ₂ X10°Nm/rad 0.10 0.34 0.61 1.4 kgf·m/arc-min 0.031 0.10 0.18 0.4 K ₃ X10°Nm/rad 0.12 0.44 0.71 1.6 kgf·m/arc-min 0.036 0.13 0.21 0.46 K ₃ X10°4rad 3.2 3.0 4.1 3.9 arc-min 1.1 1.0 1.4 1.3 O ₂ X10°4rad 8 6 12 9.7 O ₃ V10°4rad 8 6 12 9.7 O ₄ V10°4rad 8 6 12 9.7 O ₄ V10°4rad 8 6 12 9.7 O ₇ V10°4rad 8 0.12 0.74 0.75 0	N-m	N-m 0.29 0.80 2.0 3.9 7.0 14	Nm	N-m 0.29 0.80 2.0 3.9 7.0 14 29 54	Nm	N-m 0.29 0.80 2.0 3.9 7.0 14 29 54 76 108	Nm	N-m 0.29 0.80 2.0 3.9 7.0 14 29 54 76 108 168 235	Nm	N-m 0.29 0.80 2.0 3.9 7.0 14 29 54 76 108 168 235 430 618

※ 本表數值為參考值。下限值約為標示數值的 80%。

■ 000 委別

起動轉矩(相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■ CSG 未列										単位:cN·m
型號減速比	14	17	20	25	32	40	45	50	58	65
50	3.6	5.6	7.3	13	29	51	69	_	-	_
80	2.6	3.6	4.5	8.5	18	32	45	59	90	121
100	2.3	3.2	4.1	7.6	17	29	40	53	80	108
120	1	3.0	3.6	6.9	14	26	36	50	74	101
160	_	_	3.2	6.1	13	23	32	43	64	88

表 043 -3 單位:cN·m ■CSF 系列

型號減速比	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
30	1.3	2.7	4.3	6.5	11	19	45	-	-	_	-	-	_	-	-
50	0.8	1.6	3.3	5.1	6.6	12	26	46	63	86	130	180	320	450	590
80	-	-	2.4	3.3	4.1	7.7	16	29	41	54	82	110	200	280	380
100	0.59	1.1	2.1	2.9	3.7	6.9	15	26	36	48	73	98	180	250	340
120	_	-	-	2.7	3.3	6.3	13	24	33	45	67	92	170	230	310
160	-	_	_	_	2.9	5.5	12	21	29	39	58	80	140	200	270

加速起動轉矩 (相關用語說明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■CSG 系列

型號減速比	14	17	20	25	32	40	45	50	58	65
50	1.5	2.8	4.4	8.3	18	31	41	-	-	-
80	1.5	2.8	4.6	8.5	18	31	43	58	89	132
100	1.9	3.1	5.0	9.2	20	34	46	63	97	143
120	_	3.4	5.4	10	21	37	52	69	107	154
160	-	_	6.4	12	25	44	63	85	132	187

表 043 -5 單位:N·m ■CSF 系列

															- in-
型號減速比	8	11	14	17		25	32		45	50	58	65		90	100
30	0.65	1.3	2	3.2	5.5	10	21	-	-	-	-	-	-	-	-
50	0.5	1	1.4	2.5	4	7.5	16	28	37	52	80	110	200	270	360
80	-	_	1.4	2.5	4.2	7.7	16	28	39	53	81	120	200	270	370
100	0.7	1.4	1.7	2.8	4.5	8.4	18	31	42	57	88	130	220	300	400
120	_	_	-	3.1	4.9	9.2	19	34	47	63	97	140	240	330	440
160	-	ı	I	-	5.8	11	23	40	57	77	120	170	290	390	540

鬆脫轉矩 (相關用語說明 清參閱「技術資料」內容。)

■CSG 系列

表 044 -1 單位:N·m

型號減速比	14	17		25	32	40	45	50	58	65
50	110	190	280	580	1200	2300	3500	1	-	_
80	140	260	450	880	1800	3600	5000	7000	10000	14000
100	100	200	330	650	1300	2700	4000	5300	8300	12000
120	_	150	310	610	1200	2400	3600	4900	7500	10000
160	_	_	280	580	1200	2300	3300	4600	7200	10000

表 044-2 單位: N-m

減速比	型號	8		14	17	20	25	32	40	45	50	58	65	80	90	100
	30	11	29	59	100	170	340	720	-	-	_	_	-	_	-	_
	50	12	34	88	150	220	450	980	1800	2700	3700	5800	7800	14000	20000	29000
	80	-	_	110	200	350	680	1400	2800	3900	5400	8200	11000	22000	30000	44000
	100	14	43	84	160	260	500	1000	2100	3100	4100	6400	9400	16000	23000	33000
	120	_	_	_	120	240	470	980	1900	2800	3800	5800	8300	15000	21000	30000
	160	_	-	-	-	220	450	980	1800	2600	3600	5600	8000	14000	20000	28000

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

■CSG 系列

表 044 -3 單位:N·m

										AP 177 - 14111
型號	14	17	20	25	32	40	45	50	58	65
全減速比	260	500	800	1700	3500	6700	8900	12200	19000	26600

■CSF 系列

單位:N·n

型號	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
全減速比	35	90	190	330	560	1000	2200	4300	5800	8000	12000	17000	31000	45000	58000

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸入端(高速軸端)的轉矩。

※ 詳細數值請洽詢本公司營業據點。

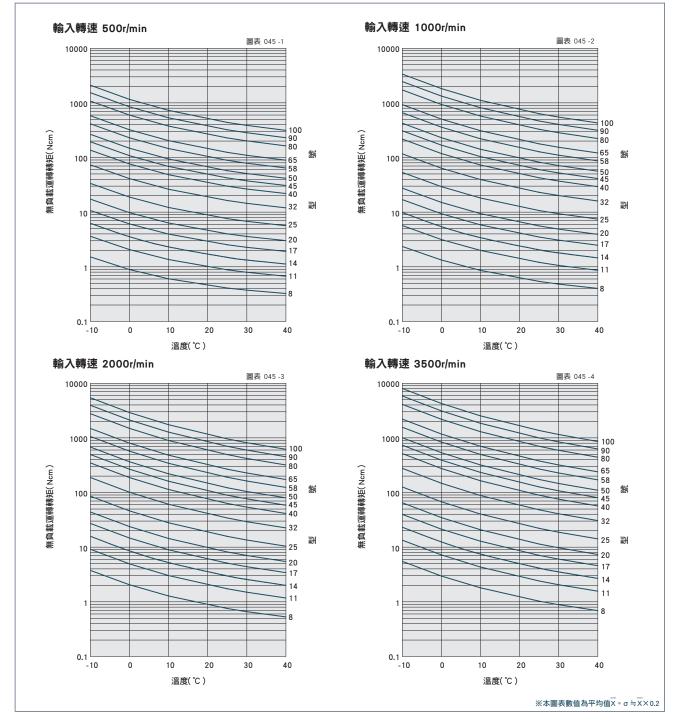
測量條件

表 044 -5

			減速比 10						
		潤滑脂	名档	Harmonic 潤滑脂® SK-1A					
		潤滑		Harmonic 潤滑脂 ® SK-2					
		/III/FI	塗佈量	適當塗佈量(049頁)					
	轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值								

※ 如為潤滑油潤滑,請洽詢本公司。

■速度比別修正量


Harmonic Drive® 的無負載運轉轉矩會因減速比而變化。圖表 045-1 \sim 045-4 為 減速比 100 時的數值。關於其他減速比,請加上右表 (表 044-6) 所示修正量後計算。

元件型無負載運轉轉矩修正量

表 044 -6 單位:Ncm

減速比型號	30		80	120	160
8	0.4	0.2	_	_	_
11	0.7	0.3	-	-	_
14	1.1	0.5	0.1	_	_
17	1.8	0.8	0.1	-0.1	_
20	2.7	1.2	0.2	-0.1	-0.3
25	5.0	2.2	0.3	-0.2	-0.6
32	10	4.5	0.7	-0.5	-1.2
40	_	8.0	1.2	-0.9	-2.2
45	_	11	1.7	-1.3	-3.0
50	_	15	2.3	-1.7	-4.0
58	_	22	3.4	-2.5	-6.1
65	-	31	4.7	-3.5	-8.4
80	_	55	8.5	-6.2	-15
90	_	77	12	-8.7	-21
100	_	100	16	-12	-28

■減速比 100 的無負載運轉轉矩

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

測量條件

表 046 -1

組裝	以建議組裝精度	組裝後測量								
負載轉矩	額定表所示的額	額定表所示的額定轉矩(038、039 頁)								
	潤滑脂	名稱	Harmonic 潤滑脂 ® SK-1A							
潤滑條件	潤滑脂 潤滑 =	4114	Harmonic 潤滑脂® SK-2							
	/15/月	塗佈量	適當塗佈量(049頁)							

※ 如為潤滑油潤滑,請洽詢本公司。

■效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。

請依據圖表 046-1 求出修正係數 Ke,並參考下列計算範例計算效率。

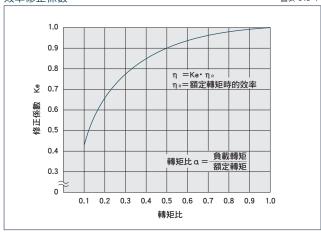
計算例

以 CSF-20-80-2A-GR 為例,計算下列條件下的效率 η (%)。

輸入轉速: 1000r/min 負載轉矩 19.6N·m

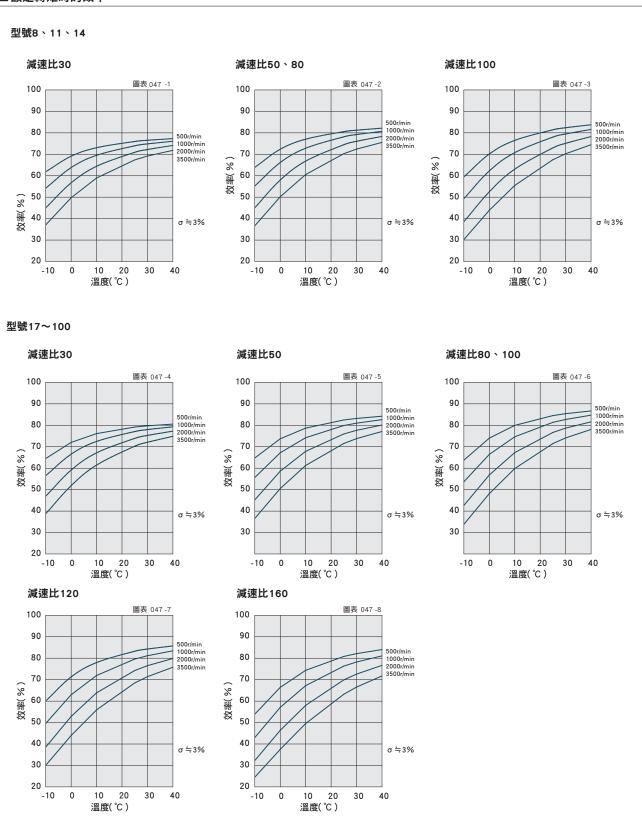
潤滑方式:潤滑脂潤滑(Harmonic 潤滑脂® SK-1A)

潤滑劑溫度:20℃


型號 20、減速比 80 的額定轉矩為 34N·m (額定表: 039 頁),轉

矩比 α 為 0.58。 (α=19.6 / 34=0.58)

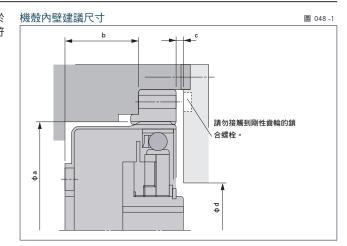
- ■依據圖表 046-1,得知效率修正係數 Ke=0.93
- ■負載轉矩 19.6N·m 時的效率 η 為 η=Ke·ηR=0.93×78%=73%。


效率修正係數

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

■額定轉矩時的效率

設計指南■


潤 滑

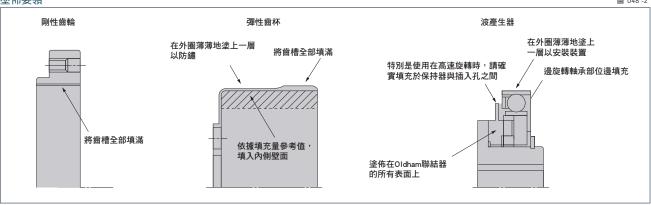
■潤滑脂

潤滑劑的詳情,請參閱 016 頁「技術資料」內容。

機殼內壁建議尺寸 -

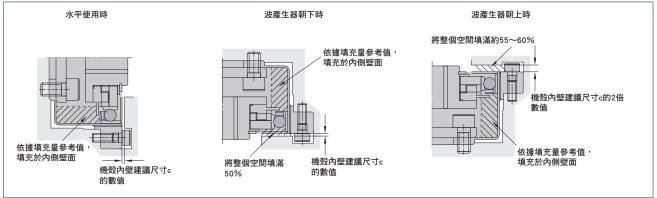
以潤滑脂潤滑時,為了讓運轉中潤滑脂不致四下飛濺而殘留於 Harmonic Drive®內部,Harmonic Drive®與機殼內壁之間應盡可能符 合建議尺寸。如果無法確保建議尺寸,請洽詢本公司。

機殼內壁建議尺寸


表 048 -1 單位:mm

型號記號	8	11	14	17	20	25	32	40	45	50	58		80	90	100
фа	21.5	30	38	45	53	66	86	106	119	133	154	172	212	239	265
b	11.34	14	17.1	19	20.5	23	26.8	33	36.5	39	46.2	50	61	68.5	76
С	0.5	0.5	1	1	1.5	1.5	1.5	2	2	2	2.5	2.5	3	3	3
фф	13	16	16	26	30	37	37	45	45	45	56	62	67	73	79

(註)波產生器朝上使用時,請將尺寸 C 設為 2 倍以上。


塗佈要領

塗佈要領 圖 048 -2

不同使用方法的塗佈要領

圖 048 -3

塗佈量 ·

表 049 -1 單位:g

使用方法	型號	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
水平使用		1.2	2.9	5.5	10	16	30	60	110	170	220	360	460	850	1150	1500
垂直使用	輸出軸朝上	1.4	3.5	7	12	18	35	70	125	190	240	380	500	900	1300	1700
亜旦灰州	輸出軸朝下	1.8	4.4	8.5	14	21	40	80	145	220	275	460	600	1000	1500	1900

更換時期

潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。 潤滑脂性能會隨溫度而變化,越高溫劣化越劇烈,需要儘早更換。 右方圖表是根據平均負載轉矩低於額定轉矩時,潤滑脂溫度與波產 生器總旋轉數關連性所表示的更換時期基準。

當平均負載轉矩超過額定轉矩,可依下列公式計算更換時期。

平均負載轉矩超過額定轉矩時的公式

公式 049 -1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav}\right)^3$$

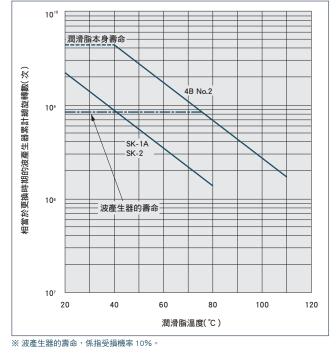

公式 049-1 的記號

表 049 -2

L _{GT}	超過額定轉矩的更換時期	轉數	
Lgtn	未超過額定轉矩的更換時期	轉數	參閱右圖
Tr	額定轉矩	N·m,kgf·m	參閱 038、039 頁額定表
Tav	輸出端的平均負載轉矩		公式:參閱 014 頁

潤滑脂更換時期:Lgm(平均負載轉矩低於額定轉矩時)

■其他注意事項

- 1. 切忌與其他潤滑脂混用。此外,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。
- 2. Harmonic Drive® 在波產生器朝上(參閱 050 頁圖 050-2)的狀態,且以一定負載往單一方向低速旋轉(輸入轉速:1000r/min 以下)使用時,可能造成潤滑不良,若於此情形下使用時,請洽詢本公司營業據點。
- 3. 元件型的型號 50 以上、減速比 50 的機種使用潤滑油。如以潤滑 脂進行潤滑,請在額定轉矩的÷以內使用。
- 4. 潤滑脂容積/空間容積在 50% 以上時,可能造成潤滑脂滲漏,此時請洽詢本公司。

■潤滑油

潤滑劑的詳情,請參閱 018 頁「技術資料」內容。

使用方向與油面位置 -

1. 水平方向時

油面位置請如表 050-1 的 A 尺寸。

水平使用的油面位置

表 050 -1 單位:mm A 6 8 10 12 14 17 24 31 35 38 44 50 59 66 74

2. 垂直方向時

波產生器朝上和朝下時,於波產生器的球心注入潤滑油(圖 050-2 的尺寸 B)。

另外,彈性齒杯需要追加加工油槽。

訂購時請備註。

※ 型式在規格 1 以『IV』表示。

B <u>油面</u>

水平使用的油面位置

垂直使用的油面位置

油面

波產生器朝下

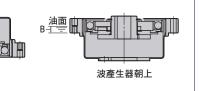
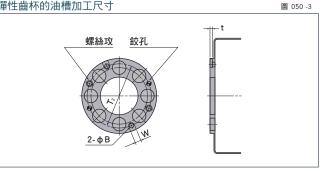


圖 050 -1

圖 050 -2

垂直使用的油面位置


表 050 -2 單位:mm 3 5 7 9 10 12 13 15 19 22 25 2 2.3 2.5

彈性齒杯的油槽加工尺寸

1年1五四1小	17/円1E	ヨルルエ	ハヘコ							単.	l∏ · mm
型號記號	20	25	32	40	45	50	58	65	80	90	
T ₂	27	34	45	56	61	68	79	90	114	120	142
В	2.5	2.5	3.5	3.5	3.5	5.5	5.5	5.5	6.5	6.5	6.5
W	2.8	3.5	4.0	4.0	4.0	6.0	6.0	6.0	7.0	7.0	7.0
t	1.2	1.2	1.4	1.4	1.4	2	2	2	3	3	3

※ 型號 8、11、14、17 無油槽。

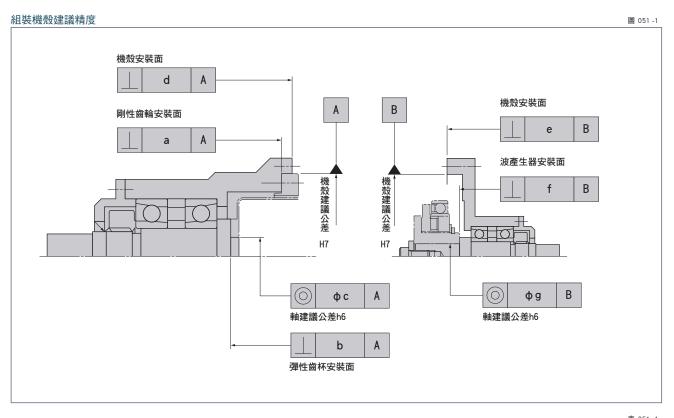
彈性齒杯的油槽加工尺寸

油量

															單位:1
型號	8	11	14	17	20	25		40	45	50	58	65	80	90	100
油量	0.004	0.006	0.01	0.02	0.03	0.07	0.13	0.25	0.32	0.4	0.7	1.0	2.0	2.8	3.8

表 050 -3

更換時期


第 1 次 ………… 開始運轉後 100 小時 第 2 次起 …… 每運轉 1000 小時或每 6 個月 但若使用環境狀況嚴苛,應考慮提早更換。

其他注意事項·

- 1. 切忌與其他潤滑油混用。此外,Harmonic Drive®應先安裝至單獨 機殼後再組裝至裝置。
- 2. 型號 50 以上且用於額定表容許輸入轉速附近時,可能因為使用條 件而發生潤滑不良,請洽詢本公司。

組裝精度

在組裝設計方面,為充分發揮 Harmonic Drive® 擁有的優異性能,應確保圖 051-1 及表 051-1 所示之機殼建議精度。

組裝機殼建議精度

0.014 0.023 0.029 0.008 0.011 0.011 0.012 0.013 0.016 0.016 0.017 0.018 0.020 0.027 0.031 0.006 0.006 0.008 0.011 0.014 0.018 0.022 0.025 0.028 0.030 0.032 0.035 0.040 0.043 0.045 b фс 0.005 0.008 0.015 0.018 0.019 0.022 0.022 0.024 0.027 0.030 0.032 0.035 0.043 0.046 0.049 0.010 0.010 0.011 0.015 0.017 0.024 0.026 0.026 0.027 0.028 0.031 0.034 0.043 0.050 0.057 d 0.010 0.010 0.011 0.017 0.024 0.026 0.026 0.027 0.028 0.031 0.034 0.043 0.050 0.032 0.036 0.020 f (0.010) (0.010) (0.012) (0.012) (0.013) (0.015) (0.015) (0.015) (0.015) (0.015) 0.015 0.030 0.034 0.044 0.047 0.050 0.063 0.065 0.066 0.068 0.070 0.090 0.091 0.092 фд (0.027 (0.016)(0.018)(0.019)(0.022) (0.022) (0.024)(0.030) (0.033)(0.035) (0.043) (0.046)(0.049)

※()內為剛性型波產生器的數值(沒有 Oldham 聯結器機構。)

密封機構|

為防止潤滑脂滲漏並保持 Harmonic Drive® 的高度耐久性,需要下列密封機構。

· 旋轉滑動部······· 油封(含彈簧)。此時請注意勿使軸側出現損傷等不良。

· 凸緣重合面、嵌合處············· O 型環、密封劑。此時請注意平面不均整、O 型環遭咬入等情形。

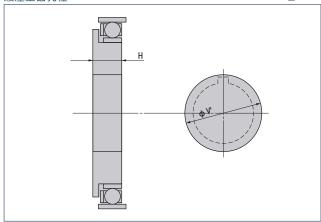
·螺孔部······ 具封止效果的螺絲固定劑(建議使用 LOCTITE 242)或密封劑。

(註)尤其是使用 Harmonic 潤滑脂 ®4B No.2 時,必須嚴格採用前述機構。

基本三零件之組裝

■安裝波產生器

最大孔徑尺寸


波產生器的標準孔徑如各型號外觀尺寸圖,但可在表中所示的最大 尺寸範圍內變更。此時的鍵槽尺寸,建議為 JIS 規格。鍵槽的有效 長度尺寸,應可充分承受傳動轉矩。

※ 亦可為圓錐孔等特殊形狀。

如果要讓孔徑大於最大尺寸,亦有取消 Oldham 聯結器機構的使用方 式。此時的最大孔徑,考慮負載轉矩造成波產生器栓變形等情況, 最大僅能至下表所示的值。(該值為包含鍵槽深度尺寸等的數值。)

波產生器孔徑

圖 052 -1

波產生器轂孔徑

表 052 -1 單位:mn

型號 尺寸	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
標準尺寸(H7)	3	5	6	8	9	11	14	14	19	19	22	24	28	28	28
下孔尺寸	-	_	3	4	5	6	6	10	10	10	13	16	16	19	22
最大尺寸	_	-	8	10	13	15	15	20	20	20	25	30	35	37	40

將波產生器栓直接安裝至輸入軸時的最大栓孔徑與最小厚度

表 052 -2 單位:mm

					-11-4 0 1 0 10	_									—	
型號 尺寸			14	17	20	25	32	40	45	50	58	65	80		100	
最大孔徑 φ۷'	10	14	17	20	23	28	36	42	47	52	60	67	72	84	95	
最小栓厚 H _0.1	5.7	6.7	7.2	7.6	11.3	11.3	13.7	15.9	17.8	19	21.4	23.5	28.5	31.3	34.9	

波產生器的推力與軸固定 -

Harmonic Drive® 因為彈性齒杯彈性變形,運轉中會對波產生器施加

用於減速機(010頁①、②、③)時,推力將對彈性齒杯隔板方向 作用。(圖 052-2)

此外,用於加速機(010頁4)、⑤、⑥)時,其推力作用方向與減 速機的方向相反。(圖 052-2)

波產生器的推力(最大值)可由下列公式求出。此外,推力會隨運 轉條件而改變。高轉矩時、極低速時、固定連續旋轉時有增大的傾 向,幾乎如同公式求出的值。無論任何情況,設計時務必採用阻止 波產生器推力的結構。

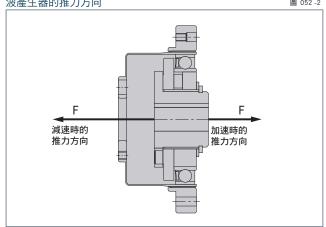
(註)若希望於波產生器轂加裝固定螺絲以固定輸入軸時,請務必洽詢本公司。

推力計算公式

表 052-3

減速比	公式
30	$F=2 \times \frac{T}{D} \times 0.07 \times tan32^{\circ}$
50	$F=2 \times \frac{T}{D} \times 0.07 \times tan30^{\circ}$
80以上	$F=2 \times \frac{T}{D} \times 0.07 \times tan20^{\circ}$

公式的記號


表 052 -4

F	推力	N	參閱圖 052-2
D	(型號)×0.00254	m	
Т	輸出轉矩	N·m	

波產生器的推力方向

圖 052 -2

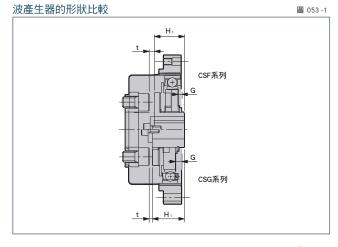
公式 052 -1

計算例

機 種 名 稱: CSF系列

號:32

減 速 比:i=50


輸 出 轉 矩:382N·m (瞬間容許最大轉矩)

 (32×0.00254) × 0.07 × tan 30°

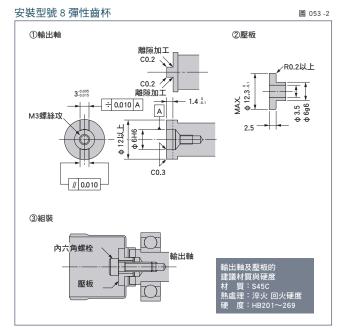
F=380N

波產生器的形狀與尺寸

CSF 系列與 CSG 系列的波產生器形狀及尺寸不同,請在設計及安裝時多加注意。請注意勿讓波產生器與彈性齒杯的鎖合螺栓干涉。表 053-1 及圖 053-1 為波產生器形狀及尺寸的比較。

波產生器轂尺寸

表 053 -1 單位:mm


記號	型號	14	17	20	25	32	40	45	50	58	65
G	CSG 系列	1.4	1.6	1.5	3.5	4.2	5.6	6.3	7	8.2	9.5
G	CSF 系列	0.4	0.3	0.1	2.1	2.5	3.3	3.7	4.2	4.8	5.8
11 0	CSG 系列	18.5	20.7	21.5	21.6	23.6	29.7	30.5	34.8	38.3	44.6
H ₁ -0.1	CSF 系列	17.6	19.5	20.1	20.2	22	27.5	27.9	32	34.9	40.9
	CSG 系列	1.6	1.3	1.5	1.4	2.2	2.3	3.5	2.2	5.4	3.9
τ	CSF 系列	2.5	2.5	2.9	2.8	3.8	4.5	6.1	5.0	8.8	7.6

(註)t的尺寸為彈性齒杯安裝用凸緣為表054-1尺寸時的數值。

■安裝彈性齒杯

型號8時

- (a)由彈性齒杯往輸出軸的傳動是透過凹凸的嚙合進行,請如圖 053-2-①所示在輸出軸的彈性齒杯安裝部進行凸部加工。
- (b) 彈性齒杯輸出軸的定位請使用圖 053-2- ②所示的壓板,並保 持如圖 053-2- ③所示組裝所需的精度。
- (c) 建議使用 M3 左右的內六角螺栓以防止彈性齒杯脫落。鎖緊螺 栓時請使用 LOCTITE#242。

型號 11 以上的安裝用凸緣的建議尺寸

圖 054-1 所示的安裝用凸緣直徑不得超過彈性齒杯的凸軸直徑,且密接隔板的凸緣部分應取「R」面。如直徑過大或未取「R」面,則可能造成隔板損壞,務請嚴格遵守。

型號記號	11	14	17	20	25	32	40		50	58			90	100
фD _{-0.1}	17.8	24.5	29	34	42	55	68	74	83	95.8	106	130	145	162
R +0.1	0.5	1.2	1.2	1.4	1.5	2	2.5	2	2.5	2.5	2.5	2.5	2.5	2.5
t	2	2	2.5	2.5	5	7	7	8	8	12	12	15	20	25

安裝用凸緣的材質與硬度 -

為了避免發生螺栓座面及凸緣之間面壓造成的螺栓陷落或鬆脫,請 使用以下材質及硬度。

> 材 質:S45C(DINC45) 熱處理:淬火回火 硬 度:HB200~270

如何以螺栓鎖緊彈性齒杯

彈性齒杯的安裝使用螺栓鎖緊或併用螺栓鎖緊與 Pin (Pin: 選項)。

- ●選擇螺栓的強度
- ●螺栓鎖緊及鎖緊轉矩
- ●螺栓及螺帽的表面狀態
- ●接觸面的摩擦係數

以上條件對鎖緊部傳動轉矩的影響很大,因此請配合負載條件進行 設計及零件管理。

並請按照不同系列鎖緊。

僅使用螺栓或併用 Pin,請參考以下判斷。

- ①負載轉矩在額定表的「起動、停止時的峰值轉矩」以下時僅使用 螺栓安裝(表 055-1、表 056-1)
- ②負載轉矩可能達到額定表「瞬間最大轉矩」值時併用螺栓與 Pin 安裝

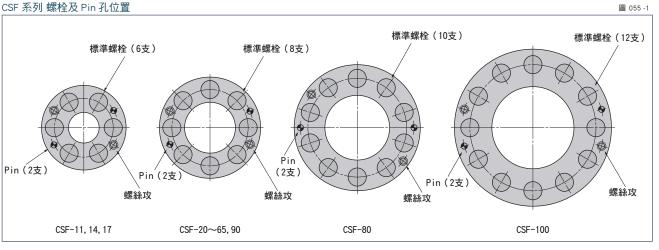
(Pin:表 055-2、圖 055-1、056 頁表 056-2、圖 056-1)

※ 表格數值僅作參考值之用。

CSF 系列 僅使用螺栓安裝 表 055 -1

型號	11	14	17	20	25	32	40	45	50	58	65	80	90	100
	6	6	6	8	8	8	8	8	8	8	8	10	8	12
	M3	M4	M5	M5	M6	M8	M10	M12	M14	M14	M16	M16	M20	M20
mm	12	17	19	24	30	40	50	54	60	70	80	100	110	130
N·m	2.0	4.5	9.0	9.0	15.3	37	74	128	205	205	319	319	622	622
kgf·m	0.20	0.46	0.92	0.92	1.56	3.8	7.5	13.1	20.9	20.9	32.5	32.5	63.5	63.5
N·m	15	35	64	108	186	460	910	1440	2160	2550	3980	6220	8560	15170
kgf·m	1.5	3.6	6.5	11	19	47	93	147	220	260	406	635	873	1548
	型號 mm N·m kgf·m	6 M3 mm 12 N·m 2.0 kgf·m 0.20 N·m 15	型號 11 14 6 6 M3 M4 mm 12 17 N·m 2.0 4.5 kgf·m 0.20 0.46 N·m 15 35	世號 11 14 17 6 6 6 6 M3 M4 M5 mm 12 17 19 N·m 2.0 4.5 9.0 kgf·m 0.20 0.46 0.92 N·m 15 35 64	世號 11 14 17 20 6 6 8 8 M3 M4 M5 M6 M7	世號 11 14 17 20 25 6 6 8 8 8 M3 M4 M5 M5 M6 M6 M7 M7 M6 M7 M7 M6 M7	M3	M3	### 11	### 11	世號 11 14 17 20 25 32 40 45 50 58 64 108 186 460 910 1440 2160 2550	### 11	### 11	M3 M4 M5 M6 M8 M10 M12 M14 M14 M16 M20

CSF 系列 併用螺栓與 Pin 安裝


n	5	5	-2	
v	J	J	-2	

項目	型號	11	14	17	20		32		45	50	58		80		100
Pin 支數		2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pin 直徑	mm	2	3	3	3	4	5	6	6	8	8	8	8	12	10
Pin 孔 P.C.D.	mm	15.2	18.5	21.5	27	34	45	56	61	68	79	90	114	120	142
螺栓+Pin	N⋅m	29	74	108	167	314	725	1370	1950	3160	3710	5310	7910	12540	18450
傳動轉矩	kgf·m	3.0	7.5	11	17	32	74	140	199	323	379	542	807	1280	1883

(表 055-1、055-2 /註)

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 建議螺栓 螺栓名稱:JIS B 1176內六角螺栓 強度區分:JIS B 1051 12.9以上
- 3. 轉矩係數:K=0.2 4. 鎖緊係數:A=1.4
- 接合面摩擦係數 μ=0.15
- 6. Pin 種類:平行銷、材質:S45C-Q、剪應力: $\tau = 30 kgf/mm^2$

CSF 系列 螺栓及 Pin 孔位置

CSG 系列 僅使用螺栓安裝

表 056 -1

項目	型號	14	17	20	25	32		45	50	58	
螺栓支數		6	6	8	8	8	8	8	8	8	8
螺栓尺寸		M4	M5	M5	M6	M8	M10	M12	M14	M14	M16
螺栓鎖固 P.C.D.	mm	17	19	24	30	40	50	54	60	70	80
螺栓鎖緊	N·m	5.4	10.8	10.8	18.4	44.4	88.8	154	246	246	383
轉矩	kgf·m	0.55	1.10	1.10	1.87	4.53	9.06	15.7	25.1	25.1	39.1
螺栓	N·m	43	77	130	230	555	1110	1728	2636	3075	4785
傳動轉矩	kgf·m	4.4	8	13	23	57	113	176	269	314	488

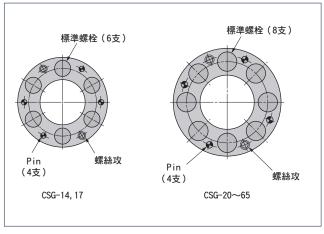
CSG 系列 併用螺栓與 Pin 安裝

表 056 -2

項目	型號	14	17	20	25	32		45		58	
Pin 支數		4	4	4	4	4	4	4	4	4	4
Pin 直徑	mm	3	3	3	4	5	6	6	8	8	8
Pin 孔 P.C.D.	mm	18.5	21.5	27	34	45	56	61	68	79	90
螺栓+Pin	N·m	120	166	242	481	1070	2040	2742	4646	5410	7445
傳動轉矩	kgf-m	12	17	25	49	110	208	280	474	552	760

(表 056-1、056-2 /註)

1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。


2. 建議螺栓 螺栓名稱: JIS B 1176內六角螺栓 強度區分: JIS B 1051 12.9以上

轉矩係數:K=0.2
 鎖緊係數:A=1.4
 接合面摩擦係數 μ=0.15

6. Pin 種類:平行銷、材質:S45C-Q、剪應力:τ=30kgf/mm²

CSG 系列 螺栓及 Pin 孔位置

圖 056 -1

■安裝剛性齒輪

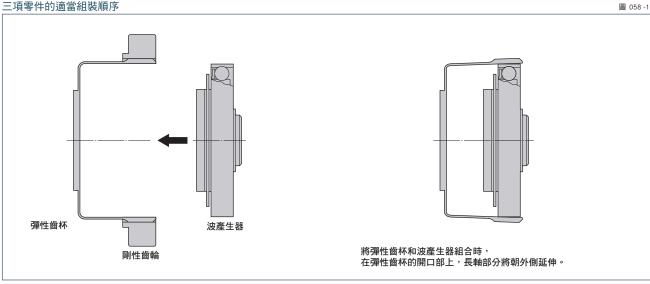
關於剛性齒輪的安裝,應與彈性齒杯同樣,進行符合負載條件的設計與零件管理。建議螺栓及鎖緊轉矩的傳動轉矩如下所示,若相對於負載轉矩,傳動轉矩較小,請考慮併用 Pin 或增加螺栓。並請按照不同系列予以安裝。

CCC 玄利 機松空壯

CSG 糸列 螺栓	女装										表 057 -1
項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		8	16	16	16	16	16	16	16	16	16
螺栓尺寸		M3	M3	M3	M4	M5	M6	M8	M8	M10	M10
螺栓鎖固 P.C.D.	mm	44	54	62	75	100	120	140	150	175	195
螺栓鎖緊	N·m	2.0	2.0	2.0	4.5	9.0	15.3	37	37	74	74
轉矩	kgf∙m	0.20	0.20	0.20	0.46	0.92	1.56	3.8	3.8	7.5	7.5
螺栓	N·m	72	175	196	419	901	1530	3238	3469	6475	7215
傳動轉矩	kgf⋅m	7.3	18	20	43	92	156	330	354	661	736

 CSF 系列 螺栓安装
 表 057-2

つい カベブリ 地形工	~ ~															
項目	型號	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
螺栓支數		8	8	6	12	12	12	12	12	12	12	12	12	16	16	16
螺栓尺寸		M2	M2.5	M3	M3	M3	M4	M5	M6	M8	M8	M10	M10	M10	M12	M12
螺栓鎖固 P.C.D.	mm	25.5	35	44	54	62	75	100	120	140	150	175	195	240	270	300
螺栓鎖緊	N⋅m	0.54	1.1	2.0	2.0	2.0	4.5	9.0	15.3	37	37	74	74	74	128	128
轉矩	kgf·m	0.055	0.11	0.20	0.20	0.20	0.46	0.92	1.56	3.8	3.8	7.5	7.5	7.5	13.1	13.1
螺栓	N⋅m	17	39	54	131	147	314	676	1150	2440	2620	4820	5370	8820	14450	16050
傳動轉矩	kgf·m	1.7	4.0	5.5	13	15	32	69	117	249	267	492	548	900	1474	1638


(表 057-1、057-2/註)

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建議螺栓 螺栓名稱:JIS B 1176內六角螺栓 強度區分:JIS B 1051 12.9以上
- 3. 轉矩係數:K=0.2
- 4. 鎖緊係數:A=1.4
- 5. 接合面摩擦係數 μ=0.15

■基本三項零件之組裝順序

將剛性齒輪及彈性齒杯安裝至裝置後,組裝波產生器。 若用其他方法組裝,可能造成齒輪嚙合空轉狀態(參閱 029 頁), 齒面損傷。務請注意。

三項零件的適當組裝順序

■組裝注意事項

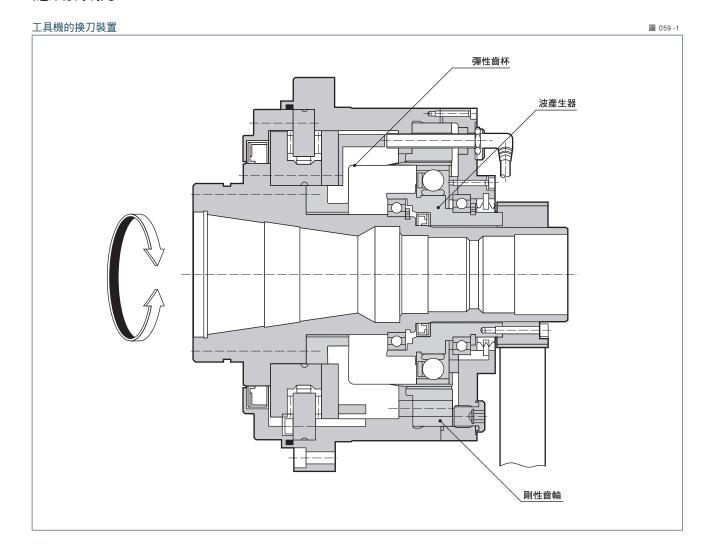
Harmonic Drive®可能因組裝時的不良,產生震動或異音。組裝時, 應避免對波產生器軸承過度施力。

波產生器注意事項 -

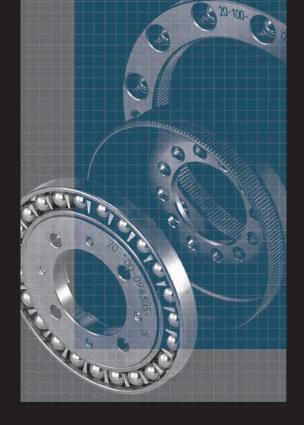
- 1. 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可 順利插入。
- 2. 沒有 Oldham 機構的波產生器,尤應注意讓偏心、垂直的影響保 持在建議值範圍內(參閱 051 頁「組裝精度」)。

剛性齒輪注意事項

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查剛性齒輪組裝進外殼後是否可旋轉,有無干涉卡住。
- 5. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與剛性齒輪干涉,導致螺栓旋轉困難。
- 6. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫 時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將 螺栓鎖緊。
- 7. 盡量避免釘扎剛性齒輪,以免降低旋轉精度。

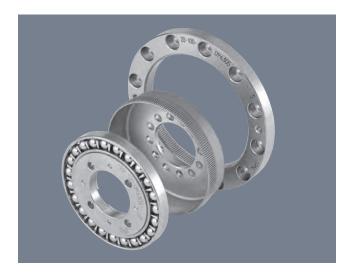

彈性齒杯注意事項·

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與彈性齒杯干涉,導致螺栓旋轉困難。
- 5. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫 時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將 螺栓鎖緊。
- 6. 檢查彈性齒杯與剛性齒輪組合時,有無極度偏往單側、嚙合不良 的情形。如果偏往單側,應為該兩個零件出現偏心或垂直。
- 7. 組裝彈性齒杯時,避免敲打開口部齒尖或過度用力壓入。


防鏽對策 -

元件型的表面並無防鏽處理。 如需防鏽,應塗佈防鏽劑。 另外,如需本公司進行防鏽表面處理,請洽詢本公司。

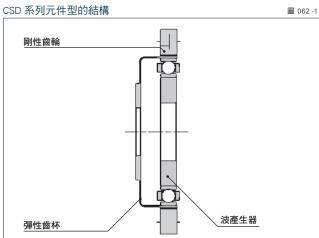
應用案例!


060

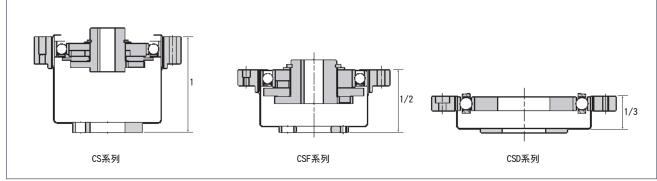
CSD系列

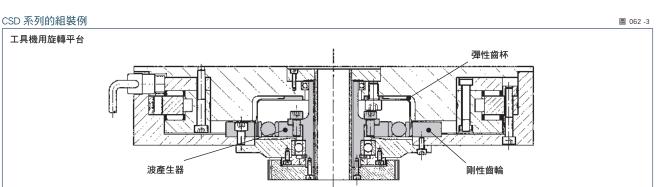
C . In	CCD
Component Type	e CSD
特 徵	062
	063
技術資料	063
	額定表063
	外觀圖064
	尺寸表065
	角傳動精度066
	遲滯損失 ······ 066
	剛性 (彈簧常數) 066
	起動轉矩067
	加速起動轉矩 067
	鬆脫轉矩·······067
	屈曲轉矩 067
	無負載運轉轉矩 068
	效率特性 069
設計指南	071
	潤 滑 071
	組裝精度 073
	密封機構073
	其木三頂零件之組裝 072

特徵!


■CSD 系列元件型

CSD 系列元件型追求極致薄型。相較於 CSG / CSF 系列,軸方向的 長度大約縮短 50%。最適合要求平坦設計的應用案例。


※參考本組裝例使用時,必須要有防止潤滑劑滲漏的密封機構。


CSD 系列的特徵 -

- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

軸方向的長度比較 圖 062 -2

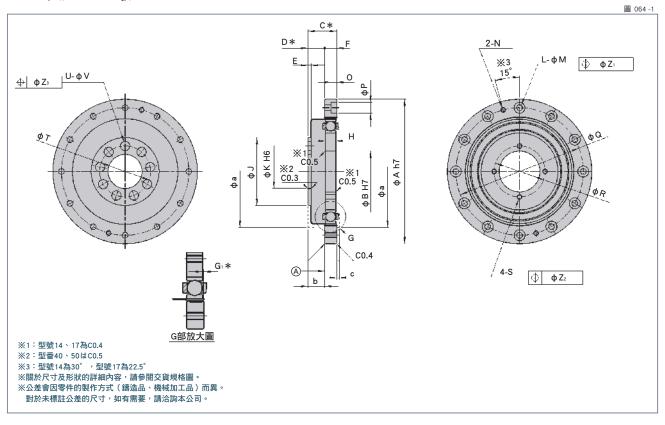
	C2D	- 20 -	100 - 4	2A - GR -	祝怕	
	•					
0	······································		••••••	•••••••	***************************************	•
Y	<u> </u>	V		<u> </u>		表 06

	機種名稱	型號	減速比 (註)					型式	特殊規格
Γ		14	50	80	100	_	_		
		17	50	80	100	120	_		
		20	50	80	100	120	160	0.4 CD = ###I	無記載=標準品
	CSD	25	50	80	100	120	160	2A-GR= 元件型 (型號 14、17 為 2A-R)	SP=形狀或性能等特殊規格
		32	50	80	100	120	160	(±3), (+ 11 /m) 2/(-1()	BB=彈性齒杯的凸起孔為最大直徑時
		40	50	80	100	120	160		
L		50	50	80	100	120	160		

技術資料 💳

型式、記號■

額定表

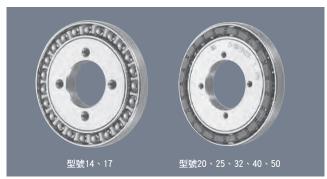

表 063 -2

型號	減速比		000r/min 定轉矩		亭止時的 值轉矩		試轉矩的 最大值	瞬間容許	最大轉矩	容許最 轉 r/n	速	轉	均輸入 速 nin	慣性	力矩
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑油	潤滑脂	潤滑油	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²
	50	3.7	0.38	12	1.2	4.8	0.49	24	2.4						
14	80	5.4	0.55	16	1.6	7.7	0.79	31	3.2	14000	8500	6500	3500	0.021	0.021
	100	5.4	0.55	19	1.9	7.7	0.79	31	3.2						
	50	11	1.1	23	2.3	18	1.8	48	4.9						
17	80	15	1.5	29	3.0	19	1.9	55	5.6	10000	7300	6500	3500	0.054	0.055
17	100	16	1.6	37	3.8	27	2.8	55	5.6	10000	7300	6500	3500	0.054	0.055
	120	16	1.6	37	3.8	27	2.8	55	5.6						
	50	17	1.7	39	4.0	24	2.4	69	7.0						
	80	24	2.4	51	5.2	33	3.4	76* (65)	7.7 * (6.6)						
20	100	28	2.9	57	5.8	34	3.5	76* (65)	7.7 * (6.6)	10000	6500	6500	3500	0.090	0.092
	120	28	2.9	60	6.1	34	3.5	76* (65)	7.7 * (6.6)						
	160	28	2.9	64	6.5	34	3.5	76* (65)	7.7 * (6.6)						
	50	27	2.8	69	7.0	38	3.9	127	13.0						
	80	44	4.5	96	9.8	60	6.1	152*(135)	15* (14)						
25	100	47	4.8	110	11	75	7.6	152*(135)	15* (14)	7500	5600	5600	3500	0.282	0.288
	120	47	4.8	117	12	75	7.6	152*(135)	15* (14)						
	160	47	4.8	123	13	75	7.6	152*(135)	15* (14)						
	50	53	5.4	151	15	75	7.6	268	27						
	80	83	8.5	213	22	117	12	359*(331)	37* (34)						
32	100	96	9.8	233	24	151	15	359*(331)	37* (34)	7000	4800	4600	3500	1.09	1.11
	120	96	9.8	247	25	151	15	359*(331)	37* (34)						
	160	96	9.8	261	27	151	15	359*(331)	37* (34)						
	50	96	9.8	281	29	137	14	480	49						
	80	144	15	364	37	198	20	685 * (580)	70* (59)						
40	100	185	19	398	41	260	27	694*(580)	71 * (59)	5600	4000	3600	3000	2.85	2.91
	120	205	21	432	44	315	32	694*(580)	71 * (59)						
	160	206	21	453	46	316	32	694*(580)	71 * (59)						
	50	172	18	500	51	247	25	1000	102						
	80	260	27	659	67	363	37	1300	133						
50	100	329	34	686	70	466	48	1440*(1315)	147* (134)	4500	3500	3000	2500	8.61	8.78
	120	370	38	756	77	569	58	1440*(1315)	147* (134)						
	160	370	38	823	84	590	60	1577*(1315)	161 * (134)						

外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/



■波產生器的結構與形狀

波產生器為一體結構。

保持器的外觀形狀會因型號而異。

尺寸表

表 065 -1 單位:mm

記號		型號	14	17	20	25	32	40	50
	φA h7		50 _0_025	60 -0.030	70 -0.030	85 _{-0.035}	110 -0.035	135 -0.040	170 0 -0.040
	фВ h7		11 +0.018	15 ^{+0.018}	20 +0.021	24 +0.021	32 ^{+0.025}	40 +0.025	50 ^{+0.025}
	C *		11	12.5	14	17	22	27	33
	D *		6.5 +0.2	7.5 ^{+0.2}	8 +0.3	10 +0.3	13 +0.3	16 ^{+0.3}	19.5 ^{+0.3}
	E		1.4	1.7	2	2	2.5	3	3.5
	F		4.5	5	6	7	9	11	13.5
	G1 *		0.3 +0.2	0.3 +0.2	0.3 +0.2	0.4 +0.2	0.5 +0.2	0.6 +0.2	0.8 +0.2
	Н		4 0	5 _{-0.1}	5.2 _{-0.1}	6.35 _{-0.1}	8.6 -0.1	10.3 -0.1	12.7 0
	фЈ		23	27.2	32	40	52	64	80
		標準	11 +0.011	11 +0.011	16 ^{+0.011}	20 +0.013	30 ^{+0.013}	32 ^{+0.016}	44 ^{+0.016}
	фК Н6	BB 規格	11 +0.011	11 ^{+0.011}	20 +0.013	24 +0.013	32 ^{+0.016}	40 ^{+0.016}	50 ^{+0.016}
	L		6	8	12	12	12	12	12
	фМ		3.4	3.4	3.4	3.4	4.5	5.5	6.6
	N		M3	M3	M3	M3	M4	M5	M6
	0		_	_	3.3	3.3	4.4	5.4	6.5
	φР		-	_	6.5	6.5	8	9.5	11
	φQ		44	54	62	75	100	120	150
	φR		17	21	26	30	40	50	60
	S		M3	M3	M3	M3	M4	M5	M6
	ΦТ	標準	17	19.5	24	30	41	48	62
	Ψ1	BB 規格	17	19.5	26	32	42	52	65
	U	標準	9	8	9	9	11	10	11
		BB 規格	9	8	12	12	14	14	14
	ФΛ	標準	3.4	4.5	4.5	5.5	6.6	9	11
		BB 規格	3.4	4.5	3.4	4.5	5.5	6.6	9
	φZ ₁		0.2	0.2	0.2	0.2	0.25	0.25	0.3
	φZ ₂		0.25	0.25	0.2	0.2	0.25	0.25	0.3
	φΖз	標準	0.2	0.25	0.25	0.25	0.3	0.5	0.5
		BB 規格	0.2	0.25	0.2	0.25	0.25	0.3	0.5
	фа		38	45	53	66	86	106	133
機殼內壁	b		6.5	7.5	8	10	13	16	19.5
	С		1	1	1.5	1.5	2	2.5	3.5
	質量 (kg)		0.06	0.10	0.13	0.24	0.51	0.92	1.9

- (註)型號 14、17 的標準品為最大直徑。
- ●剛性齒輪的安裝面為圖中④面。安裝至機殼等處時,請貼合此面。
- ●下述尺寸可變更或追加加工。

波產生器:尺寸B 彈性齒杯:尺寸U、V 剛性齒輪:尺寸L、M

- * 記號的尺寸 C、D、Gi 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置及容許公差。組裝時請務必遵守上述尺寸,以免影響性能、強度。
- 由於彈性齒杯會彈性變形,為了避免與機殼接觸,內壁的尺寸請保持在 фа、b、c以上。●產品交貨時,是以三項零件(液產生器、彈性齒杯、剛性齒輪)分開的狀態出貨。

	請參閱「技術資料」	
角傳動精度		

								₹€ 000 -1
型	號	14	17	20	25		40	50
名/唐新·昭辛	×10⁴rad	4.4	4.4	2.9	2.9	2.9	2.9	2.9

遲滯損失 (相關用語說明,請參閱「技術資料」內容。)

表 066 -2

減速比	型號	14	17	20	25	32	40	50
FO	×10⁴rad	7.3	5.8	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.5	2.0	2.0	2.0	2.0	2.0	2.0
00 141 1	×10 ⁻⁴ rad	5.8	2.9	2.9	2.9	2.9	2.9	2.9
80 以上	arc-min	2.0	1.0	1.0	1.0	1.0	1.0	1.0

剛性(彈簧常數)(相關用語說明,請參閱「技術資料」內容。)

表 066 -3

									£€ 000 -0
記號		型號	14	17	20	25	32	40	50
		N⋅m	2.0	3.9	7.0	14	29	54	108
T ₁		kgf·m	0.2	0.4	0.7	1.4	3.0	5.5	11
		N⋅m	6.9	12	25	48	108	196	382
	T ₂	kgf∙m	0.7	1.2	2.5	4.9	11	20	39
	1/	X10 ⁴ N·m/rad	0.29	0.67	1.1	2.0	4.7	8.8	17
-	K ₁	kgf·m/arc-min	0.085	0.2	0.32	0.6	1.4	2.6	5.0
	1/	X10 ⁴ N·m/rad	0.37	0.88	1.3	2.7	6.1	11	21
	K ₂	kgf·m/arc-min	0.11	0.26	0.4	0.8	1.8	3.4	6.3
減速比	K₃	X10 ⁴ N·m/rad	0.47	1.2	2.0	3.7	8.4	15	30
50	K3	kgf·m/arc-min	0.14	0.34	0.6	1.1	2.5	4.5	9
	θ1	X10⁴rad	6.9	5.8	6.4	7.0	6.2	6.1	6.4
	01	arc-min	2.4	2.0	2.2	2.4	2.1	2.1	2.2
	θ2	×10⁴rad	19	14	19	18	18	18	18
	02	arc-min	6.4	4.6	6.6	6.1	6.1	5.9	6.2
	K ₁	X10 ⁴ N·m/rad	0.4	0.84	1.3	2.7	6.1	11	21
	N ₁	kgf·m/arc-min	0.12	0.25	0.4	0.8	1.8	3.2	6.3
	1/	X10 ⁴ N·m/rad	0.44	0.94	1.7	3.7	7.8	14	29
	K ₂	kgf·m/arc-min	0.13	0.28	0.5	1.1	2.3	4.2	8.5
減速比	K ₃	X10 ⁴ N·m/rad	0.61	1.3	2.5	4.7	11	20	37
80 以上	K3	kgf·m/arc-min	0.18	0.39	0.75	1.4	3.3	5.8	11
	θ1	X10⁴rad	5.0	4.6	5.4	5.2	4.8	4.9	5.1
	01	arc-min	1.7	1.6	1.8	1.8	1.7	1.7	1.7
		×10⁴rad	16	13	15	13	14	14	13
	θ2	arc-min	5.4	4.3	5.0	4.5	4.8	4.8	4.6

[※] 本表數值為參考值。下限值約為標示數值的 80%。

起動轉矩 (相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 067 -1 單位:cN·m

型號減速比	14	17			32		50
50	3.7	5.7	7.3	14	28	50	94
80	2.7	3.8	4.8	8.8	19	32	63
100	2.4	3.3	4.3	7.9	18	29	56
120	-	3.1	3.8	7.2	16	27	53
160	_	_	3.4	6.4	14	24	44

加速起動轉矩 (相關用語說明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 067 -2 單位:N·m

型號 減速比	14	17	20	25	32		50
50	2.5	3.8	4.4	8.3	17	30	57
80	2.6	3.7	4.9	8.8	19	32	62
100	3.1	4.1	5.2	9.6	21	35	67
120	-	4.5	5.7	11	22	38	74
160	_	_	6.6	12	28	45	85

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 067-3 單位:N·m

型號減速比	14	17	20	25	32	40	50
50	60	105	150	315	685	1260	2590
80	75	140	245	475	980	1960	3780
100	55	110	180	350	700	1470	2870
120	-	80	165	325	685	1330	2660
160	_	_	150	315	685	1260	2520

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 067 -4 單位:N·m

	型號	14	17	20	25	32		50
[全減速比	190	330	560	1000	2200	4300	8000

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸入端(高速軸端)的轉矩。

測量條件

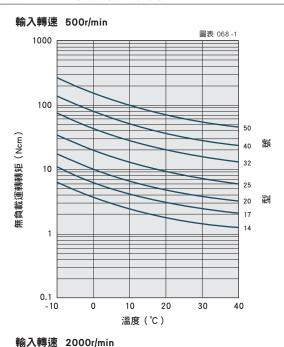
表 068 -1

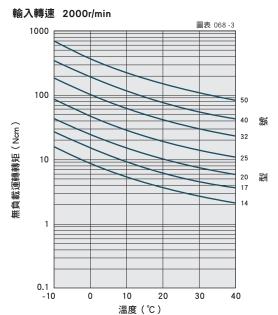
減速比100									
潤滑條件	388.28.06	名稱	Harmonic 潤滑脂® SK-1A(型號 20 以上)						
	潤滑脂 潤滑	中件	Harmonic 潤滑脂 ® SK-2(型號 14、17)						
		塗佈量	適當塗佈量(071 頁)						
轉矩值為輸送	轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值								

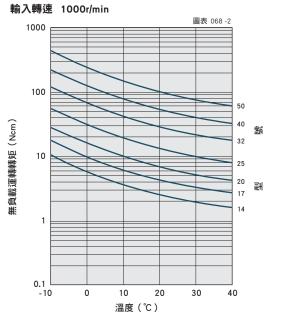
※ 如為潤滑油潤滑,請洽詢本公司。

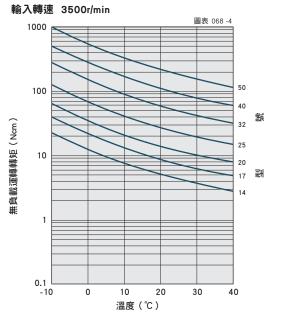
■速度比別修正量

Harmonic Drive® 的無負載運轉轉矩會因減速比而不同。圖表 068-1 \sim 068-4 為減速比 100 時的數值。


關於其他速度比,請加上表 068-2 所示修正量後計算。


無負載運轉轉矩修正量


表 068 -2 單位:Ncm


減速比 型號	50	80	120	160
14	+0.56	+0.1	_	_
17	+0.95	+0.1	-0.1	_
20	+1.4	+0.2	-0.2	-0.39
25	+2.6	+0.4	-0.3	-0.72
32	+5.4	+0.8	-0.6	-1.5
40	+9.6	+1.5	-1.1	-2.6
50	+18	+2.7	-2.0	-4.8

■減速比 100 的無負載運轉轉矩

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

測量條件 表 069 -1 組裝 以建議組裝精度組裝後測量 負載轉矩 額定表所示的額定轉矩(063頁) ※ 當負載轉矩小於額定轉矩時,效率值將下降。請參照下列效率修正係數。 Harmonic 潤滑脂 ® SK-1A(型號 20 以上) 潤滑脂 Harmonic 潤滑脂 ® SK-2(型號 14、17) 潤滑 塗佈量 適當塗佈量(071頁)

※ 於 CSD 系列使用潤滑油潤滑時,請洽詢本公司

■效率修正係數與效率修正量

■效率修正公式

請由公式 069-1 的公式計算出「負載轉矩的效率修正係數」與「型 號的效率修正量」產生的效率。

公式 公式 069 -1

■依據負載轉矩的效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 069-1 計算修 正係數 Ke,參考效率修正公式計算效率。

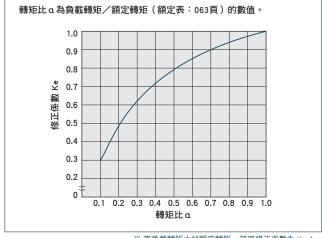

公式的記號

表 069 -2

η	效率	_
Ke	效率修正係數	圖表 069-1
ηR	額定轉矩時的效率	圖表 070-1 ~ 070-6
ηе	效率修正量	表 069-3

效率修正係數

圖表 069 -1

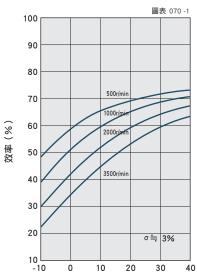
※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

■不同型號的效率修正量

CSD-2A 的輸入端裝有支撐軸承、油封。這些的影響程度會因型號而

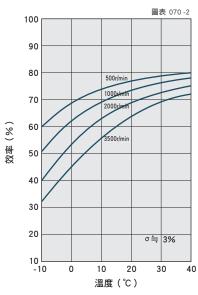
各型號對額定轉矩時的效率修正量 η e 以表 069-3 計算。

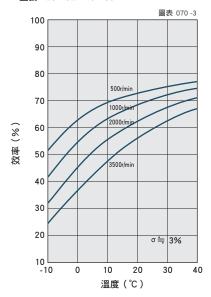
各型號的效率修正量單位


表 069-3 單位:%

減速比 型號	50			120	
14	0.0	3.4	0.0	_	_
17	0.3	4.5	2.4	-0.2	-
20	-0.3	4.4	3.7	1.2	1.7
25	3.0	3.7	1.6	-1.0	-0.6
32	1.4	1.5	0.7	-2.0	-1.6
40	1.2	0.6	1.3	0.3	0.8
50	0.0	-0.5	0.0	-0.8	-0.3

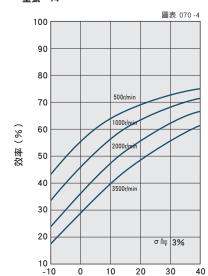
■額定轉矩時的效率



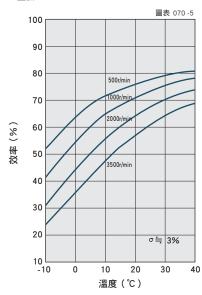


溫度(℃)

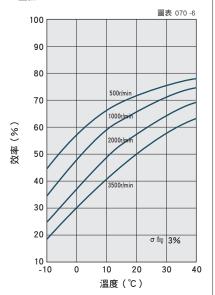
型號 17、20



型號 25、32、40、50


減速比 80、100、120

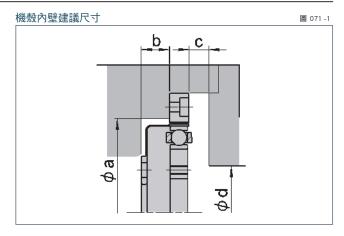
型號 14


溫度(℃)

型號 17、20、25、32、40、50

減速比 160

設計指南


潤 滑

■潤滑脂

潤滑劑的詳情,請參閱016頁「技術資料」內容。

機殼內壁建議尺寸 -

以潤滑脂潤滑時,為了讓運轉中潤滑脂不致四下飛濺而殘留於 Harmonic Drive®內部,Harmonic Drive®與機殼內壁之間應盡可能符 合建議尺寸。如果無法確保建議尺寸,請洽詢本公司。

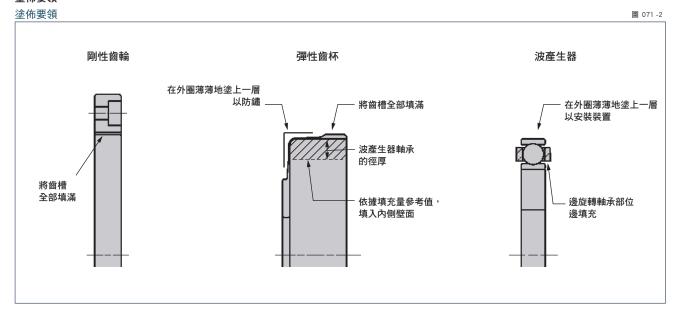

機殼內壁建議尺寸

表 071 -1 單位:mm

型號記號	14	17	20	25	32	40	50
фа	38	45	53	66	86	106	133
b	6.5	7.5	8	10	13	16	19.5
С	1 (3)	1 (3)	1.5 (4.5)	1.5 (4.5)	2 (6)	2.5 (7.5)	3.5 (10.5)
фd ^{+0.5}	16	26	30	37	37	45	45

(註)()內為波產生器朝上時的數值。

塗佈要領 -

不同使用方法的塗佈要領

波產生器朝上或朝下時的塗佈要領請參閱 CSF 系列(048 頁圖 048-3)。

塗佈量 -

表 071 -2

								≠ 17 · 9
使用方法	型號	14	17	20	25	32	40	50
水平使用		3.5	5.2	9	17	37	68	131
垂直使用	輸出軸朝上	3.9	6	10	19	42	78	149
	輸出軸朝下	4.6	7.1	12	22	48	88	175

潤滑脂更換時期

潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。 潤滑脂性能會隨溫度而變化,越高溫越容易劣化,需要儘早更換。 右方圖表是根據平均負載轉矩低於額定轉矩時,潤滑脂溫度與波產 生器總旋轉數關連性所表示的更換時期基準。

當平均負載轉矩超過額定轉矩,可依下列公式計算更換時期。

平均負載轉矩超過額定轉矩時的公式

公式 072 -1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav}\right)^3$$

公式的記號

表 072 -1

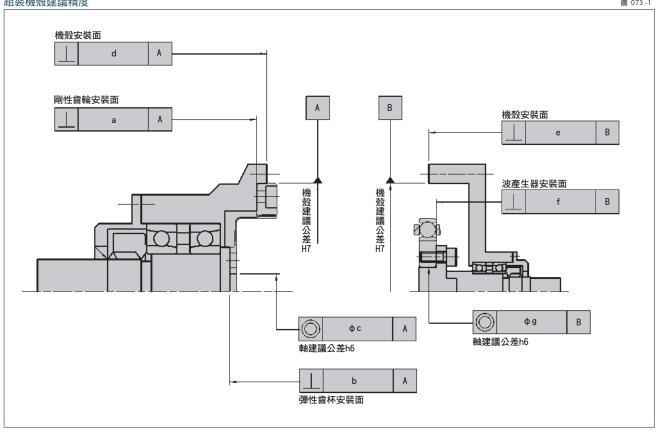
Lgt	超過額定轉矩的更換時期	轉數	
LgTn	未超過額定轉矩的更換時期	轉數	參閱右圖
Tr	額定轉矩	N·m,kgf·m	參閱 063 頁「額定表」
⊤av	輸出端的平均負載轉矩		公式:參閱 014 頁

潤滑脂更換時期:Lgm (平均負載轉矩低於額定轉矩時) 圖 072 -1 潤滑脂本身壽命 相當於更換時期的波產生器累計總旋轉數(次 4B No.2 10⁹ SK-1A 10⁸ 波產生器的壽命 10⁷ 20 40 80 100 120 潤滑脂溫度(℃)

※ 波產生器的壽命,係指受損機率 10%。

■其他注意事項

- 切忌與其他潤滑脂混用。此外,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。
- 2. Harmonic Drive® 在波產生器朝上(參閱 050 頁圖 050-2)的狀態,且一定負載往單一方向低速旋轉(輸入轉速: 1000r/min以下)使用時,可能造成潤滑不良,若於此情形下使用時,請洽詢本公司營業據點。


組裝精度

關於組裝設計,若為導致安裝面變形等異常組裝,則可能造成性能降低。

為充分發揮元件型的優異性能,請注意以下事項,保持圖 073-1、表 073-1 的組裝機殼建議精度,並採用不會漏油的設計。

- ●安裝面彎曲、變形
- ●咬入異物
- ●安裝孔螺孔部週邊的毛邊、隆起、位置度異常
- ●安裝接口部倒角不足
- ●安裝接口部真圓度異常

組裝機殼建議精度 圖 073 -1

組裝機殼建議精度

表 073 -1 單位:mm

111111111111111111111111111111111111111	-						
型號記號	型號 14			25	32		50
a	0.011	0.012 0.01		0.014	0.016	0.016	0.018
b	0.008	0.011	0.014	0.018	0.022	0.025	0.030
фс	0.015	0.018	0.019	0.022	0.022	0.024	0.030
d	0.011	0.015	0.017	0.024	0.026	0.026	0.028
е	0.011	0.015	0.017	0.024	0.026	0.026	0.028
f	0.008	0.010	0.010	0.012	0.012	0.012	0.015
фд	0.016	0.018	0.019	0.022	0.022	0.024	0.030

密封機構|

為防止潤滑脂滲漏並保持 Harmonic Drive® 的高度耐久性,需要下列密封機構。

· 旋轉滑動部······· 油封(含彈簧)。此時請注意勿使軸側出現損傷等不良。

· 凸緣重合面、嵌合處············· O 型環、密封劑。此時請注意平面不均整、O 型環遭咬入等情形。

·螺孔部······· 具封止效果的螺絲固定劑(建議使用 LOCTITE 242)或密封劑。

(註)尤其是使用 Harmonic 潤滑脂 ®4B No.2 時,必須嚴格採用前述機構。

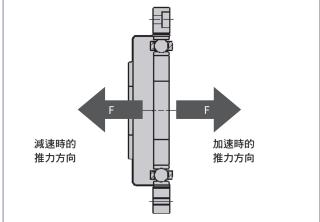
基本三項零件之組裝

■安裝波產生器

1. 波產生器的推力與軸固定

Harmonic Drive® 因為彈性齒杯彈性變形,運轉中會對波產生器施加

作為減速機(010頁①、②、③)使用時,推力將對彈性齒杯隔板 方向作用。


(圖 074-1)

此外,作為加速機(010頁4)、⑤、⑥)使用時,其推力作用方向 與減速機時的方向相反。(圖 074-1)

波產生器的推力(最大值)可由下列公式求出。此外,推力會隨運 轉條件而改變。高轉矩時、極低速時、固定連續旋轉時有增大的傾 向,幾乎如同公式求出的值。無論任何情況,設計時務必採用阻止 波產生器推力的結構。

(註)若希望於波產生器栓加裝固定螺絲以固定輸入軸時,請務必洽詢本公司。

波產生器的推力方向

推力計算公式

表 074 -1

減速比	公式
50	$F=2 \times \frac{T}{D} \times 0.07 \times tan 30^{\circ} +2 \mu PF$
80 以上	$F=2 \times \frac{T}{D} \times 0.07 \times tan 20^{\circ} +2 \mu PF$

公式的記號

表 074 -2

F	推力	N	參閱圖 074-1
D	(型號)×0.00254	m	
Т	輸出轉矩	N·m	
2µPF	軸承斥力導致的推力	N	參閱表 074-3

軸承斥力導致的推力

表 074 -3

圖 074 -1

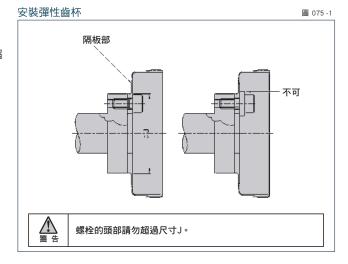
機 種	型 號	型 號 2µPF(N)
	14	2.1
	17	4.1
	20	5.6
CSD	25	9.8
	32	16
	40	24
	50	39

計算例

公式 074 -1

機 種 名 稱: CSD 減 速 比: i=50

輸 出 轉 矩: 268N·m(瞬間容許最大轉矩)


$$F=2 \times \frac{268}{(32 \times 0.00254)} \times 0.07 \times \tan 30^{\circ} + 16$$

■安裝彈性齒杯

1. 安裝注意事項

彈性齒杯建議使用螺栓直接安裝。

若於彈性齒杯內側使用安裝用凸緣及墊片等,則組裝波產生器時, 安裝螺栓會碰撞損壞波產生器,因此請務必使用螺栓直接安裝。 如圖 075-1 所示,螺栓頭部請勿超過彈性齒杯凸軸直徑(φJ)。超 過凸軸直徑可能損壞隔板。

彈性齒杯的凸軸直徑

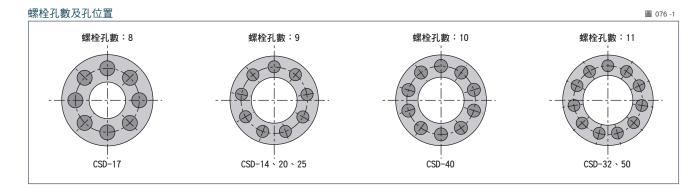
長 075 -1 貿位:mm

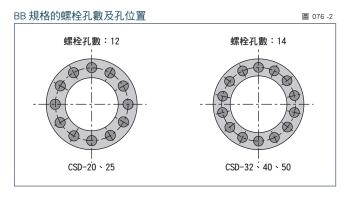
型號記號	14	14 17		25	32	40	50
фЛ	23	27.2	32	40	52	64	80

2. 如何以螺栓鎖緊彈性齒杯 -

彈性齒杯使用螺栓鎖緊。

以下條件對鎖緊部傳動轉矩的影響很大,因此請配合負載條件進行 設計及零件管理。


- ●選擇螺栓的強度
- ●螺栓鎖緊及鎖緊轉矩
- ●螺栓及螺帽的表面狀態
- ●接觸面的摩擦係數


螺栓鎖固 表 075-2

蛛性頭凹													表 010 -2
					標準品			BB(彈性齒杯的凸起孔為最大直徑時)					
項目	型號	14	17		25			50	20	25		40	
螺栓支數		9	8	9	9	11	10	11	12	12	14	14	14
螺栓尺寸		МЗ	M4	M4	M5	M6	M8	M10	МЗ	M4	M5	M6	M8
螺栓鎖固 P.C.D.	mm	17	19.5	24	30	41	48	62	26	32	42	52	65
螺栓鎖緊	N·m	2.0	4.5	4.5	9.0	15.3	37	74	2.0	4.5	9.0	15.3	37
轉矩	kgf∙m	0.20	0.46	0.46	0.92	1.56	3.8	7.5	0.20	0.46	0.92	1.56	3.8
螺栓	N·m	32	55	76	152	359	694	1577	65	135	331	580	1315
傳動轉矩	kgf·m	3.3	5.6	7.7	16	37	71	161	6.6	14	34	59	134

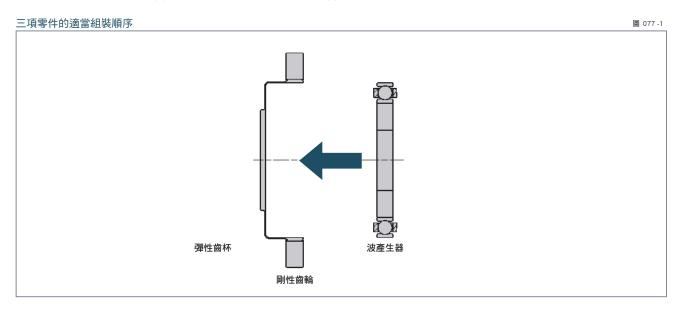
(表 075-2/註)

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建議螺栓 螺栓名稱:JIS B 1176內六角螺栓 強度區分:JIS B 1051 12.9以上
- 3. 轉矩係數:K=0.2
- 4. 鎖緊係數:A=1.4
- 5. 接合面摩擦係數 μ=0.15
- 6. BB 規格中,由於螺栓傳動轉矩較標準品小,因此瞬間容許最大轉矩受到限制。(參閱 063 頁「額定表」)

■安裝剛性齒輪

關於剛性齒輪的安裝,應與彈性齒杯同樣,進行符合負載條件的設計與零件管理。建議螺栓及鎖緊轉矩的傳動轉矩如下(表 077-1)所示, 若相對於負載轉矩,傳動轉矩較小,請考慮併用 Pin 或增加螺栓。

螺栓鎖固 表 077 -1


赤江工政(国								26 011 -1
型號項目		14	17	20	25	32	40	50
螺栓支數		6	8	12	12	12	12	12
螺栓尺寸		M3	M3	M3	M3	M4	M5	M6
螺栓鎖固 P.C.D.	mm	44	54	62	75	100	120	150
螺栓鎖緊轉矩	N·m	2.0	2.0	2.0	2.0	4.5	9.0	15.3
	kgf·m	0.20	0.20	0.20	0.20	0.46	0.92	1.56
螺栓	N·m	55	90	155	188	422	810	1434
傳動轉矩	kgf∙m	5.6	9.2	16	19	43	83	146
/ ± /=> >								

- (表 077-1 /註) 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建議螺栓 螺栓名稱:JIS B 1176 內六角螺栓 強度區分:JIS B 1051 12.9 以上
- 3. 轉矩係數:K=0.2
- 4. 鎖緊係數:A=1.4
- 5. 接合面摩擦係數 μ=0.15

■基本三項零件之組裝順序

將剛性齒輪及彈性齒杯安裝至裝置後,組裝波產生器。

若用其他方法組裝,可能造成齒輪嚙合空轉狀態(參閱029頁),齒面損傷。務請注意。

■組裝注意事項

Harmonic Drive®可能因組裝時的不良,產生震動或異音。組裝時,應避免對波產生器軸承過度施力。

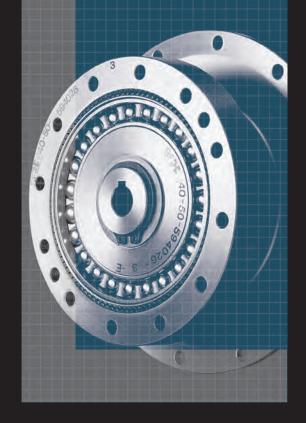
波產生器注意事項 -

- 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可順利插入。
- 由於 CSD 系列的波產生器沒有 Oldham 機構(自動校準機構), 尤應注意讓偏心、垂直的影響保持在建議值範圍內(參閱 073 頁 「組裝精度」)。
- 3. 組裝時請注意勿使波產生器的鎖合螺栓與彈性齒杯的鎖合螺栓干涉。

剛性齒輪注意事項 -

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查剛性齒輪組裝進外殼後是否可旋轉,有無干涉卡住。
- 5. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與剛性齒輪干涉,導致螺栓旋轉困難。
- 6. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 7. 盡量避免釘扎剛性齒輪,以免降低旋轉精度。

彈性齒杯注意事項

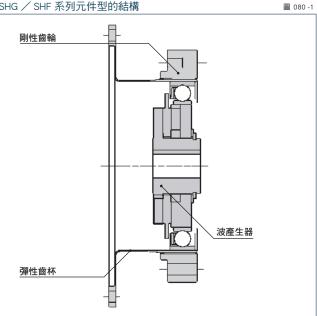

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與彈性齒杯干涉,導致螺栓旋轉困難。
- 5. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 6. 檢查彈性齒杯與剛性齒輪組合時,有無極度偏往單側、嚙合不良的情形。如果偏往單側,應為該兩個零件出現偏心或垂直。
- 7. 組裝彈性齒杯時,避免敲打開口部齒尖或過度用力壓入。

防鏽對策 -

CSD 系列表面並無防鏽處理。

如需防鏽,應塗佈防鏽劑。

另外,如需本公司進行防鏽表面處理,請洽詢本公司。


SHG/SHF系列

Component Type	SHG/SHF
特 徵	080
	081
技術資料	082
	額定表082
	外觀圖
	尺寸表085
	角傳動精度 086
	遲滯損失 086
	最大背隙量086
	剛性 (彈簧常數) 086
	起動轉矩 087
	加速起動轉矩 087
	鬆脫轉矩 088
	屈曲轉矩 088
	無負載運轉轉矩 088
	效率特性 090
設計指南	092
	潤 滑092
	組裝精度 096
	密封機構 096
	基本三項零件之組裝 097

特徵:

SHG / SHF 系列元件型的結構

■SHG / SHF 系列元件型

SHG / SHF 系列元件型以 CSG / CSF 系列為基礎開發,兩系列的基 礎性能相同。

兩系列的主要差異在於彈性齒杯的形狀。

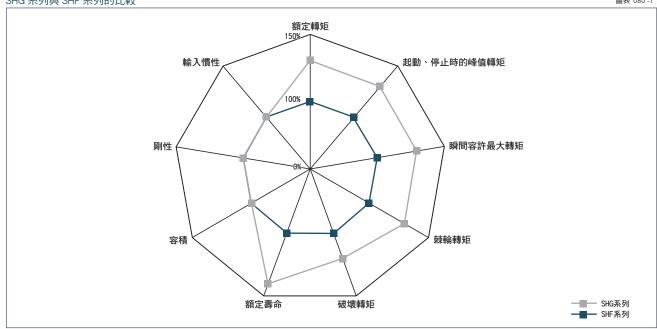
SHG / SHF 系列的彈性齒杯呈現向外側打開的形狀。此形狀可以使 中央部中空。

SHG / SHF 系列元件型僅以三項基礎零件組成。可直接組裝至機械、 裝置,提升設計自由度。

SHG / SHF 系列的特徵

- ■大口徑中空孔、薄型
- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

新種類-

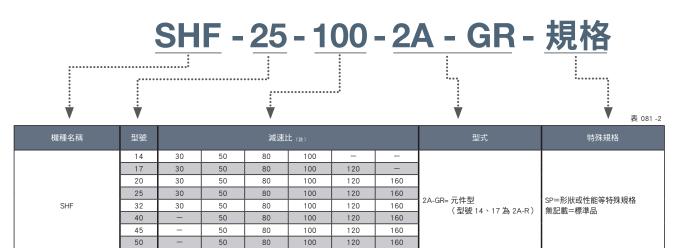

SHG 系列:高轉矩用

- · 較 SHF 系列提升 30% 轉矩容量
- · 較 SHF 系列延長 43% 使用壽命 (10000 小時)

減速比30:高速用

·保留無背隙 Harmonic Drive® 的優點,實現減速比 30

SHG 系列與 SHF 系列的比較 圖表 080 -1



	S	HG - 25 -	<u> 100</u> -	<u>2A - GR</u>	- 規格	
*	Ť	▼		▼	*	表 081 -1
14477 A 715	Wild F	_b\+11		wit is	44744016	

機種名稱	型號			減速比 (註)			型式	特殊規格			
	14	50	80	100	-	_					
	17	50	80	100	120	-		1			
SHG	20	50	80	100	120	160		1			
	25	50	80	100	120	160					
	32	50	80	100	120	160	2A-GR= 元件型	SP=形狀或性能等特殊規格			
Snu	40	50	80	100	120	160	(型號 14、17 為 2A-R)	無記載=標準品			
	45	50	80	100	120	160					
	50	_	80	100	120	160					
	58	_	80	100	120	160					
	65	-	80	100	120	160					

(註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

型式、記號■

120

160

100

80

58 (註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

50

技術資料■

額定表

■SHG 系列

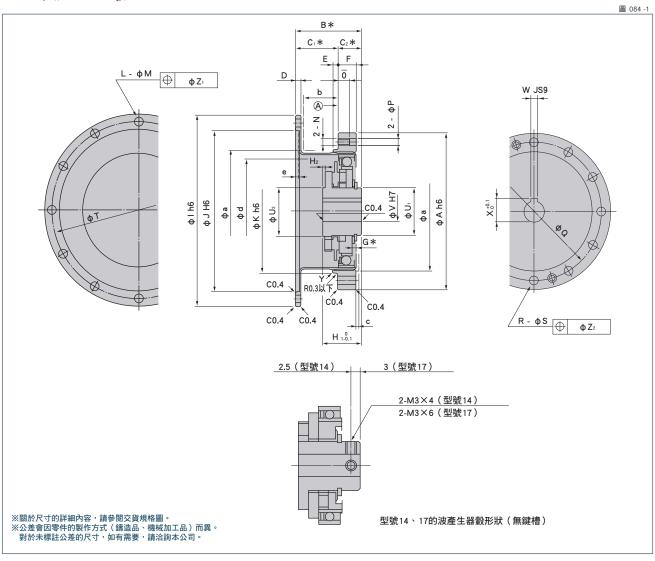
表 082 -1

14	0.034 0.081 0.421
14	0.081
100	0.081
17	0.197
17	0.197
17	0.197
100	0.197
SO	
80 44 4.5 96 9.8 61 6.2 165 17 100 52 5.3 107 10.9 64 6.5 191 20 120 52 5.3 113 11.5 64 6.5 191 20 160 52 5.3 120 12.2 64 6.5 191 20 80 82 8.4 178 18 113 12 332 34 80 82 8.4 178 18 113 12 332 34 100 87 8.9 204 21 140 14 369 38 7500 5600 5600 3500 120 87 8.9 229 23 140 14 395 40 160 87 8.9 229 23 140 14 408 42 80 153 16 395 40 217 22 738 75 32 100 178 18 433 44 281 29 892 91 160 178 18 484 49 281 29 892 91	
20	
120 52 5.3 113 11.5 64 6.5 191 20	
160 52 5.3 120 12.2 64 6.5 191 20	0.421
Solution	0.421
80 82 8.4 178 18 113 12 332 34	0.421
25	0.421
120 87 8.9 217 22 140 14 395 40 160 87 8.9 229 23 140 14 408 42 50 99 10 281 29 140 14 497 51 80 153 16 395 40 217 22 738 75 100 178 18 433 44 281 29 841 86 120 178 18 459 47 281 29 892 91 160 178 18 484 49 281 29 892 91 50 178 18 523 53 255 26 892 91 80 268 27 675 69 369 38 1270 130 80 268 27 675 69 369 38 1270 130 100 345 35 738 75 484 49 1400 143 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	0.421
160	
50 99 10 281 29 140 14 497 51 80 153 16 395 40 217 22 738 75 100 178 18 433 44 281 29 841 86 120 178 18 459 47 281 29 892 91 160 178 18 484 49 281 29 892 91 50 178 18 523 53 255 26 892 91 80 268 27 675 69 369 38 1270 130 100 345 35 738 75 484 49 1400 143 5600 4000 3600 3000 4.5 120 382 39 802 82 586 60 1530 156	
80 153 16 395 40 217 22 738 75 100 178 18 433 44 281 29 841 86 120 178 18 459 47 281 29 892 91 160 178 18 484 49 281 29 892 91 50 178 18 523 53 255 26 892 91 80 268 27 675 69 369 38 1270 130 40 100 345 35 738 75 484 49 1400 143 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	
32	
120 178 18 459 47 281 29 892 91 160 178 18 484 49 281 29 892 91 50 178 18 523 53 255 26 892 91 80 268 27 675 69 369 38 1270 130 100 345 35 738 75 484 49 1400 143 5600 4000 3600 3000 4.5 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	
160 178 18 484 49 281 29 892 91 50 178 18 523 53 255 26 892 91 80 268 27 675 69 369 38 1270 130 100 345 35 738 75 484 49 1400 143 5600 4000 3600 3000 4.5 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	1.72
50 178 18 523 53 255 26 892 91 80 268 27 675 69 369 38 1270 130 100 345 35 738 75 484 49 1400 143 5600 4000 3600 3000 4.5 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	
80 268 27 675 69 369 38 1270 130 40 100 345 35 738 75 484 49 1400 143 5600 4000 3600 3000 4.5 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	
40 100 345 35 738 75 484 49 1400 143 5600 4000 3600 3000 4.5 120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	
120 382 39 802 82 586 60 1530 156 160 382 39 841 86 586 60 1530 156	
160 382 39 841 86 586 60 1530 156	4.59
EO 220 22 6EO 66 24E 2E 102E 100	
50 229 23 650 66 345 35 1235 126	
80 407 41 918 94 507 52 1651 168	
45 100 459 47 982 100 650 66 2041 208 5000 3800 3300 3000 8.6	8.86
120 523 53 1070 109 806 82 2288 233	
160 523 53 1147 117 819 84 2483 253	
80 484 49 1223 125 675 69 2418 247	
50 100 611 62 1274 130 866 88 2678 273 4500 3500 3000 2500 12.	12.8
120 688 70 1404 143 1057 108 2678 273	12.0
160 688 70 1534 156 1096 112 3185 325	
80 714 73 1924 196 1001 102 3185 325	
58 100 905 92 2067 211 1378 141 4134 422 4000 3000 2700 2200 27.	27.9
120 969 99 2236 228 1547 158 4329 441	21.3
160 969 99 2392 244 1573 160 4459 455	
80 969 99 2743 280 1352 138 4836 493	
65 100 1236 126 2990 305 1976 202 6175 630 3500 2800 2400 1900 46.	
65 120 1236 126 3263 333 2041 208 6175 630 3500 2500 2400 1900 46.	47.9
160 1236 126 3419 349 2041 208 6175 630	47.8

- (注) 1. 元件型的型號 50 以上、減速比 50 的機種使用潤滑油。如以潤滑脂進行潤滑,請在額定轉矩的½以內使用。
 2. 慣性力矩 I = ¼ GD²
 3. 相關用語詳情,請參閱 012 頁「技術資料」內容。
 4. 若可能施加瞬間容許最大轉矩,請參閱各系列「如何以螺栓鎖緊彈性齒杯」相關內容。

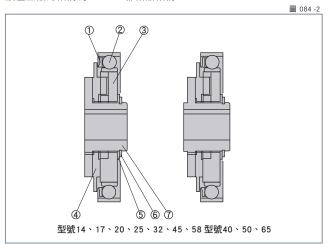
■SHF 系列 表 083 -1

■ SHF 齐	らふり														表 083 -1			
型號	減速比		000r/min 定轉矩		亭止時的 值轉矩		載轉矩的 最大值	瞬間容許	最大轉矩		高輸入 速 nin	轉	均輸入 速 nin	慣性	力矩			
	""	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑油	潤滑脂	潤滑油	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²			
	30	4.0	0.41	9.0	0.92	6.8	0.69	17	1.7									
14	50	5.4	0.55	18	1.8	6.9	0.70	35	3.6	14000	8500	6500	3500	0.033	0.034			
14	80	7.8	0.80	23	2.4	11	1.1	47	4.8	14000	6500	6500	3300	0.055	0.034			
	100	7.8	0.80	28	2.9	11	1.1	54	5.5									
	30	8.8	0.90	16	1.6	12	1.2	30	3.1									
	50	16	1.6	34	3.5	26	2.6	70	7.1									
17	80	22	2.2	43	4.4	27	2.7	87	8.9	10000	7300	6500	3500	0.079	0.081			
	100	24	2.4	54	5.5	39	4.0	110	11									
	120	24	2.4	54	5.5	39	4.0	86	8.8									
	30	15	1.5	27	2.8	20	2.0	50	5.1									
	50	25	2.5	56	5.7	34	3.5	98	10	- 10000								
20	80	34	3.5	74	7.5	47	4.8	127	13		6500	6500	3500	0.193	0.197			
	100	40	4.1	82	8.4	49	5.0	147	15		0000				0.197			
	120	40	4.1	87	8.9	49	5.0	147	15									
	160	40	4.1	92	9.4	49	5.0	147	15									
	30	27	2.8	50	5.1	38	3.9	95	9.7	7500 560								
	50	39	4.0	98	10	55	5.6	186	19						0.421			
25	80	63	6.4	137	14	87	8.9	255	26		5600	5600	3500	0.413				
25	100	67	6.8	157	16	108	11	284	29			3600	3500	0.413	0.421			
	120	67	6.8	167	17	108	11	304	31									
	160	67	6.8	176	18	108	11	314	32									
	30	54	5.5	100	10	75	7.7	200	20		4800							
	50	76	7.8	216	22	108	11	382	39									
32	80	118	12	304	31	167	17	568	58	7000		4600	3500	1.69	1.72			
32	100	137	14	333	34	216	22	647	66	1000			3300		1.72			
	120	137	14	353	36	216	22	686	70									
	160	137	14	372	38	216	22	686	70									
	50	137	14	402	41	196	20	686	70						4.59			
	80	206	21	519	53	284	29	980	100									
40	100	265	27	568	58	372	38	1080	110	5600	4000	3600	3000	4.50				
	120	294	30	617	63	451	46	1180	120									
	160	294	30	647	66	451	46	1180	120									
	50	176	18	500	51	265	27	950	97									
	80	313	32	706	72	390	40	1270	130									
45	100	353	36	755	77	500	51	1570	160	5000	3800	3300	3000	8.68	8.86			
	120	402	41	823	84	620	63	1760	180									
	160	402	41	882	90	630	64	1910	195									
	50	245	25	715	73	350	36	1430	146									
	80	372	38	941	96	519	53	1860	190									
50	100	470	48	980	100	666	68	2060	210	4500	3500	3000	2500	12.5	12.8			
	120	529	54	1080	110	813	83	2060	210									
	160	529	54	1180	120	843	86	2450	250									
	50	353	36	1020	104	520	53	1960	200									
	80	549	56	1480	151	770	79	2450	250									
58	100	696	71	1590	162	1060	108	3180	325	4000	3000	2700	2200	27.3	27.9			
	120	745	76	1720	176	1190	121	3330	340									
	160	745	76	1840	188	1210	123	3430	350									
/ >> > -	- AL THE - THE -		A>+11 44	144 TT (# FT) 100	10011	測温化准仁	'00 \D =+ 4	AT ++ LE 44	4 4 1 3 4th FT									

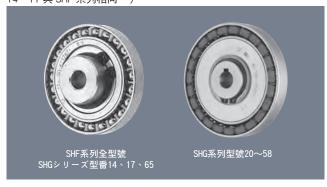

⁽注)1. 元件型的型號 50 以上、減速比 50 的機種使用潤滑油。如以潤滑脂進行潤滑,請在額定轉矩的 $\frac{1}{2}$ 以內使用。

 ^{2.} 慣性力矩 I = ↓ GD²
 3. 相關用語詳情,請參閱 012 頁「技術資料」內容。
 4. 若可能施加瞬間容許最大轉矩,請參閱各系列「如何以螺栓鎖緊彈性齒杯」相關內容。

外觀圖


本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/



■波產生器的形狀

波產生器的結構為 Oldham 聯結器結構。

①保持器 ②波產生器軸承 ③波產生器栓 ④插入孔 ⑤橡膠墊圈 ⑥ C 型固定環 ⑦波產生器轂 SHF 系列與 SHG 系列的保持器外觀形狀不同。(SHG 系列的型號 14、17 與 SHF 系列相同。)

尺寸表

表 085 -1 單位:mm

記號		型號	14	17		25	32	40	45	50	58	65
	φA h6		50	60	70	85	110	135	155	170	195	215
		SHG 系列	28.5 0	32.5 0	33.5 0	37 -0.5	44 -0.6	53 _{-0.6}	58.5 ⁰ -0.6	64 -0.7	75.5 ⁰ _{-0.7}	83 -0.7
	B *	SHF 系列	28.5 0	32.5 0	33.5 0	37 ⁰ _{-1.0}	44 0	53 _{-1.1}	58.5 ⁰	64 -1.3	75.5 ⁰	_
	C1 *		17.5 +0.4	20 +0.5	21.5 +0.8	24 +0.8	28 +0.8	34 +0.6	38 +0.6	41 +0.6	48 +0.6	52.5 ^{+0.6}
	C2 *		11	12.5	12	13	16	19	20.5	23	27.5	30.5
	D		2.4	3	3	3.3	3.6	4	4.5	5	5.8	6.5
	Е		2	2.5	3	3	3	4	4	4	5	5
	F		6	6.5	7.5	10	14	17	19	22	25	29
	C 11	SHG 系列	1.4	1.6	1.5	3.5	4.2	5.6	6.3	7	8.2	9.5
	G *	SHF 系列	0.4	0.3	0.1	2.1	2.5	3.3	3.7	4.2	4.8	_
		SHG 系列	18.5 0	20.7 -0.1	21.5 0 -0.1	21.6 -0.1	23.6 -0.1	29.7 -0.1	30.5 -0.1	34.8 -0.1	38.3 _{-0.1}	44.6 -0.1
	Hı	SHF 系列	17.6 0	19.5 -0.1	20.1 -0.1	20.2 -0.1	22 -0.1	27.5 0	27.9 -0.1	32 -0.1	34.9 -0.1	-
	H ₂	<u> </u>	-	_	-	-	_	0.4	_	0.8	-	2.2
	+11.0	SHG 系列	60	72	82	104	134	164	190	214	240	276
	φI h6	SHF 系列	60	72	82	104	134	164	182	205	233	_
	фЈ Н6		48	60	70	88	114	140	158	175	203	232
	φK h6	減速比 30 以外	38	48	54	67	90	110	124	135	156	177
	ΨΚΠΟ	減速比 30	38	48	55	68	90	-	_		_	_
	L		8	12	12	12	12	12	18	12	16	16
	φМ		3.5	3.4	3.5	4.5	5.5	6.6	6.6	9	9	11
	N		M3	M3	M3	M4	M5	M6	M8	M8	M10	M10
	0		6	6.5	4	6	7	9	12	13	15	15
	φР		-	-	3.5	4.5	5.5	6.6	9	9	11	11
	φQ		44	54	62	75	100	120	140	150	175	195
	R	SHG 系列	8	16	16	16	16	16	16	16	16	16
		SHF 系列	6	12	12	12	12	12	12	12	12	-
	φS	010 7 71	3.5 54	3.5 66	3.5 76	4.5 96	5.5 124	6.6 152	9	9 200	11	11
	φТ	SHG 系列 SHF 系列	54	66	76			152	170		226	258 —
	ΦUı	3HF 7691	14	18	21	96 26	124 26	32	32	190 32	218 40	48
	φU ₂		-	-	-	_	_	32	-	32	-	48
		標準 (H7)	6	8	9	11	14	14	19	19	22	24
	φ٧	最大尺寸	8	10	13	15	16	20	20	20	25	30
	WJs9	1 1 1 1	_	_	3	4	5	5	6	6	6	8
	X		_	_	10.4 +0.1	12.8 ^{+0.1}	16.3 ^{+0.1}	16.3 ^{+0.1}	21.8 +0.1	21.8 +0.1	24.8 +0.1	27.3 +0.2
	Υ		C0.3	C0.4	C0.4	C0.4	C0.4	C0.4	C0.4	C0.8	C0.8	C0.8
	фZ1		0.25	0.20	0.25	0.25	0.25	0.3	0.3	0.5	0.5	0.5
	φZ ₂		0.25	0.25	0.25	0.25	0.25	0.3	0.5	0.5	0.5	0.5
	фа		38	45	53	66	86	106	119	133	154	172
	b		14.6	16.4	17.8	19.8	23.2	28.6	31.9	34.2	40.1	43
機殼內壁	С		1	1	1.5	1.5	1.5	2	2	2	2.5	2.5
	φd		31	38	45	56	73	90	101	113	131	150
	е		1.7	2.1	2.0	2.0	2.0	2.0	2.3	2.5	2.9	3.5
	質量(k	g)	0.11	0.18	0.31	0.48	0.97	1.87	2.64	3.53	5.17	7.04

- ●剛性齒輪的安裝面為圖中④面。 安裝至機殼等處時,請貼合此面。
- ●下述尺寸可變更或追加加工。

波產生器: 尺寸V 彈性齒杯: 尺寸L、M 剛性齒輪: 尺寸R、S

●由於 SHF 系列與 SHG 系列的部份尺寸及形狀不同,設計、安裝時請多加注意。

- * 記號的尺寸 B、C1、C2、G 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置及容許公差。組裝時請務必遵守上述尺寸,以免影響性能、
- ●由於彈性齒杯會彈性變形,為了避免與機殼接觸,內壁的尺寸請保持在 φa、b、c 以上,且勿超過尺寸 φd、e。
- 且勿超過尺寸 фd、e。 ●產品交貨時,是以三項零件(波產生器、彈性齒杯、剛性齒輪)分開的狀態出貨。

角傳動精度 (相關用語說明,請參閱「技術資料」內容。)

表 086 -1

減速比	規格	型號	14	17	20	25	32	40 ∼ 65
	標準品	×10⁴rad	5.8	4.4	4.4	4.4	4.4	-
30	标华吅	arc-min	2	1.5	1.5	1.5	1.5	_
30	特殊品	×10⁴rad	_	_	2.9	2.9	2.9	-
	行が不口	arc-min	_	_	1	1	1	-
	標準品	×10⁴rad	4.4	4.4	2.9	2.9	2.9	2.9
50 以上	标华吅	arc-min	1.5	1.5	1	1	1	1
50 以上	特殊品	×10⁴rad	2.9	2.9	1.5	1.5	1.5	1.5
	行外心	arc-min	1	1	0.5	0.5	0.5	0.5

遲滯損失 (相關用語說明,請參閱「技術資料」內容。)

表 086 -2

減速比	型號單位	14	17	20	25	32	40 以上
30	×10 ⁻⁴ rad	8.7	8.7	8.7	8.7	8.7	-
30	arc-min	3.0	3.0	3.0	3.0	3.0	-
50	×10 ⁻⁴ rad	5.8	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.0	2.0	2.0	2.0	2.0	2.0
80 以上	×10 ⁻⁴ rad	2.9	2.9	2.9	2.9	2.9	2.9
00 以上	arc-min	1.0	1.0	1.0	1.0	1.0	1.0

最大背隙量 (相關用語說明,請參閱「技術資料」內容。)

表 086 -3

減速比	型號	14	17	20	25	32	40			58	65
30	×10⁻⁵rad	29.1	16.0	13.6	13.6	11.2	_	_	_	_	_
30	arc-sec	60	33	28	28	23	-	_	_	_	_
50	×10⁻⁵rad	17.5	9.7	8.2	8.2	6.8	6.8	5.8	5.8	4.8	-
50	arc-sec	36	20	17	17	14	14	12	12	10	_
80	×10⁻⁵rad	11.2	6.3	5.3	5.3	4.4	4.4	3.9	3.9	2.9	2.9
80	arc-sec	23	13	11	11	9	9	8	8	6	6
100	×10⁻⁵rad	8.7	4.8	4.4	4.4	3.4	3.4	2.9	2.9	2.4	2.4
100	arc-sec	18	10	9	9	7	7	6	6	5	5
120	×10⁻⁵rad	_	3.9	3.9	3.9	2.9	2.9	2.4	2.4	1.9	1.9
120	arc-sec	_	8	8	8	6	6	5	5	4	4
160	×10⁻⁵rad	_	-	2.9	2.9	2.4	2.4	1.9	1.9	1.5	1.5
160	arc-sec	-	-	6	6	5	5	4	4	3	3

剛性(彈簧常數)(相關用語說明,請參閱「技術資料」內容。)

表 086 -4

記號		型號	14	17	20	25	32	40	45	50	58	65
	T ₁	N·m	2.0	3.9	7.0	14	29	54	76	108	168	235
	- 11	kgf⋅m	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24
	T ₂	N·m	6.9	12	25	48	108	196	275	382	598	843
	12	kgf∙m	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K ₁	×10⁴N·m/rad	0.19	0.34	0.57	1.0	2.4	_	_	-	-	-
	IXI	kgf · m/arc-min	0.056	0.10	0.17	0.30	0.70	_	_	-	-	_
	K ₂	×10⁴N·m/rad	0.24	0.44	0.71	1.3	3.0	_	_	_	_	_
	11/2	kgf·m/arc-min	0.07	0.13	0.21	0.40	0.89	_	_	_	_	_
減速比	Кз	×10⁴N·m/rad	0.34	0.67	1.1	2.1	4.9	-	-	_	_	_
30	N3	kgf·m/arc-min	0.10	0.20	0.32	0.62	1.5	_	_	_	_	_
	θ1	×10⁴rad	10.5	11.5	12.3	14	12.1	_	_	-	-	_
	01	arc-min	3.6	4.0	4.1	4.7	4.3	_	_	-	-	-
	θ2	×10⁴rad	31	30	38	40	38	_	_	-	_	_
	02	arc-min	10.7	10.2	12.7	13.4	13.3	_	_	-	-	-
	K ₁	×10⁴N·m/rad	0.34	0.81	1.3	2.5	5.4	10	15	20	31	-
	K1	kgf·m/arc-min	0.1	0.24	0.38	0.74	1.6	3.0	4.3	5.9	9.3	-
	K ₂	×10⁴N·m/rad	0.47	1.1	1.8	3.4	7.8	14	20	28	44	_
	N2	kgf·m/arc-min	0.14	0.32	0.52	1.0	2.3	4.2	6.0	8.2	13	-
減速比	K ₃	×10⁴N·m/rad	0.57	1.3	2.3	4.4	9.8	18	26	34	54	_
50	N3	kgf·m/arc-min	0.17	0.4	0.67	1.3	2.9	5.3	7.6	10	16	-
	θ1	×10⁴rad	5.8	4.9	5.2	5.5	5.5	5.2	5.2	5.5	5.2	-
	01	arc-min	2.0	1.7	1.8	1.9	1.9	1.8	1.8	1.9	1.8	-
	θ2	×10⁴rad	16	12	15.4	15.7	15.7	15.4	15.1	15.4	15.1	-
	02	arc-min	5.6	4.2	5.3	5.4	5.4	5.3	5.2	5.3	5.2	-

[※] 本表數值為參考值。下限值約為標示數值的 80%。

												表 087 -1
記號	_	型號	14	17	20	25	32	40	45	50	58	65
	T ₁	N·m	2.0	3.9	7.0	14	29	54	76	108	168	235
	11	kgf·m	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24
	T ₂	N·m	6.9	12	25	48	108	196	275	382	598	843
	12	kgf∙m	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K ₁	×10⁴N·m/rad	0.47	1	1.6	3.1	6.7	13	18	25	40	54
	N1	kgf·m/arc-min	0.14	0.3	0.47	0.92	2.0	3.8	5.4	7.4	12	16
	K ₂	×10⁴N·m/rad	0.61	1.4	2.5	5.0	11	20	29	40	61	88
	K2	kgf·m/arc-min	0.18	0.4	0.75	1.5	3.2	6.0	8.5	12	18	26
減速比	Кз	×10⁴N·m/rad	0.71	1.6	2.9	5.7	12	23	33	44	71	98
80 以上	K3	kgf·m/arc-min	0.21	0.46	0.85	1.7	3.7	6.8	9.7	13	21	29
	θ1	X10⁴rad	4.1	3.9	4.4	4.4	4.4	4.1	4.1	4.4	4.1	4.4
	01	arc-min	1.4	1.3	1.5	1.5	1.5	1.4	1.4	1.5	1.4	1.5
	θ2	X10 ⁻⁴ rad	12	9.7	11.3	11.1	11.6	11.1	11.1	11.1	11.1	11.3
	U 2	arc-min	4.2	3.3	3.9	3.8	4.0	3.8	3.8	3.8	3.8	3.9

※ 本表數值為參考值。下限值約為標示數值的 80%。

起動轉矩(相關用語説明・請參閱「技術資料」內容・)下表數值會因使用條件不同而異・僅作參考值之用・

■SHG 系列										表 087-2 單位:cN·m
型號減速比	14	17	20	25	32	40	45	50	58	65
50	3.7	5.7	7.3	14	28	50	70	94	140	-
80	2.8	3.8	4.8	8.9	19	33	47	63	94	128
100	2.4	3.3	4.3	7.9	18	29	41	56	83	114
120	_	3.1	3.9	7.3	15	27	37	51	76	104
160	_	_	3.4	6.4	14	24	33	44	68	94

表 087 -3 單位:cN·m ■SHF 系列

型號減速比	14	17	20	25	32	40	45	50	58
30	4.8	7.2	12	18	50	-	-	_	_
50	3.7	5.7	7.3	14	28	50	70	94	140
80	2.8	3.8	4.8	8.9	19	33	47	63	94
100	2.4	3.3	4.3	7.9	18	29	41	56	83
120	-	3.1	3.9	7.3	15	27	37	51	76
160	-	_	3.4	6.4	14	24	33	44	68

加速起動轉矩(相關用語說明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■SHG 系列

型號減速比	14	17	20	25	32	40	45	50	58	65
50	2.2	3.4	4.4	8.2	17	30	42	56	84	_
80	2.7	3.7	4.6	8.6	18	32	45	60	90	123
100	2.8	4	5.2	9.5	21	35	49	67	100	137
120	-	4.5	5.6	10	21	40	54	73	110	151
160	_	_	6.6	12	26	45	64	85	130	180

表 087 -5 單位:N·m ■SHF 系列

									- I
型號減速比	14	17	20	25	32	40	45	50	58
30	2.3	3.5	6.1	11	23	_	_	_	-
50	2.2	3.4	4.4	8.2	17	30	42	56	84
80	2.7	3.7	4.6	8.6	18	32	45	60	90
100	2.8	4	5.2	9.5	21	35	49	67	100
120	-	4.5	5.6	10	21	40	54	73	110
160	-	_	6.6	12	26	45	64	85	130

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

■SHG 系列

表 088 -1 單位:N·m

型號 減速比	14	17	20	25	32	40	45	50	58	65
50	110	190	280	580	1200	2300	3500	_	_	_
80	140	260	450	880	1800	3600	5000	7000	10000	14000
100	100	200	330	650	1300	2700	4000	5300	8300	12000
120	-	150	310	610	1200	2400	3600	4900	7500	10000
160	_	_	280	580	1200	2300	3300	4600	7200	10000

■SHF 系列

表 088 -2 單位:N·m

ž	型號 しんしん 型號	14	17	20	25	32	40	45	50	
	30	59	100	170	340	720	-	_	_	_
	50	88	150	220	450	980	1800	2700	3700	5800
	80	110	200	350	680	1400	2800	3900	5400	8200
	100	84	160	260	500	1000	2100	3100	4100	6400
	120	_	120	240	470	980	1900	2800	3800	5800
	160	_	_	220	450	980	1800	2600	3600	5600

屈曲轉矩

(相關用語說明,請參閱「技術資料」內容。)

■SHG 系列										表 088 -3 單位:N·m
型號	14	17	20	25	32	40	45	50	58	65
全減速比	180	350	590	1100	2400	4400	6300	8600	13400	18800

■SHF 系列

表 088 -4 單位:N·m

型號	14	17	20	25	32	40	45	50	58
全減速比	140	270	440	890	1750	3750	5400	7500	11800

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的 輸入端(高速軸端)的轉矩。

表 088 -5

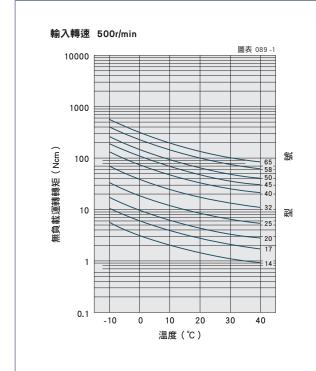
			減速比 100
	383.00	名稱	Harmonic 潤滑脂 ® SK-1A
潤滑條件	潤滑脂 潤滑	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Harmonic 潤滑脂 ® SK-2
	//=1/月	塗佈量	適當塗佈量(092頁)

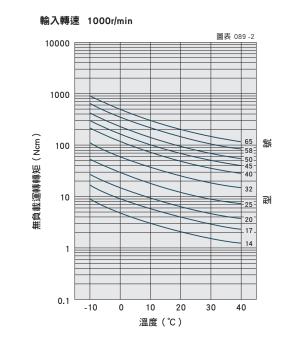
轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值

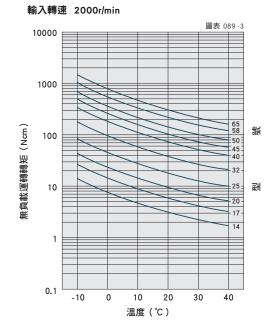
※ 如為潤滑油潤滑,請洽詢本公司。

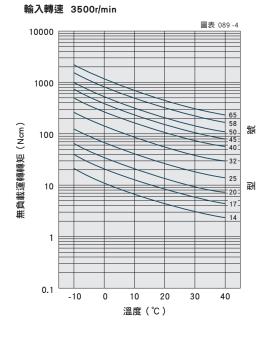
表 089 -1 單位:Ncm

■速度比別修正量


Harmonic Drive® 的無負載運轉轉矩會因減速比而不同。圖表 089-1 \sim 089-4 為減速比 100 時的數值。


關於其他減速比,請加上表 089-1 所示修正量後計算。


元件型無負載運轉轉矩修正量


14 +1.2 +0.5 +0.1 -0.1 17 +2.1 +0.9 +0.1 20 +3.1 +1.4 +0.2-0.2-0.425 +5.7 +2.5 +0.4 -0.3 -0.7 +11.7 +0.8 -0.6 40 +9.2 +1.4 -1.0 -2.5 50 +17.0 -4.6 +2.6 -1.9 58 +25.8 +4.0 -2.9 -7.0 65 -4 0 +54 -97

■減速比 100 的無負載運轉轉矩

※本圖表數值為平均值 $X \circ \sigma = X \times 0.2$

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

※ 如為潤滑油潤滑,請洽詢本公司

■效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。

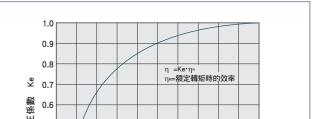
請依據圖表 090-1 求出修正係數 Ke,並參考下列計算範例計算效 率。

計算例

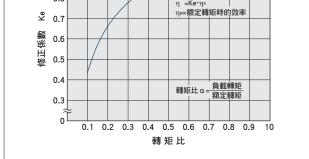
以 SHF-20-80-2A-GR 為例,計算下列條件下的效率 η (%)。

輸入轉速:1000r/min 負載轉矩:19.6N·m

潤滑方式:潤滑脂潤滑(Harmonic 潤滑脂® SK-1A)

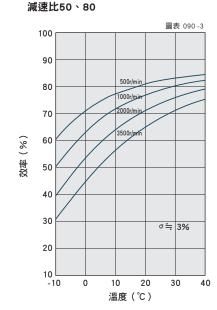

潤滑劑溫度:20℃

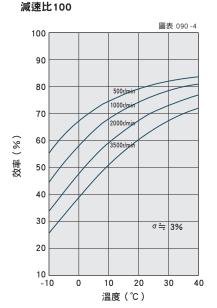
型號 20、減速比 80 的額定轉矩為 34N·m(額定表: 083 頁),轉


矩比 α 為 0.58。 (α=19.6 / 34=0.58)

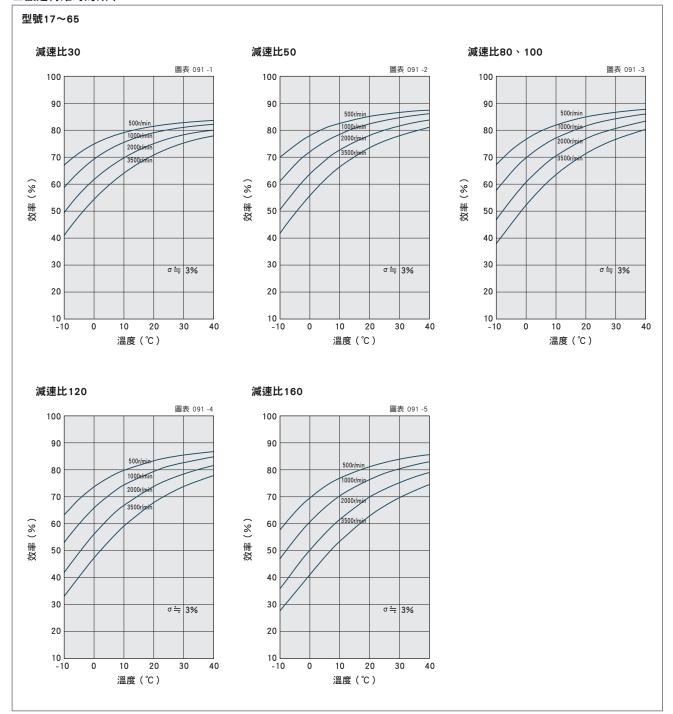
- ■依據圖表 090-1,得知效率修正係數 Ke=0.93
- ■負載轉矩 19.6N·m 時的效率 η 為 η=ke·η_R=0.93×82% =76%。

圖表 090 -1




※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

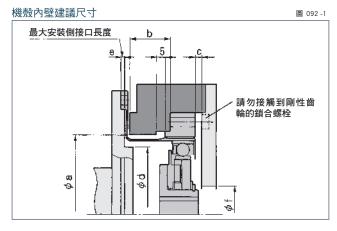
■額定轉矩時的效率


型號14

減速比30 圖表 090 -2 100 90 80 500r/min 1000r/mi 70 2000r/r 3500r/n % 60 效率 50 40 30 σ≒ 3% 20 10 -10 0 10 20 30 40 溫度(℃)

■額定轉矩時的效率

設計指南:


潤 滑

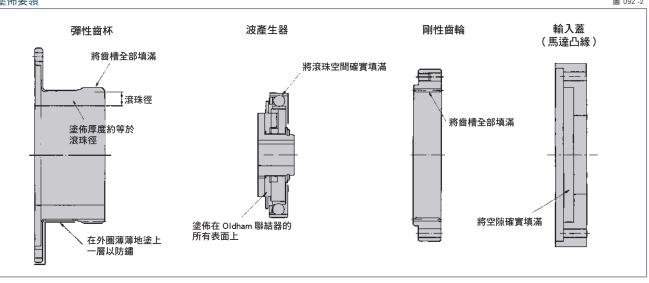
■潤滑脂

潤滑劑的詳情,請參閱 016 頁「技術資料」內容。

機殼內壁建議尺寸 -

以潤滑脂潤滑時,為了讓運轉中潤滑脂不致四下飛濺而殘留於 Harmonic Drive®內部,Harmonic Drive®與機殼內壁之間應盡可能符 合建議尺寸。如果無法確保建議尺寸,請洽詢本公司。

機殼內壁建議尺寸


表 092 -1 單位:mm

型號記號	14	17	20	25	32	40	45	50	58	65
фа	38	45	53	66	86	106	119	133	154	172
b	14.6	16.4	17.8	19.8	23.2	28.6	31.9	34.2	40.1	43
С	1 (3)	1 (3)	1.5 (4.5)	1.5 (4.5)	1.5 (4.5)	2 (6)	2 (6)	2 (6)	2.5 (7.5)	2.5 (7.5)
фф	31	38	45	56	73	90	101	113	131	150
е	1.7	2.1	2.0	2.0	2.0	2.0	2.3	2.5	2.9	3.5
φf ^{+0.5}	16	26	30	37	37	45	45	45	56	62

(註)()內為波產生器朝上(參閱094頁圖094-2)時

塗佈要領

塗佈要領 圖 092 -2

不同使用方法的塗佈要領

波產生器朝上或朝下時的塗佈要領請參閱 CSF 系列(048 頁圖 048-3)。

塗佈量 -

使用方法	型號	14	17	20	25	32	40	45	50	58	65
水平	使用	5.8	11	18	32	64	120	185	235	385	495
垂直使用	輸出軸朝上	7.5	13	19	37	74	130	200	255	400	530
並且以用	輸出軸朝下	8.9	15	22	42	84	150	230	290	480	630

潤滑脂更換時期:Lgm (平均負載轉矩低於額定轉矩時)

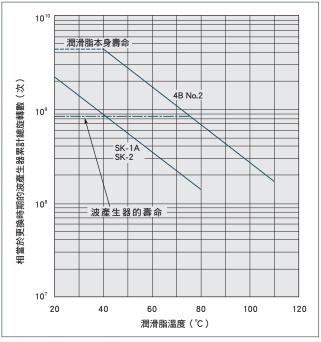
圖表 093 -1

潤滑脂更換時期

潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。 潤滑脂性能會隨溫度而變化,越高溫越容易劣化,需要儘早更換。 右的圖表是根據平均負載轉矩低於額定轉矩時,潤滑脂溫度與波產 生器總旋轉數關連性所表示的更換時期基準。

當平均負載轉矩超過額定轉矩,可依下列公式計算更換時期。

平均負載轉矩超過額定轉矩時的公式


公式 093 -1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav}\right)^3$$

公式的記號

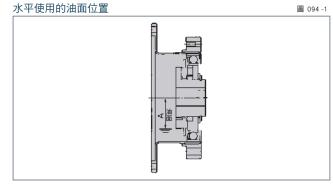
表 093 -1

	超過額定轉矩的更換時期	轉數	
	未超過額定轉矩的更換時期	轉數	參閱右圖
	額定轉矩	N·m,kgf·m	參閱 082,083 頁「額定表」
⊺av	輸出端的平均負載轉矩		公式:參閱 014 頁

※ 波產生器的壽命,係指受損機率 10%。

■其他注意事項

- 1. 切忌與其他潤滑脂混用。此外,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。
- 2. Harmonic Drive® 在波產生器朝上(參閱 050 頁圖 050-2)的狀態,且一定負載往單一方向低速旋轉(輸入轉速:1000r/min以下)使用時,可能造成潤滑不良,若於此情形下使用時,請洽詢本公司營業據點。
- 3. 元件型的型號 50 以上、減速比 50 的機種使用潤滑油。如以潤滑脂進行潤滑,請在額定轉矩的 $\frac{1}{2}$ 以內使用。


■潤滑油

潤滑劑的詳情,請參閱 018 頁「技術資料」內容。

使用方向與油面位置 -

水平方向時

油面位置請如表 094-1 的 A 尺寸。

水平使用的油面位置

表 094 -1 單位:mm

型號	14	17	20	25	32	40	45	50	58	65
Α	10	12	14	17	24	31	35	38	44	50

垂直方向時

波產生器朝上和朝下時,於波產生器的球心注入潤滑油(圖 094-2

的尺寸B)。

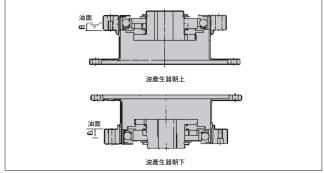

垂直使用的油面位置

表 094 -2 單位:mm

型號	14	17	20	25	32	40	45	50	58				
В	2.5	3	3	5	7	9	10	12	13	15			

垂直使用的油面位置

圖 094 -2

彈性齒杯安裝部的油槽加工例。

使用潤滑油時,為了使彈性齒杯內外的潤滑油循環,並去除壓差, 必須在彈性齒杯安裝部進行油槽加工。請參閱圖 094-3 加工。

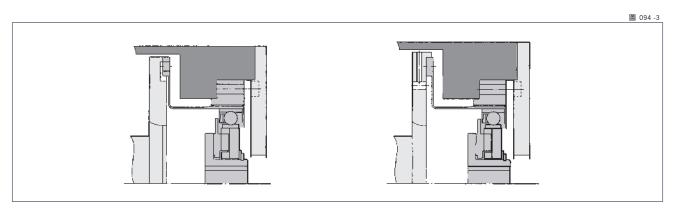


表 095 -1

油量

										單位:
型號	14	17	20	25	32	40	45	50	58	65
油量	0.01	0.02	0.03	0.07	0.13	0.25	0.32	0.4	0.7	1.0

更換時期 -

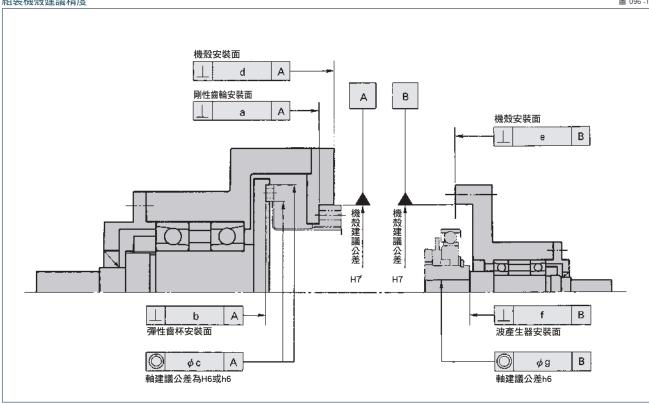
第 1 次 … 開始運轉後 100 小時

第 2 次起 …… 每運轉 1000 小時或每 6 個月

但若使用條件嚴苛,應考慮提早更換。

其他注意事項 -

為了避免與其他潤滑油混用,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。


組裝精度

關於組裝設計,若為導致安裝面變形等異常組裝,則可能造成性能降低。

為充分發揮元件型的優異性能,請注意以下事項,保持圖 096-1、表 096-1 的組裝機殼建議精度,並採用不會漏油的設計。

- ●安裝面彎曲、變形
- ●咬入異物
- ●安裝孔螺孔部週邊的毛邊、隆起、位置度異常
- ●安裝接口部倒角不足
- ●安裝接口部真圓部異常

組裝機殼建議精度 圖 096-1

組裝機殼建議精度

表 096 -1 單位:mm

型號記號	14	17	20	25		40	45	50	58	65
а	0.011	0.012	0.013	0.014	0.016	0.016	0.017	0.018	0.020	0.023
b	0.016	0.021	0.027	0.035	0.042	0.048	0.053	0.057	0.062	0.067
фс	0.015	0.018	0.019	0.022	0.022	0.024	0.027	0.030	0.032	0.035
d	0.011	0.015	0.017	0.024	0.026	0.026	0.027	0.028	0.031	0.034
е	0.011	0.015	0.017	0.024	0.026	0.026	0.027	0.028	0.031	0.034
f	0.017 (0.008)	0.020 (0.010)	0.024 (0.012)	0.024 (0.012)	0.024 (0.012)	0.032 (0.012)	0.032 (0.013)	0.032 (0.015)	0.032 (0.015)	0.032 (0.015)
фа	0.030 (0.016)	0.034 (0.018)	0.044 (0.019)	0.047 (0.022)	0.050 (0.022)	0.063 (0.024)	0.065 (0.027)	0.066 (0.030)	0.068 (0.033)	0.070 (0.035)

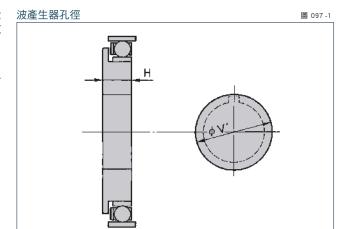
(註)()內為剛性型波產生器的數值(沒有 Oldham 聯結器機構。)

密封機構

為防止潤滑脂滲漏並保持 Harmonic Drive® 的高度耐久性,需要下列密封機構。

- · 旋轉滑動部······· 油封(含彈簧)。此時請注意勿使軸側出現損傷等不良。
- · 凸緣重合面、嵌合處········ O 型環、密封劑。此時請注意平面不均整、O 型環遭咬入等情形。
- ·螺孔部··········· 具封止效果的螺絲固定劑(建議使用 LOCTITE 242)或密封劑。
- (註)尤其是使用 Harmonic 潤滑脂 ® 4B No.2 時,請嚴格採用前述機構。

基本三項零件之組裝


■安裝波產生器

1. 最大孔徑尺寸

波產生器的標準孔徑如尺寸表(085頁),但可在表中所示的最大 尺寸範圍內變更。此時的鍵槽尺寸,建議為 JIS 規格。鍵槽的有效 長度尺寸,應可充分承受傳動轉矩。

※ 亦可為圓錐孔等特殊形狀。

如果要讓孔徑大於最大尺寸,亦有取消 Oldham 聯結器機構的使用方 式。此時的最大孔徑,考慮負載轉矩造成波產生器栓變形等情況, 最大僅能至下表所示的值。(該值為包含鍵槽深度尺寸等的數值。)

波產生器轂孔徑

表 097-1 單位:mm

型號 尺寸	14	17			32	40	45		58	65
標準 φV (H7)	6	8	9	11	14	14	19	19	22	24
下孔尺寸(φ)	3	4	5	6	6	10	10	10	13	16
最大尺寸(φ)	8	10	13	15	15	20	20	20	25	30

將波產生器栓直接安裝至輸入軸時的最大栓孔徑

表 097-2 單位:mm

型號尺寸	14	17	20	25	32	40	45	50	58	65
最大孔徑 φV'	17	20	23	28	36	42	47	52	60	67
最小栓厚 H _0.1	7.2	7.6	11.3	11.3	13.7	15.9	17.8	19	21.4	13.5

2. 波產生器的推力與軸固定 -

Harmonic Drive® 因為彈性齒杯彈性變形,運轉中會對波產生器施加 推力。

作為減速機(011頁①、②、③)使用時,推力將對彈性齒杯隔板 方向作用。(圖 097-2)

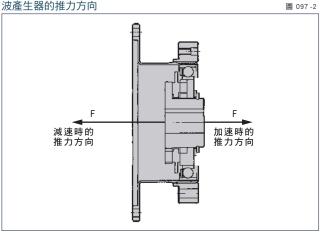
此外,作為加速機(011頁④、⑤、⑥)使用時,其推力作用方向 與減速機時的方向相反。(圖 097-2)

波產生器的推力(最大值)可由下列公式求出。此外,推力會隨運 轉條件而改變。高轉矩時、極低速時、固定連續旋轉時有增大的傾 向,幾乎如同公式求出的值。無論任何情況,設計時務必採用阻止 波產生器推力的結構。

(註)若希望於波產生器轂加裝固定螺絲以固定輸入軸時,請務必洽詢本公司。

推力計算公式

表 097-3


減速比	公式
30	$F=2 \times \frac{T}{D} \times 0.07 \times tan32^{\circ}$
50	$F=2 \times \frac{T}{D} \times 0.07 \times tan30^{\circ}$
80 以上	$F=2 \times \frac{T}{D} \times 0.07 \times tan20^{\circ}$

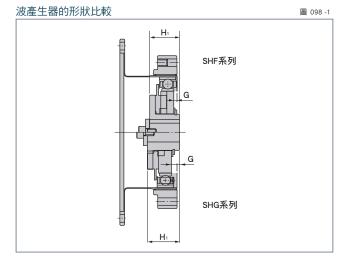
公式的記號

表 097 -4

F	推力	N	參閱圖 097-2
D	(型號)×0.00254	m	
Т	輸出轉矩	N⋅m	

波產生器的推力方向

計算例 公式: 097-1


機 種 名 稱:SHF系列 號:32 減 速 比:i=50 輸 出 轉 矩:382N·m (瞬間容許最大轉矩) $F=2\times \frac{382}{(32\times0.00254)}\times0.07\times \tan 30^{\circ}$

F=380N

3. 波產生器的形狀與尺寸

SHF 系列及 SHG 系列的波產生器尺寸及形狀不同,請在設計、安裝時多加注意。

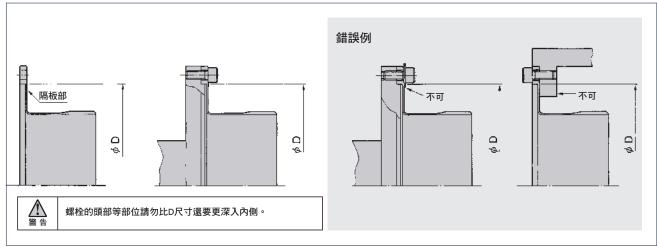
表 098-1 及圖 098-1 為波產生器尺寸及形狀的比較。

波產生器轂尺寸比較

表 098 -1 單位:mm

記號	型號	14	17	20	25	32	40	45	50	58	65
	SHG 系列	1.4	1.6	1.5	3.5	4.2	5.6	6.3	7	8.2	9.5
G	SHF 系列	0.4	0.3	0.1	2.1	2.5	3.3	3.7	4.2	4.8	_
	SHG 系列	18.5 -0.1	20.7 0	21.5 -0.1	21.6 -0.1	23.6 -0.1	29.7 -0.1	30.5 -0.1	34.8 -0.1	38.3 -0.1	44.6 -0.1
H ₁	SHF 系列	17.6 0	19.5 0	20.1 0	20.2 0	22 0	27.5 0	27.9 0	32 0	34.9 0	_

■安裝彈性齒杯


1. 安裝直徑的建議尺寸

安裝直徑請保持不會影響彈性齒杯隔板部的尺寸以上(圖 098-2 尺寸 D)。

直徑過小可能造成隔板損壞,務請嚴格遵守。

安裝直徑建議尺寸

圖 098 -2

安裝直徑尺寸

表 098 -2 單位:Ncm

型號記號	14	17	20	25		40	45	50	58	65
φD	48	60	70	88	114	140	158	175	203	232

2. 如何以螺栓鎖緊彈性齒杯

彈性齒杯使用螺栓鎖緊。

以下條件對鎖緊部傳動轉矩的影響很大,因此請配合負載條件進行 設計及零件管理。

另外,SHG 系列的轉矩容量較 SHF 系列增大,因此請配合各系列鎖 緊螺栓。

- ●選擇螺栓的強度
- ●螺栓鎖緊及鎖緊轉矩
- ●螺栓及螺帽的表面狀態
- ●接觸面的摩擦係數

SHG 系列 安裝彈性齒杯

SHG 希列 女袋!	HG 杀列 安装弹性圈杯 表 09												
項目	型號	14	17	20	25	32	40	45	50		65		
螺栓支數		8	12	12	12	12	12	18	12	16	16		
螺栓尺寸		M3	M3	M3	M4	M5	M6	M6	M8	M8	M10		
螺栓鎖固 P.C.D.	mm	54	66	76	96	124	152	180	200	226	258		
螺栓鎖緊	N·m	2.4	2.4	2.4	5.4	10.8	18.4	18.4	44	44	74		
轉矩	kgf·m	0.24	0.24	0.24	0.55	1.10	1.87	1.87	4.5	4.5	7.6		
螺栓	N·m	108	198	228	486	1000	1740	3098	4163	6272	9546		
傳動轉矩	kgf⋅m	11	20	23	50	102	178	316	425	640	974		

SHF 系列 安裝彈性齒

뉽	林	表 099 -2

· · · · · · · · · · · · · · · · · · ·												
項目	型號	14	17	20	25	32	40	45	50	58		
螺栓支數		8	12	12	12	12	12	18	12	16		
螺栓尺寸		M3	M3	M3	M4	M5	M6	M6	M8	M8		
螺栓鎖固 P.C.D.	mm	54	66	76	96	124	152	170	190	218		
螺栓鎖緊	N·m	2.0	2.0	2.0	4.5	9.0	15.3	15.3	37	37		
轉矩	kgf⋅m	0.20	0.20	0.20	0.46	0.92	1.56	1.56	3.8	3.8		
螺栓	N·m	88	157	186	402	843	1450	2430	3312	5076		
傳動轉矩	kgf·m	9.0	16	19	41	86	148	248	338	518		

(表 099-1、表 099-2 /註)

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。

- 4. 鎖緊係數:A=1.4
- 5. 接合面摩擦係數 μ=0.15

■安裝剛性齒輪

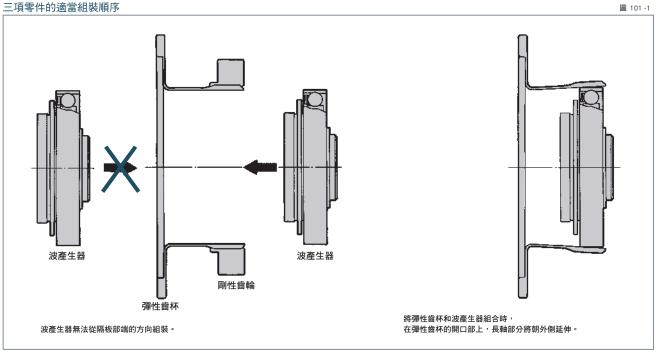
關於剛性齒輪的安裝,應與彈性齒杯同樣,進行符合負載條件的設 計與零件管理。建議螺栓及鎖緊轉矩的傳動轉矩如下所示,若相對 於負載轉矩,傳動轉矩較小,請考慮併用 Pin 或增加螺栓。 並請按照不同系列予以安裝。

SHG 系列 螺栓	安裝										表 100 -1
項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		8	16	16	16	16	16	16	16	16	16
螺栓尺寸		M3	M3	M3	M4	M5	M6	M8	M8	M10	M10
螺栓鎖固 P.C.D.	mm	44	54	62	75	100	120	140	150	175	195
螺栓鎖緊	N·m	2.0	2.0	2.0	4.5	9.0	15.3	37	37	74	74
轉矩	kgf·m	0.20	0.20	0.20	0.46	0.92	1.56	3.8	3.8	7.5	7.5
螺栓 傳動轉矩	N·m	72	175	196	419	901	1530	3238	3469	6475	7215
	kgf⋅m	7.3	18	20	43	92	156	330	354	661	736

SHF 系列 螺栓安裝 表 100 -2

5.1. NO.1 WILLY											
項目	型號	14	17	20	25	32	40	45	50	58	
螺栓支數		6	12	12	12	12	12	12	12	12	
螺栓尺寸		M3	M3	M3	M4	M5	M6	M8	M8	M10	
螺栓鎖固 P.C.D.	mm	44	54	62	75	100	120	140	150	175	
螺栓鎖緊	N·m	2.0	2.0	2.0	4.5	9.0	15.3	37	37	74	
轉矩	kgf·m	0.20	0.20	0.20	0.46	0.92	1.56	3.8	3.8	7.5	
螺栓	N·m	54	131	147	314	676	1150	2440	2620	4820	
傳動轉矩	kgf·m	5.5	13	15	32	69	117	249	267	492	

(表 100-1、100-2 /註)


- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建議螺栓 螺栓名稱: JIS B 1176 內六角螺栓 強度區分: JIS B 1051 12.9 以上

- 轉矩係數:K=0.2
 鎖緊係數:A=1.4
 接合面摩擦係數 μ=0.15

■基本三項零件之組裝順序

將剛性齒輪及彈性齒杯安裝至裝置後,組裝波產生器。 若用其他方法組裝,可能造成齒輪嚙合空轉狀態(參閱 029 頁), 齒面損傷。務請注意。

三項零件的適當組裝順序

■組裝注意事項

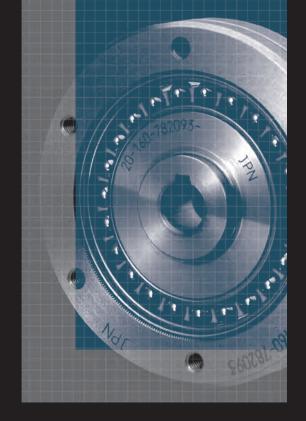
Harmonic Drive®可能因組裝時的不良,產生震動或異音。組裝時,應避免對波產生器軸承過度施力。

波產生器注意事項 -

- 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可順利插入。
- 2. 沒有 Oldham 機構的波產生器,尤應注意讓偏心、垂直的影響保持在建議值範圍內(參閱 096 頁「組裝精度」)。

剛性齒輪注意事項 -

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查剛性齒輪網裝進外殼後是否可旋轉,有無干涉卡住。
- 5. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與剛性齒輪干涉,導致螺栓旋轉困難。
- 6. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 7. 盡量避免釘扎剛性齒輪,以免降低旋轉精度。


彈性齒杯注意事項

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與彈性齒杯干涉,導致螺栓旋轉困難。
- 5. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 6. 檢查彈性齒杯與剛性齒輪組合時,有無極度偏往單側、嚙合不良的情形。如果偏往單側,應為該兩個零件出現偏心或垂直。
- 7. 組裝彈性齒杯時,避免敲打開口部齒尖或過度用力壓入。

防鏽對策 -

元件型的表面並無防鏽處理。 如需防鏽,應塗佈防鏽劑。

另外,如需本公司進行防鏽表面處理,請洽詢本公司。

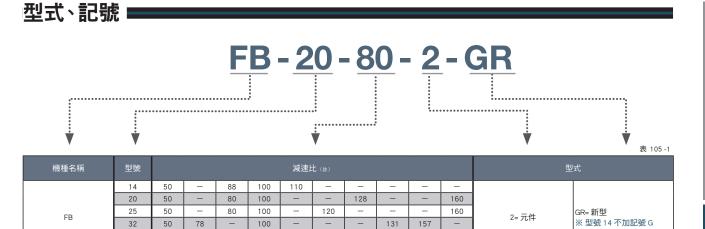
FB系列

Component Typ	e FB
特 徵	104
型式、記號	10!
旋轉方向與減速比	10!
技術資料	100
	額定表100
	外觀圖 10
	尺寸表10
	效率特性 10
	無負載運轉轉矩、起動轉矩、
	加速起動轉矩 10
	無效運動與彈簧常數 10
設計指南	109
	組装精度 10
	組裝注意事項·······10º
	潤 滑 110

特徵!

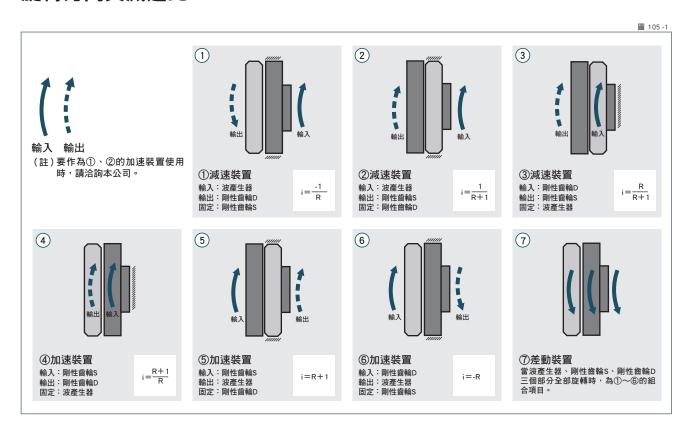
■FB 系列元件型

FB 系列元件型追求扁平薄型。


有四項構成零件,但與 CSG / CSF 系列杯型的動作原理相同。 平板型彈性齒杯為切除杯型彈性齒杯底部的形狀,並且為了連接輸 出軸,於結構上增加了一個與彈性齒杯相同齒數的剛性齒輪。

FB 系列的特徵 -

- ■平坦、扁平薄型形狀
- ■設計輕巧、簡單
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸


FB 系列元件型的結構 圖 104-1

(註)減速比表示為輸入:波產生器、固定:剛性齒輪 S、輸出:剛性齒輪 D。

旋轉方向與減速比

技術資料▮

額定表

表 106 -

型號	減速比		000r/min 定轉矩	起動、停止時的 平均負載轉矩的 容許峰值轉矩 容許最大值		瞬間容許	瞬間容許最大轉矩		額定輸入 容許最高輸入 轉速 r/min			均輸入 速 nin	慣性力矩			
		N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	r/min	潤滑油	潤滑脂	潤滑油	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²
	50	2.6	0.27	3.2	0.33	3.2	0.33	6.9	0.7							
14	88	4.9	0.5	7.8	0.8	7.8	0.8	15.7	1.6*	2000	6000	3600	4000	2500	0.033	0.034
'*	100	5.9	0.6	9.8	1.0	9.8	1.0	15.7	1.6*	2000	0000	3000	4000	2300	0.033	0.034
	110	5.9	0.6	9.8	1.0	9.8	1.0	15.7	1.6*							
	50	14	1.4	18	1.8	18	1.8	34	3.5							
	80	17	1.7	21	2.1	21	2.1	35	3.6	ļ						
20	100	22	2.2	26	2.7	25	2.5	47	4.8	2000	6000	3600	3600	2500	0.135	0.138
	128	24	2.4	33	3.4	25	2.5	58	5.9							
	160	24	2.4	38	3.9	25	2.5	59	6.0*							
	50	23	2.3	30	3.1	30	3.1	54	5.5							
	80	31	3.2	39	4.0	39	4.0	70	7.1							0.37
25	100	39	4.0	52	5.3	52	5.3	91	9.3	2000	5000	3600	3000	2500	0.36	
	120	39	4.0	61	6.2	61	6.2	94	9.6*	4						
	160	39	4.0	76	7.8	61	6.2	86	8.8*							
	50	44	4.5	60	6.1	60	6.1	108	11							1.32
	78	63	6.4	75	7.7	75	7.7	127	13]	4500	3600				
32	100	82	8.4	98	10	98	10	176	18	2000			2500	2300	1.29	
	131	82	8.4	137	14	118	12	235	24*	ļ						
	157	82	8.4	157	16	118	12	235	24*							
	50	88	9	118	12	118	12	216	22	ļ						
	80	118	12	147	15	147	15	265	27							
40	100	157	16	186	19	186	19	343	35	2000	4000	3300	2000	2000	3.38	3.45
	128	167	17	235	24	235	24	372	38*	ļ						
	160	167	17	284	29	274	28	353	38*							
	80	216	22	265	27	265	27	480	49							
50	100	284	29	253	36	353	36	627	64	1700	3500	3000	1700	1700	9.9	10
50	120	304	31	421	43	421	43	706	72*	*	3300	3000				
■ ※ 記號的	160	304	31	510	52	490	50	666	68*							

● ※ 記號的數值受到鬆脫轉矩限制。

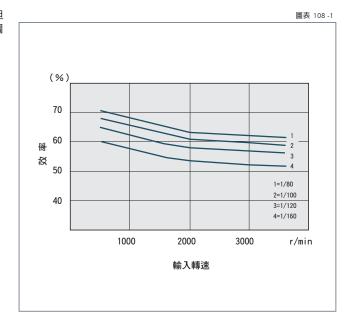
(註) 慣性力矩 $I=\frac{1}{4}$ GD^2

外觀圖

圖 107 -1 6-H 等間距 6-H 等間距 D* ВВ <u>'c</u>* Z Φ I H7 φ Ah6 φ Ah6 C0.4 ФГ Ε D* F1* F₂ * 13.45 2 M3 附固定螺絲 ф 135h6 ф 135h6 00.5 FB-14 FB-20 FB-50 ※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,如有需要,請洽詢本公司。

尺寸表

表 107-1 單位:mm


型號記號	14	20	25	32		50
φA (h6)	50	70	85	110	135	170
В	5	6	8	10	13	16
C *	0.5	0.5	0.5	0.5	1.0	1.0
D *	10.5	12.5	16.5	20.5	27	33
E _0.1	15.0	11.4	12.8	15.6	19.4	23.2
F1 *	3.75	0.95	0.35	0.95	1.8	2.9
F ₂ *	0.75	2.05	3.35	3.95	5.8	6.9
φG	44	60	75	100	120	150
Н	M3	M4	M5	M6	M8	M10
φI (H7) 標準	6	9	14	14	14	19
最大	8	12	15	15	20	20
J (Js9)	-	3	5	5	5	6
K +0.1	ı	10.4	16.3	16.3	16.3	21.8
φL	14	20	26	26	32	32
φМ	ı	31.5	41	52	65	80
X	C0.2	C0.2	C0.2	C0.2	C0.4	C0.4
Y	C1.0	C1.0	C1.5	C1.5	C2.0	C2.0
Z	_	R0.08 ∼ 0.16	R0.16 ∼ 0.25	R0.16 ∼ 0.25	R0.16 ∼ 0.25	R0.16 ∼ 0.25
a	29	42	53	69	84	105
重量 (kgf)	0.1	0.3	0.5	1.0	1.8	2.9

- (註)剛性齒輪 D 的外圈倒角為尺寸 Y。
- * 記號的尺寸 C、D、Fı、F₂ 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置。請務必遵守上述尺寸,以免影響性能、強度。
- ●產品交貨時,是以四項零件(波產生器、彈性齒杯、剛性齒輪 D、剛性齒輪 S)分開的狀態出貨。

效率特性

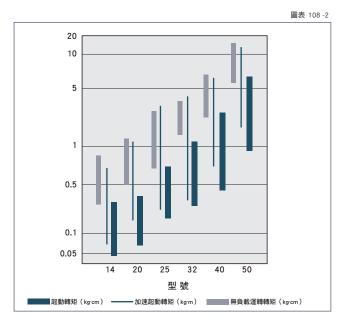
效率會因減速比而異,且受到輸入轉速、負載轉矩及油溫影響,但 在型錄額定值 100% 負載、油溫約 40℃的狀態下運轉時,會如同圖 表 108-1。

(註)以潤滑脂潤滑時,效率會比此再低約10%。

無負載運轉轉矩、起動轉矩、加速起動轉矩

圖表 108-2 為將元件做為雙軸型、減速機組合後測量的結果,包含 輸入、輸出軸油封裝置的摩擦阻抗及油浴式潤滑的攪拌阻抗。

1. 無負載運轉轉矩 …… 無負載狀態下旋轉所需的高速軸 端轉矩、圖表數值為輸入轉數


1500r/min、油溫約 40℃的狀態。

2. 起動轉矩……………無負載狀態下起動高速軸所需的靜

轉矩

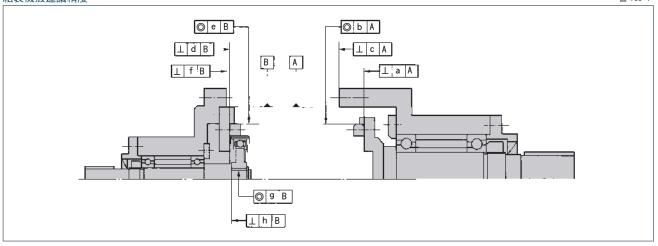
3. 加速起動轉矩…………無負載狀態下起動低速軸所需的靜

轉矩

無效運動與彈簧常數

關於無效運動與彈簧常數的定義,請參閱 120 頁內容。平板型的無 效運動與彈簧常數,係指將波產生器與剛性齒輪單邊固定,並對另 一邊的剛性齒輪施加轉矩時的數值。

表 108	3 -1
-------	------

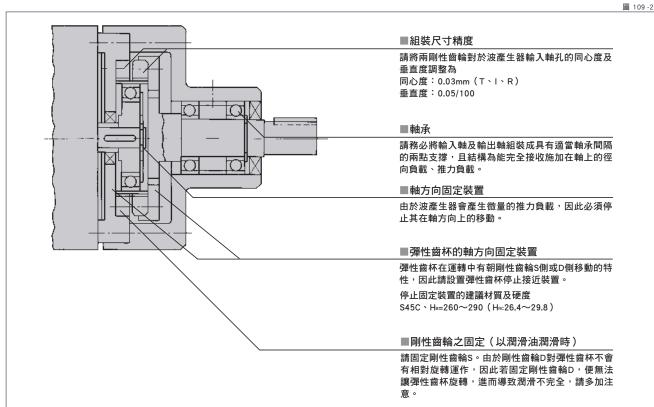

型號	無效運動		彈簧常數	
	± 負載(kg·m)	無效運動(arc-min)	負載(kg·m)	彈簧常數(kgf·m/arc-min)
14	0.04	3.0	0.8	0.05
20	0.12	3.0	2.5	0.35
25	0.23	3.0	4.0	0.50
32	0.46	3.0	10	1.2
40	0.92	3.0	16	2.1
50	1.73	3.0	30	4.4

設計指南 =

組裝精度

在組裝精度方面,為充分發揮 Harmonic Drive® 擁有的優異性能,應 確保圖 109-1、表 109-1 所示之機殼建議精度。

組裝機殼建議精度 圖 109 -1



組裝機殼建議精度

表 109 -1 單位:mm

1111 C 1707 7 C 1100 117 C						
型號記號	14	20	25	32	40	50
a	0.013	0.017	0.024	0.026	0.026	0.028
b	0.015	0.016	0.016	0.017	0.019	0.024
С	0.016	0.020	0.029	0.031	0.031	0.034
d	0.013	0.017	0.024	0.026	0.026	0.028
e	0.015	0.016	0.016	0.017	0.019	0.024
f	0.016	0.020	0.029	0.031	0.031	0.034
g	0.011	0.013	0.016	0.016	0.017	0.021
h	0.007	0.010	0.012	0.012	0.012	0.015

組裝注意事項

潤 滑

潤滑方式有潤滑油及潤滑脂等 2 種。

一般使用潤滑油,間歇運轉時亦可使用潤滑脂。

■潤滑油

1. 潤滑油的種類 -

潤滑油的詳情,請參閱 018 頁。

2.油量-

油面位置請如表 110-1。

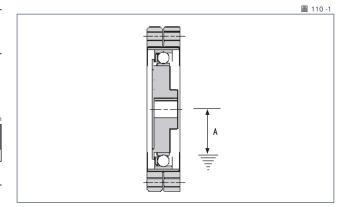
油量少會造成潤滑油提早劣化,請採取方法增加油量。

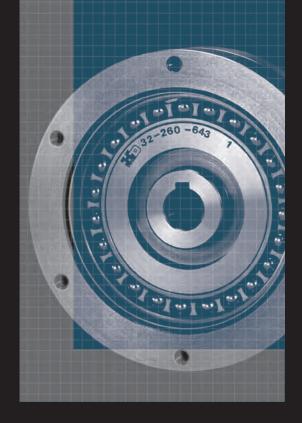
油面位置

表 110 -1 單位:mm

型號	14	20	25		40	50
Α	7	12	15	19	24	29

3. 更換潤滑油 -

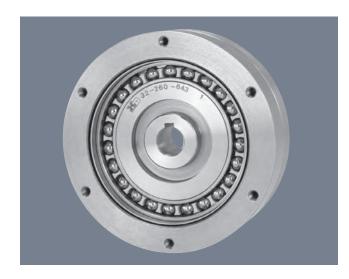

第1次 ……開始運轉後100小時


第 2 次起 ······ 每運轉 1000 小時,或每 6 個月更換。 若使用條件較為嚴苛,應考慮提早更換。

■潤滑脂

不同於潤滑油,潤滑脂不具有冷卻效果,僅可使用於較短的運轉時間。

- ●使用條件:ED%…10% 以內、連續運轉 10 分鐘以內、輸入轉速低 於表 106-1 的容許最高輸入轉速
- ●建議潤滑脂:型號 20 ~ 100 為「Harmonic 潤滑脂 ®SK-1A」、型 號 14 為「Harmonic 潤滑脂 ®SK-2」
- (註)超過ED%或容許最大轉速使用時,潤滑脂將會劣化,無法發揮潤滑功能,導致減速機提早損傷。務請注意。

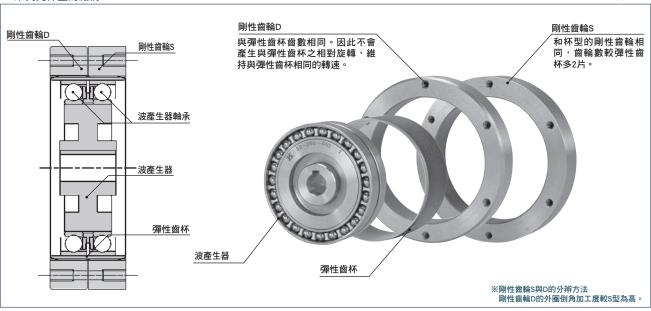


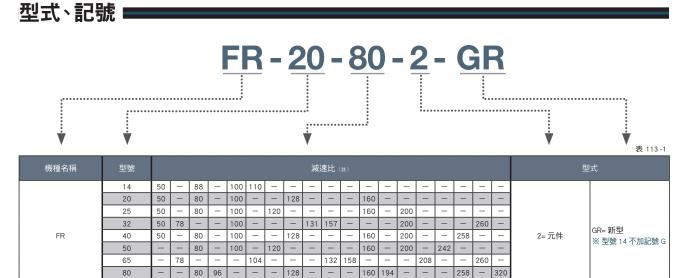
FR系列

Component Type	FR
特 徵	112
	113
旋轉方向與減速比	113
技術資料	114
	額定表114
	外觀圖
	尺寸表11!
	效率特性116
	無負載運轉轉矩、起動轉矩、
	加速起動轉矩 ······ 119
	無效運動與彈簧常數 120
設計指南	·····12 [·]
	組裝精度 12
	組裝注意事項 ······ 122
	潤 滑122

特徵!

■FR 系列元件型


FR 系列元件型為高轉矩用的扁平薄型。


與 FB 系列相同,有四項構成零件,但是與杯型的動作原理相同。 基本上,結構亦與 FB 系列相同,但是波產生器軸承為 2 列,加寬剛 性齒輪、彈性齒杯的齒寬,以對應高轉矩容量。

FR 系列的特徵·

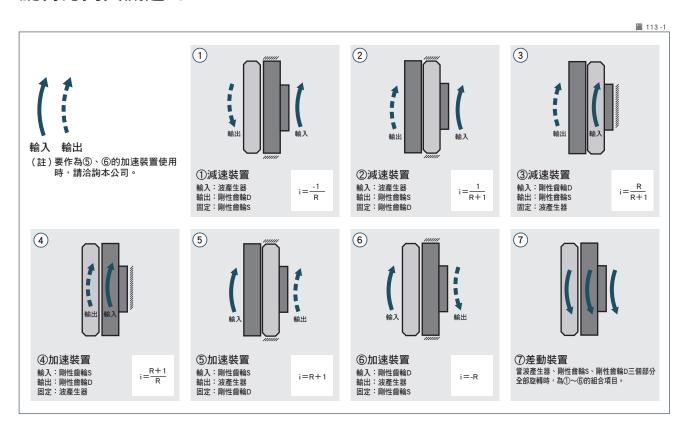
- ■平坦、扁平薄型形狀
- ■高轉矩容量
- ■設計輕巧、簡單
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

FR 系列元件型的結構 圖 112-1

160

- 200

- 242 -


(註)減速比表示為輸入:波產生器、固定:剛性齒輪 S、輸出:剛性齒輪 D。

80 - 100

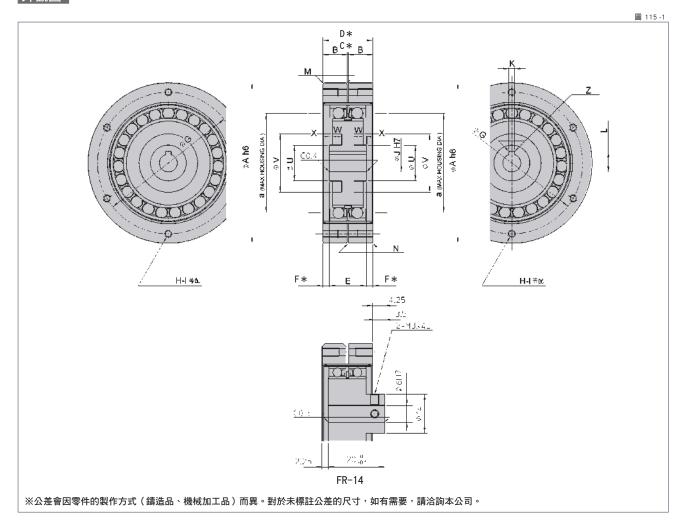
- 120

100

旋轉方向與減速比!

技術資料■

額定表


±

型號	減速比		000r/min 定轉矩		亭止時的 值轉矩		战轉矩的 最大值	瞬間容許	-最大轉矩	額定輸入轉速	轉	高輸入 速 nin	轉	均輸入 速 min	慣性	力矩
		N·m	kgf⋅m	N∙m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	r/min	潤滑油	潤滑脂	潤滑油	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms
	50	4.4	0.45	5.4	0.55	5.4	0.55	13.7	1.4							
14	88	5.9	0.6	9.8	1.0	9.8	1.0	19.6	2.0*	2000	6000	3600	4000	2500	0.060	0.061
14	100	7.8	0.8	13.7	1.4	9.8	1.0	19.6	2.0*	2000	6000	3600	4000	2500	0.060	0.061
	110	7.8	0.8	13.7	1.4	9.8	1.0	19.6	2.0*							
	50	25	2.5	34	3.5	34	3.5	69	7.0							
	80	34	3.5	41	4.2	41	4.2	72	7.3	ļ						
20	100	40	4.1	53	5.4	49	5.0	94	9.6	2000	6000	3600	3600	2500	0.32	0.33
	128	40	4.1	67	6.8	49	5.0	102	10.4*	ļ						
	160	40	4.1	77	7.9	49	5.0	86	8.8							
	50	39	4.0	55	5.6	55	5.6	108	11.0	-						
	80	56	5.7	69	7.0	69	7.0	122	12.4	ł						
25	100	67	6.8	91	9.3	91	9.3	160	16.3	2000	5000	3600	3000	2500	0.7	0.71
	120	67	6.8	108	11.0	108	11.0	190	19.4	ł			l			
	160	67	6.8	135	13.8	108	11.0	172	17.6*	1						
	200	67	6.8	147	15.0	108	11.0	172	17.6*							
	50 78	76 108	7.8	108 137	11	108 137	11	216 245	22	-						
						_		_		-						
32	100	137 137	14	176 255	18 26	176 216	18 22	323 451	33 46	2000	4500	3600	2500	2300	2.6	2.61
32	157	137	14	294	30	216	22	500	51*	2000	4500	3600	2500	2300	2.0	2.01
	200	137	14	314	32	216	22	372	38*	1						
	260	137	14	314	32	216	22	372	38*	1						
	50	137	14	196	20	196	20	353	36							
	80	196	20	245	25	245	25	431	44							
	100	255	26	314	32	314	32	549	56	1						6.9
40	128	294	30	392	40	392	40	686	70	2000	4000	3300	2000	2000	6.8	
40	160	294	30	461	47	451	46	813	83		4000	0000	2000	2000	0.0	
	200	294	30	529	54	451	46	745	76*	1						
	258	294	30	627	64	451	46	745	76*	1						
	80	363	37	441	45	441	45	784	80							
	100	470	48	578	59	578	59	1019	104	1						
	120	559	57	696	71	696	71	1225	125	1						
50	160	559	57	833	85	833	85	1470	150	1700	3500	3000	1700	1700	21	21
	200	559	57	960	98	843	86	1411	144*	1						
	242	559	57	1176	120	843	86	1411	144*	1						
	78	745	76	921	94	921	94	1617	165							
	104	1070	109	1340	137	1340	137	2360	241	1	İ		İ		İ	
	132	1070	109	1650	168	1570	160	2890	295	1						
65	158	1070	109	1970	201	1570	160	3450	352*	1400	3000	2200	1400	1400	76	78
	208	1070	109	2180	222	1570	160	2590	264*	1	ĺ					
	260	1070	109	2200	224	1570	160	2590	264*	1						
	80	1320	135	1640	167	1640	167	2870	293							
	96	1660	169	2050	209	2050	209	3590	366							
	128	2300	235	2820	288	2830	289	4960	506							
80	160	2350	240	3380	345	3130	319	5940	606	1200	2500	2000	1200	1200	213	217
	194	2350	240	4300	439	3130	319	6900	704*							
	258	2350	240	4350	444	3130	319	5170	528*							
	320	2350	240	4350	444	3130	319	5170	528*							
	80	2330	238	2870	293	2870	293	5040	514							
	100	3200	327	3940	402	3940	402	6920	706							
	120	3890	397	4780	488	4780	488	8400	857							
100	160	4470	456	6230	636	5720	584	10950	1117	1000	2000	1700	1000	1000	635	648
	200	4470	456	7090	723	5720	584	12440	1269				[[
	242	4470	456	7960	812	5720	584	9410	960*							
	320	4470	456	7960	812	5720	584	9410	960*							

^{● ※} 記號的數值受到鬆脫轉矩限制。

(註) 慣性力矩 I= 1/4 GD²

外觀圖

尺寸表

表 115 -1 單位:mm

										単位:mn
記號	型號	14	20	25	32	40	50	65	80	100
фА (h6)	50	70	85	110	135	170	215	265	330
В		8.5	12	14	18	21	26	35	41	50
C *		1	1	1	1	1	1	1	1	1
D *		18	25	29	37	43	53	71	83	101
E .0.1		_	17.3	20	25.9	31.5	39	50.5	62	77.2
F *		-	3.85	4.5	5.55	5.75	6.95	10.25	10.5	11.9
φG		44	60	75	100	120	150	195	240	290
Н		6	6	6	6	6	6	6	8	8
I		M3×6	M3×6	M4×8	M5×10	M6×12	M8×16	M10×20	M10×20	M12×24
+ 1/117)	標準	6	9	11	14	14	19	24	28	28
фЈ(Н7)	最大	8	11	11	17	20	26	26	32	33
K (J	J _{S9})	-	3	4	5	5	6	8	8	8
L + 0.1		-	10.4	12.8	16.3	16.3	21.8	27.3	31.3	31.3
М		c1	c1	c1.5	c1.5	c1.5	c1.5	c1.5	c2	c2
N		c0.2	c0.2	c0.2	c0.2	c0.4	c0.4	c0.4	c0.4	c0.4
а		29	42	53	69	84	105	138	169	211
φU		-	-	22	28	32	38	44	52	58
φ٧		-	-	32	42	52	62	86	100	128
W		-	-	4.8	6.1	7.6	9.8	12.6	16	19.7
Х		-	-	1.6	1.9	2.5	3.2	4.4	5.1	6.3
Z		_	R0.08 ~ 0.16	R0.08 ~ 0.16	R0.08 ~ 0.25	R0.08 ~ 0.25	R0.08 ~ 0.25	R0.08 ~ 0.25	R0.08 ~ 0.25	R0.08 ~ 0.25
重量	kgf	0.2	0.5	0.8	1.7	3.0	6.0	12.0	22.3	42.6

- (註)鋼性齒輪 D 的外圈倒角為尺寸 M。
- ●*記號的尺寸 C、D、F 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置。請務必遵守上述尺寸,以免影響性能、強度。
- ●產品交貨時,是以四項零件(波產生器、彈性齒杯、剛性齒輪 D、剛性齒輪 S)分開的狀態出貨。

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

■效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。

請依據圖表 116-1 求出修正係數 Ke, 並參考下列計算範例計算效

計算例·

以 FR-20-80-2GR 為例,計算下列條件下的效率 η(%)。

輸入轉速:1000r/min 負載轉矩:19.6N·m

潤滑方式:潤滑脂潤滑(Harmonic 潤滑脂® SK-1A)

潤滑劑溫度:20℃

型號 20、速比 80 的額定轉矩為 34N·m(額定表:114 頁),轉矩 比 a 為 0.58。(a=19.6 / 34=0.58)

- ■依據圖表 116-1,得知效率修正係數 Ke=0.86
- ■負載轉矩 19.6N·m 時的效率 η 為 $\eta = \text{Ke} \cdot \eta_R = 0.86 \times 65\% = 56\%$ °

測量條件

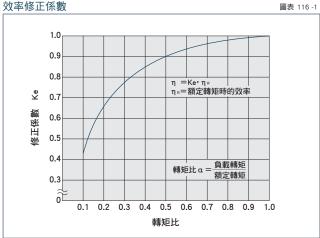
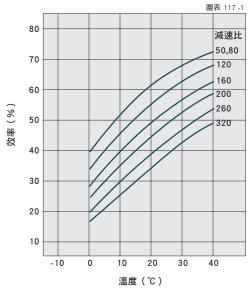
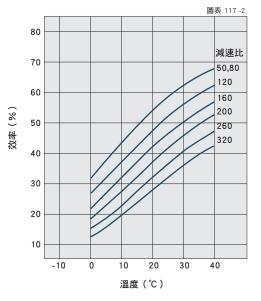

組裝

表 116 -1 以建議組裝精度組裝後測量

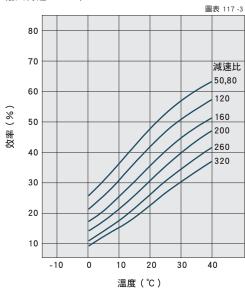
負載轉矩 額定表所示的額定轉矩(114頁) 潤滑脂 Harmonic 潤滑脂® SK-1A 潤滑 Harmonic 潤滑脂® SK-2 潤滑條件 工業用齒輪油 2種 適當塗佈量(122頁) 潤滑油

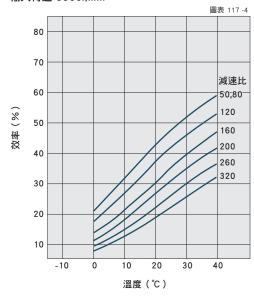
※ 如為潤滑油潤滑,請洽詢本公司

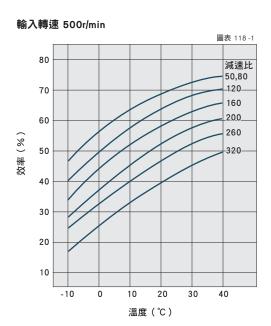

效率修正係數

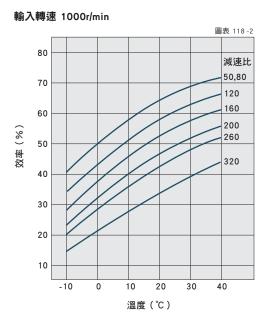

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

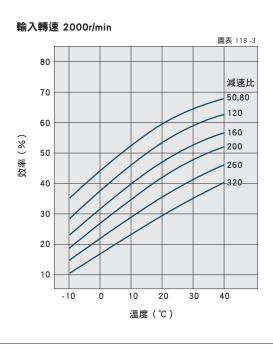
■額定轉矩時的效率(潤滑油)

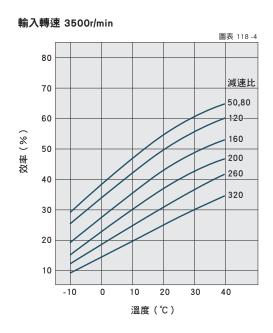



輸入轉速 1000r/min


輸入轉速 2000r/min




輸入轉速 3500r/min

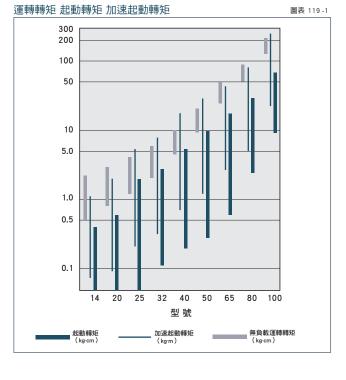


■額定轉矩時的效率(潤滑脂)

無負載運轉轉矩、起動轉矩、加速起動轉矩

圖表 119-1 為將 FR-2 型作為雙軸型、減速機組合後測量的結果,包含輸入、輸出軸油封裝置的摩擦阻抗及油浴式潤滑的攪拌阻抗。

1. 無負載運轉轉矩···········無負載狀態下旋轉所必要的高速軸 端的轉矩(圖表數值為輸入轉速


1500r/min、油溫約 40℃的狀態。)

2. 起動轉矩······無負載狀態下起動高速軸所需的靜

轉矩

3. 加速起動轉矩…………無負載狀態下起動低速軸所需的靜

轉矩

無效運動與彈簧常數

平板型的無效運動與彈簧常數,係指將波產生器與剛性齒輪單邊固定,並對另一邊的剛性齒輪施加轉矩時的數值。

表 120 -1

型號	無效	運動	彈簧常數			
空城	± 負載(kg·m)	無效運動(arc-min)	負載(kg·m)	彈簧常數(kgf·m/arc-min)		
14	0.04	3.0	1.26	0.3		
20	0.12	3.0	3.69	0.9		
25	0.23	3.0	7.20	2.1		
32	0.46	3.0	15.78	4.4		
40	0.92	3.0	29.50	7.8		
50	1.73	3.0	57.60	16		
65	3.9	3.0	126.7	27		
80	7.4	3.0	236.2	52		
100	14.4	3.0	460.8	100		

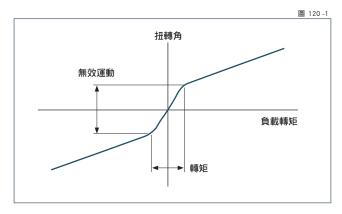
■無效運動與彈簧常數的說明

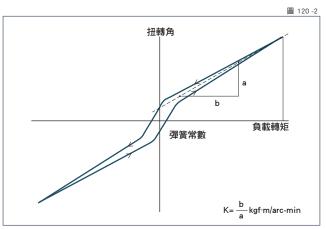
關於一般齒輪規定的背隙,由於 Harmonic Drive® 的齒嚙合理論獨特,齒嚙合率為總齒數的約 10%,間隔誤差平均,因此即使是標準規格也是非常小的數值。

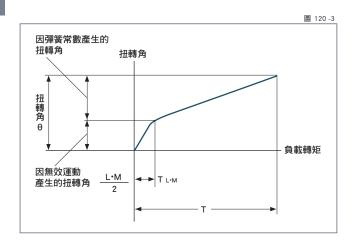
平板型 Harmonic Drive® 使用無效運動值對應背隙。

(1)無效運動(L·M)-

無效運動為組裝 Harmonic Drive®的狀態下將高速軸固定在旋轉方向,在低速軸施加相反的微小負載轉矩(參閱表 120-1)時產生的低速軸旋轉角的合計值。

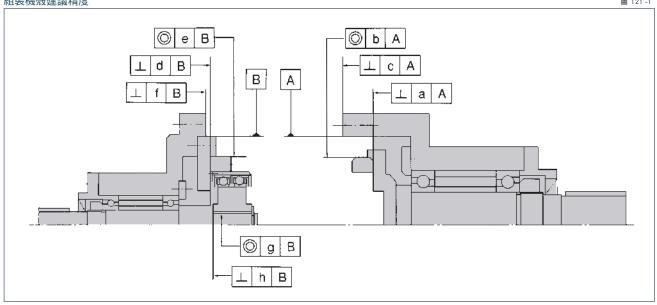

(2) 彈簧常數(K)-


使用與無效運動相同方法逐漸增加並前後施加負載轉矩後,可得圖 120-2 所示的「負載轉矩 - 扭轉角」線圖,由此線圖求得的平均彈 簧常數即為表 120-1。(僅為 Harmonic Drive 元件型的數值。)


■計算例

求出使用 Harmonic Drive 型號 FR-40-160-2A-GR,將輸入軸固定於旋轉方向,於輸出施加型錄額定值 30kgf·m 時產生的扭轉角。

扭轉角 θ =
$$\frac{\text{L} \cdot \text{M}}{2}$$
 + $\frac{1}{\text{K}}$ (T-T_{L·M})
$$= 1.5 + \frac{1}{7.8}$$
 (30-0.92)
$$= 5.23 \text{arc-min}$$
使其正反轉時的最大值 θ max為
$$\theta \text{ max} = 2 \cdot \theta = 10.46 \text{arc-min}$$



設計指南 =

組裝精度

在組裝精度方面,為充分發揮 Harmonic Drive® 擁有的優異性能,應 確保圖 121-1、表 121-1 所示之機殼建議精度。

組裝機殼建議精度 圖 121 -1

組裝機殼建議精度

表 121 -1 單位:mm

THE TOTAL NAME AND ADDRESS OF THE PARTY OF T	11372								
型號記號	14	20	25	32	40	50	65	80	100
а	0.013	0.017	0.024	0.026	0.026	0.028	0.034	0.043	0.057
b	0.015	0.016	0.016	0.017	0.019	0.024	0.027	0.033	0.038
С	0.016	0.020	0.029	0.031	0.031	0.034	0.041	0.052	0.068
d	0.013	0.017	0.024	0.026	0.026	0.028	0.034	0.043	0.057
е	0.015	0.016	0.016	0.017	0.019	0.024	0.027	0.033	0.038
f	0.016	0.020	0.029	0.031	0.031	0.034	0.041	0.052	0.068
g	0.011	0.013	0.016	0.016	0.017	0.021	0.025	0.030	0.035
h	0.007	0.010	0.012	0.012	0.012	0.015	0.015	0.015	0.015

安裝剛性齒輪 -

關於剛性齒輪的安裝,進行符合負載條件的設計與零件管理。建議 螺栓及鎖緊轉矩的傳動轉矩如下表所示。

螺栓鎖固

表 121 -2

項目	型號	14	20	25	32	40	50		80	100
螺栓支數		6	6	6	6	6	6	6	8	8
螺栓尺寸		M3	M3	M4	M5	M6	M8	M10	M10	M12
螺栓鎖固 P.C.D.	mm	44	60	75	100	120	150	195	240	290
螺栓鎖緊	N·m	2.0	2.0	4.5	9.0	15.3	37	74	74	128
轉矩	kgf⋅m	0.20	0.20	0.46	0.92	1.56	3.8	7.5	7.5	13.1
螺栓	N·m	54	74	159	338	573	1300	2680	4410	7750
傳動轉矩	kgf⋅m	5.5	7.5	16	34	58	132	273	450	790

(表121-1註)

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建議螺栓 螺栓名稱: JIS B 1176 內六角螺栓 強度區分: JIS B 1051 12.9 以上 3. 轉矩係數: K=0.2
- 鎖緊係數: A=1.4
- 接合面摩擦係數 μ=0.15

組裝注意事項

圖 122 -1 ■組裝尺寸精度 請將兩剛性齒輪對於波產生器輸入軸孔的同心度及 垂直度調整為 同心度: 0.03mm (T、I、R) 垂直度: 0.05/100 ■軸承 請務必將輸入軸及輸出軸組裝成具有適當軸承間隔 的兩點支撐,且結構為能完全接收施加在軸上的徑 向負載、推力負載。 ■軸方向固定裝置 由於波產生器會產生微量的推力負載,因此必須停 止其在軸方向上的移動。 ■彈性齒杯的軸方向固定裝置 彈性齒杯在運轉中有朝剛性齒輪S側或D側移動的特 性,因此請設置彈性齒杯停止接近裝置。 停止固定裝置的建議材質及硬度 S45C \cdot H_B=260 \sim 290 (H_{RC}26.4 \sim 29.8) ■剛性齒輪之固定(以潤滑油潤滑時) 請固定剛性齒輪S。由於剛性齒輪D對彈性齒杯不會 有相對旋轉運作,因此若固定剛性齒輪D,便無法 讓彈性齒杯旋轉,進而導致潤滑不完全,請多加注

潤 滑

潤滑方式有潤滑油及潤滑脂等 2 種。

一般使用潤滑油,根據其他使用條件亦可使用潤滑脂。

■潤滑油

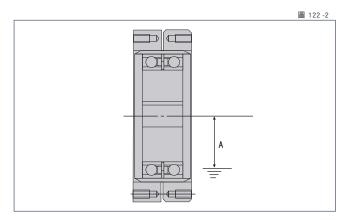
1. 潤滑油的種類

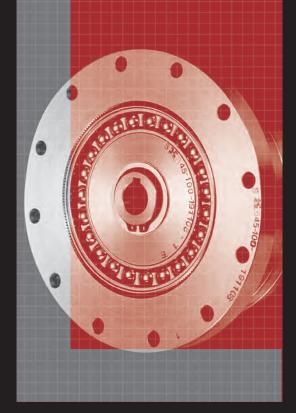
潤滑劑的詳情,請參閱 018 頁。

2.油量一

油面位置請如表 122-1 所示數值。

油面位置

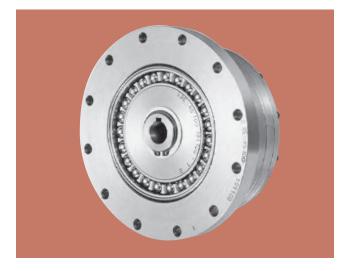

表 122 -1 單位:mm


型號	14	20	25	32	40		65	80	
Α	7	12	15	31	38	44	62	75	94

■潤滑脂

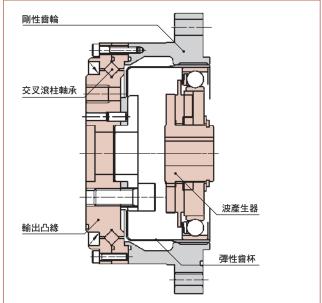
不同於潤滑油,潤滑脂不具有冷卻效果,僅可使用於較短的運轉時 間。

- ●使用條件:ED%…10% 以內、連續運轉 10 分鐘以內、輸入轉速低 於表 114-1 的容許最高輸入轉速。
- ●建議潤滑脂:型號 20 ~ 100 為「Harmonic 潤滑脂 ®SK-1A」、型號 14 為「Harmonic 潤滑脂 ®SK-2」
- (註)超過 ED% 或容許最大轉速使用時,潤滑脂將會劣化,無法發揮潤滑功能,導致減速 機提早損傷。務請注意。



CSG/CSF系列 Unit Type CSG/CSF

特 徵	124
型式、記號	125
技術資料	126
	額定表126
	外觀圖128
	尺寸表129
	角傳動精度130
	遲滯損失 130
	最大背隙量130
	剛性 (彈簧常數) 130
	起動轉矩 ······ 131
	加速起動轉矩 ······ 131
	鬆脫轉矩 132
	屈曲轉矩 132
	無負載運轉轉矩132
	效率特性 134
	主軸承規格 136
設計指南	137
	機械精度137
	組裝精度 137
	安裝及傳動轉矩
	安裝馬達 140
	基本三零件之組裝
	潤 滑 142
	密封機構 142
	防鏽對策 142
應用案例	143


CS	G -2UH			123
CS	G -2UH	LW	 	123
CS	F -2UH			123
CS	F -2UH	-LW	 	123
	G -2UK			
CS	D -2UH			157
CS	D -2UF			157
■ SH	[G -2UH			177
	[G -2UH -			
SH	F -2UH			177
■ SH	F -2UH	LW ·		177
■ SH	G -2UJ		 	177
	F -2UJ			
SH	G -2SO		 	177
SH	F -280		 	177
■ SH	G -2SH		 	177
■ SH	F -2SH			177
■ SH	D -2SH			213
■ SH	D -2UH	-LW	 	213
CS	F super	mini		235
Cs	F -mini		 	249
I IPID	o 211⊔		 	280

特徵

CSG/CSF 系列模組型的結構

圖 124 -1

■CSG/CSF 系列模組型

CSG/CSF 系列模組型能夠對應追求高功能化、高速化、高負載容量、高密度化及微小化等加速技術創新的需求,呈現充實的產品陣容,客戶根據要求選擇最佳機種。

CSG/CSF 系列模組型是以元件型為核心,容易使用的模組化產品。 外部負載的直接支撐(主軸承)內建精密、高剛性交叉滾柱軸承。

CSG / CSF 系列的特徵 -

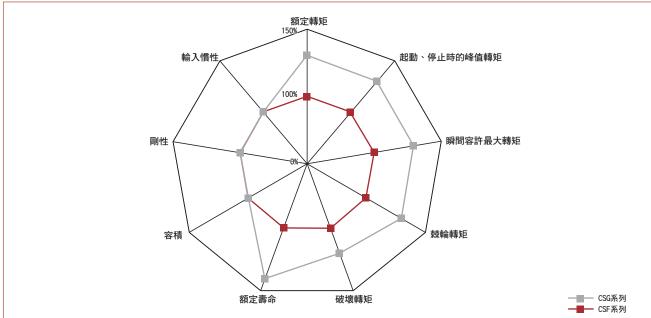
- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

新種類-

CSG 系列:高轉矩用

- · 較 CSF 系列提升 30% 轉矩容量
- · 較 CSF 系列延長 43% 使用壽命(10,000 小時)

減速比 30: 高速用


·保留無背隙 Harmonic Drive® 的優點,實現減速比 30

CSG/CSF-LW 系列:輕量型

- · 重新設計形狀並採用輕量構件,達成約 30%的輕量化
- · 額定轉矩、性能與以往產品相同
- ·實現機械手臂的高速化,提升可搬重量

CSG 系列與 CSF 系列的比較

圖表 124 -1

(註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

型式、記號■

(註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

技術資料 ■

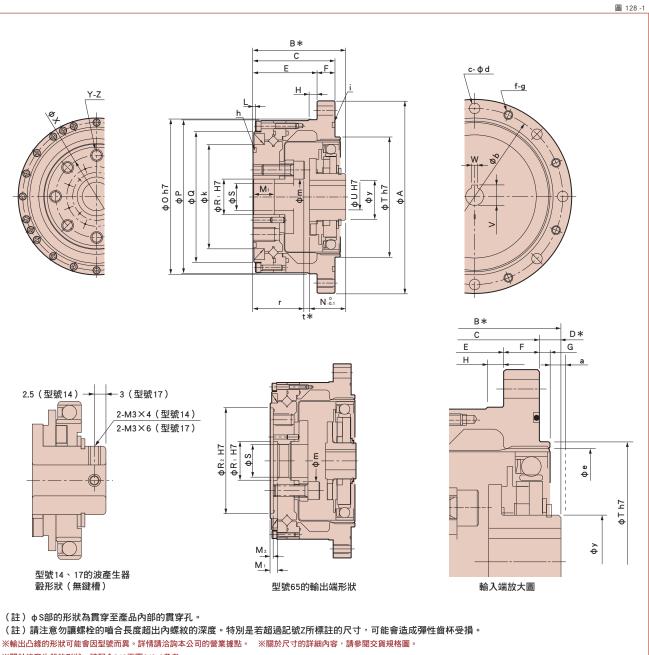
額定表

■CSG 系列

型號	減速比		000r/min 定轉矩		亭止時的 :值轉矩		載轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min	慣性	力矩
		N∙m	kgf·m	N∙m	kgf·m	N∙m	kgf·m	N∙m	kgf·m	潤滑脂	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²
	50	7.0	0.7	23	2.3	9	0.9	46	4.7				
14	80	10	1.0	30	3.1	14	1.4	註3 58	註3 5.9	8500	3500	0.033	0.034
	100	10	1.0	36	3.7	14	1.4	註3 58	註3 5.9				
	50	21	2.1	44	4.5	34	3.4	91	9				
17	80	29	2.9	56	5.7	35	3.6	註3 109	註3 11	7300	3500	0.079	0.081
	100	31	3.2	70	7.2	51	5.2	註3 109	註3 11		0000	0.013	0.001
	120	31	3.2	70	7.2	51	5.2	註3 109	註3 11				
	50	33	3.3	73	7.4	44	4.5	127	13				
	80	44	4.5	96	9.8	61	6.2	165	17				
20	100	52	5.3	107	10.9	64	6.5	191	20	6500	3500	0.193	0.197
	120	52	5.3	113	11.5	64	6.5	191	20				
	160	52	5.3	120	12.2	64	6.5	191	20				
	50	51	5.2	127	13	72	7.3	242	25				
	80	82	8.4	178	18	113	12	332	34				
25	100	87	8.9	204	21	140	14	369	38	5600	3500	0.413	0.421
	120	87	8.9	217	22	140	14	註4 395	註4 40				
	160	87	8.9	229	23	140	14	註4 408	註4 42				
	50	99	10	281	29	140	14	497	51				
	80	153	16	395	40	217	22	738	75	ļ			
32	100	178	18	433	44	281	29	841	86	4800	3500	1.69	1.72
	120	178	18	459	47	281	29	842	86				
	160	178	18	484	49	281	29	842	86				
	50	178	18	523	53	255	26	892	91				
	80	268	27	675	69	369	38	1270	130				
40	100	345	35	738	75	484	49	1400	143	4000	3000	4.50	4.59
	120	382	39	802	82	586	60	註4 1510	註4 154				
	160	382	39	841	86	586	60	註4 1510	註4 154				
	50	229	23	650	66	345	35	1235	126				
	80	407	41	918	94	507	52	1651	168	ļ			
45	100	459	47	982	100	650	66	2041	208	3800	3000	8.68	8.86
	120	523	53	1070	109	806	82	2288	233	ļ			
	160	523	53	1147	117	819	84	2483	253				
	80	484	49	1223	125	675	69	2418	247				
50	100	611	62	1274	130	866	88	2678	273	3500	2500	12.5	12.8
	120	688	70	1404	143	1057	108	2678	273				
	160	688	70	1534	156	1096	112	3185	325				
	80	714	73	1924	196	1001	102	3185	325				
58	100	905	92	2067	211	1378	141	4134	422	3000	2200	27.3	27.9
	120	969	99	2236	228	1547	158	4329	441	ļ	2200		
	160	969	99	2392	244	1573	160	4459	455				
	80	969	99	2743	280	1352	138	4836	493				
65	100	1236	126	2990	305	1976	202	6175	630	2800	1900	46.8	47.8
	120	1236	126	3263	333	2041	208	6175	630				
	160	1236	126	3419	349	2041	208	6175	630				
(註)1.慣	性力矩 1=-	1 GD ²	0 百 [++ 4=2	20 J. Co.									

- - 2. 相關用語詳情,請參閱 012 頁「技術資料」內容。 3. 瞬間容許最大轉矩值受到模組的傳動轉矩限制。(請參閱 138 頁表 138-1、2。) 4. 使用 LW 系列時,瞬間容許最大轉矩請參閱模組的傳動轉矩(138 頁表 138-3、4)。

■CSF 系列 表 127-1


■ CSF 糸	נילי												表 127 -1
型號	減速比		000r/min 定轉矩	起動、6 容許峰	亭止時的 值轉矩		战轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min	慣性	力矩
		N∙m	kgf·m	N∙m	kgf·m	N∙m	kgf·m	N∙m	kgf·m	潤滑脂	潤滑脂	l ×10⁴kg·m²	J X10 ⁻⁵ kgf·ms²
	30	4.0	0.41	9.0	0.92	6.8	0.69	17	1.7				
14	50	5.4	0.55	18	1.8	6.9	0.70	35	3.6	8500	3500	0.033	0.034
14	80	7.8	0.80	23	2.4	11	1.1	47	4.8	8300	3300	0.033	0.034
	100	7.8	0.80	28	2.9	11	1.1	54	5.5				
	30	8.8	0.90	16	1.6	12	1.2	30	3.1				
	50	16	1.6	34	3.5	26	2.6	70	7.1				
17	80	22	2.2	43	4.4	27	2.7	87	8.9	7300	3500	0.079	0.081
	100	24	2.4	54	5.5	39	4.0	108	11				
	120	24	2.4	54	5.5	39	4.0	86	8.8				
	30	15	1.5	27	2.8	20	2.0	50	5.1				
	50	25	2.5	56	5.7	34	3.5	98	10				
20	80	34	3.5	74	7.5	47	4.8	127	13	6500	3500	0.193	0.197
	100	40	4.1	82	8.4	49	5.0	147	15				
	120	40	4.1	87	8.9	49	5.0	147	15				
	160	40	4.1	92	9.4	49	5.0	147	15				
	30	27	2.8	50	5.1	38	3.9	95	9.7				
	50	39	4.0	98	10	55	5.6	186	19				
25	80	63	6.4	137	14	87	8.9	255	26	5600	3500	0.413	0.421
	100	67	6.8	157	16	108	11	284	29				
	120	67	6.8	167	17	108	11	304	31				
	160	67	6.8	176	18	108	11	314	32				
	30	54	5.5	100	10	75	7.7	200	20				
	50	76	7.8	216	22	108	11	382	39				
32	80	118	12	304	31	167	17	568	58	4800	3500	1.69	1.72
	100	137	14	333	34	216	22	647	66				
	120	137	14	353	36	216	22	686	70				
	160	137	14	372	38	216	22	686	70				
	50	137	14	402	41	196	20	686	70				
40	80	206	21 27	519 568	53	284 372	29 38	980	100	4000	2000	4.50	4.50
40	100	265			58			1080	110	4000	3000	4.50	4.59
	120 160	294 294	30 30	617 647	63 66	451 451	46 46	1180 1180	120				
	50	176	18	500	51	265	27	950	97				
	80	313	32	706	72	390	40	1270	130			l	
45	100	353	36	755	77	500	51	1570	160	3800	3000	8.68	8.86
45	120	402	41	823	84	620	63	1760	180	3000	3000	0.00	0.00
	160	402	41	882	90	630	64	1910	195				
	50	122	12	715	73	175	18	1430	146				
	80	372	38	941	96	519	53	1860	190				
50	100	470	48	980	100	666	68	2060	210	3500	2500	12.5	12.8
	120	529	54	1080	110	813	83	2060	210	5500	2300	1	. 2.0
	160	529	54	1180	120	843	86	2450	250				
	50	176	18	1020	104	260	27	1960	200				
	80	549	56	1480	151	770	79	2450	250			l	
58	100	696	71	1590	162	1060	108	3180	325	3000	2200	27.3	27.9
	120	745	76	1720	176	1190	121	3330	340				
	160	745	76	1840	188	1210	123	3430	350				
	50	245	25	1420	145	360	37	2830	289				
	80	745	76	2110	215	1040	106	3720	380				
65	100	951	97	2300	235	1520	155	4750	485	2800	1900	46.8	47.8
	120	951	97	2510	256	1570	160	4750	485				
	160	951	97	2630	268	1570	160	4750	485				
(計)1 /問	▶ 性力矩 ।= -												

⁽註)1. 慣性力矩 $I=\frac{1}{4}$ GD^2 2. 相關用語詳情,請參閱 012 頁「技術資料」內容。

外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

※關於波產生器的形狀,請配合040頁圖040-3參考。

※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,如有需要,請洽詢本公司。

尺寸表

表 129 -1

											單位:
·號	型號	14		20	25	32	40	45	50	58	65
фА		73	79	93	107	138	160	180	190	226	260
B*		41	45	45.5	52	62	72.5	79.5	90	104.5	115
C		34	37	38	46	57	66.5	74	85	97	108.5
	CSG 系列	7 .0.4	8 .0.4	7.5 -0.4	6 -0.5	5 -0.6	6 -0.6	5.5 -0.6	5 .0.6	7.5 -0.6	6.5 -0.6
D*	CSG-LW 系列 CSF 系列										
	CSF-LW 系列	7 -0.8	8 -0.9	7.5 -1.0	6 _{-1.0}	5 -1.1	6 -1.1	5.5 _{-1.2}	5 -1.3	7.5 -1.3	6.5 -1.3
E		27	29	28	36	45	50.5	58	69	77	84.5
F		7	8	10	10	12	16	16	16	20	24
G		2	2	3	3	3	4	4	4	5	5
	CSG 系列	3.5	4	5	5	5	5	6	6	6	6
Н	CSG-LW 系列	4	4	5	5	5	5	6	6	6	6
	CSF 系列	3.5	4	5	5	5	5	6	6	6	6
	CSF-LW 系列	4	4	5	5	5	5	6	6	6	6
	CSG 系列	0.5	0.5	0.5	0.5	1	1.5	1	1	1.5	1.5
	CSG-LW 系列	1.1	1.1	1.1	1.1	1.2	1.6	1.6	1	1.5	1.5
L	CSF 系列	0.5	1.1	1.1	1.1	1.2	1.6	1.6	1	1.5	1.5
	CSF-LW 系列	1.1	1.1	1.1	1.1	1.2	1.6	1.6	1	1.5	1.5
M1		9.4	9.5	9	12	15	5	6	8	10	10
M2		_	_	_	_	_	_	_	_	_	4
	CSG 系列										
	CSG-LW 系列	18.5	20.7	21.5	21.6	23.6	29.7	30.5	34.8	38.3	44.6
N _{-0.1}	CSF 系列										
	CSF-LW 系列	17.6	19.5	20.1	20.2	22	27.5	27.9	32	34.9	40.9
φ0 h7	COI - LVV NOYI	56	63	72	86	113	127	148	158	186	212
ΨΟΤΙΙ	CSG 系列	56	62	70	85	112	123	147	157	185	210
		54.6	61.6	69.6	85	110	124.5	143	155	183.4	208.4
φР	CSG-LW 系列										
	CSF 系列	55	62	70	85	112	123	147	157	185	210
	CSF-LW 系列	54.6	61.6	69.6	85	110	124.5	143	155	183.4	208.4
	CSG 系列	42.5	49.5	58	73	96	109	127	137	161	186
φQ	CSG-LW 系列	40.5	47.5	55.5	71	91.1	103	123	130	155	180
¥	CSF 系列	42.5	49.5	58	73	96	109	127	137	161	186
	CSF-LW 系列	40.5	47.5	55.5	71	91.1	103	123	130	155	180
φR1 H7		11	10	14	20	26	32	32	40	46	52
φR2 H7		_	_	_	_	_	_	_	_		142
φS		8	7	10	15	20	24	25	32	38	44
φT h7		38	48	56	67(68)	90	110	124	135	156	177
φИ	標準 (H7)	6	8	12	14	14	14	19	19	22	24
ΨΟ	最大尺寸	8	10	13	15	15	20	20	20	25	30
V		_	_	13.8 +0.1	16.3 ^{+0.1}	16.3 +0.1	16.3 ^{+0.1}	21.8 +0.1	21.8 +0.1	24.8 +0.1	27.3 +0.2
W Js9		_	_	4	5	5	5	6	6	6	8
фХ		23	27	32	42	55	68	82	84	100	110
Y		6	6	8	8	8	8	8	8	8	8
Z		M4×8	M5×10				M10×15	M12×18			
a		1	10101110			M10×15			M14X21	M16×24	MIDAX
			1	M6×9	M8×12	M10×15			M14×21	M16×24	
ФЬ			1 71	1.5	1.5	1.5	2	2	2	2.5	2.5
	CSG 조제	65	71	1.5 82	1.5 96	1.5 125	2 144	2 164	2 174	2.5 206	2.5 236
	CSG 系列	65 8	71 8	1.5 82 8	1.5 96 10	1.5 125 12	2 144 10	2 164 12	2 174 14	2.5 206 12	2.5 236 8
С	CSG-LW 系列	65 8 6	71 8 8	1.5 82 8	1.5 96 10	1.5 125 12 12	2 144 10 10	2 164 12 16	2 174 14 18	2.5 206 12 16	2.5 236 8 12
	CSG-LW 系列 CSF 系列	65 8 6 6	71 8 8 6	1.5 82 8 8 8	1.5 96 10 10	1.5 125 12 12 12	2 144 10 10	2 164 12 16 12	2 174 14 18 12	2.5 206 12 16 12	2.5 236 8 12 8
С	CSG-LW 系列	65 8 6 6	71 8 8 6 8	1.5 82 8 8 6	1.5 96 10 10 8	1.5 125 12 12 12 12	2 144 10 10 8 10	2 164 12 16 12	2 174 14 18 12 18	2.5 206 12 16 12	2.5 236 8 12 8
c фd	CSG-LW 系列 CSF 系列	65 8 6 6 6 4.5	71 8 8 6 8 4.5	1.5 82 8 8 6 8 5.5	1.5 96 10 10 8 10 5.5	1.5 125 12 12 12 12 12 12 6.6	2 144 10 10 8 10 9	2 164 12 16 12 16 9	2 174 14 18 12 18	2.5 206 12 16 12 16 11	2.5 236 8 12 8 12
С	CSG-LW 系列 CSF 系列 CSF-LW 系列	65 8 6 6 6 4.5 38	71 8 8 6 8 4.5 45	1.5 82 8 8 6 8 5.5 53	1.5 96 10 10 8 10 5.5 66	1.5 125 12 12 12 12 12 12 6.6	2 144 10 10 8 10 9	2 164 12 16 12 16 9	2 174 14 18 12 18 9	2.5 206 12 16 12 16 11 154	2.5 236 8 12 8 12 14 172
c фd	CSG-LW 系列 CSF 系列 CSF-LW 系列	65 8 6 6 6 4.5 38	71 8 8 6 8 4.5 45	1.5 82 8 8 6 8 5.5 53	1.5 96 10 10 8 10 5.5 66	1.5 125 12 12 12 12 12 6.6 86	2 144 10 10 8 10 9 106	2 164 12 16 12 16 9 119	2 174 14 18 12 18 9 133	2.5 206 12 16 12 16 11 154 12	2.5 236 8 12 8 12 14 172
c фd	CSG-LW 系列 CSF 系列 CSF-LW 系列 CSG 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8	71 8 8 6 8 4.5 45 8	1.5 82 8 8 6 8 5.5 53 8	1.5 96 10 10 8 10 5.5 66 10	1.5 125 12 12 12 12 12 6.6 86 12	2 144 10 10 8 10 9 106 10	2 164 12 16 12 16 9 119 12 16	2 174 14 18 12 18 9 133 14	2.5 206 12 16 12 16 11 154 12 16	2.5 236 8 12 8 12 14 172 8 12
c фd фe	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6	71 8 8 6 8 4.5 45 8 8	1.5 82 8 8 6 8 5.5 53 8 8	1.5 96 10 10 8 10 5.5 66 10 10 8	1.5 125 12 12 12 12 12 6.6 86 12 12	2 144 10 10 8 10 9 106 10	2 164 12 16 12 16 9 119 12 16	2 174 14 18 12 18 9 133 14 18	2.5 206 12 16 12 16 11 154 12 16 11	2.5 236 8 12 8 12 14 172 8 12 8
с фd фe	CSG-LW 系列 CSF 系列 CSF-LW 系列 CSG 系列 CSG-LW 系列	65 8 6 6 4.5 38 8 6 6	71 8 8 6 8 4.5 45 8 8 8	1.5 82 8 8 6 8 5.5 53 8 8 6	1.5 96 10 10 8 10 5.5 66 10 10 8	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12	2 144 10 10 8 10 9 106 10 10 8	2 164 12 16 12 16 9 119 12 16 12 16	2 174 14 18 12 18 9 133 14 18 12	2.5 206 12 16 12 16 11 154 12 16 11 154 12 16	2.5 236 8 12 8 12 14 172 8 12 8
c	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 M4	71 8 8 6 8 4.5 45 8 8 8 6 8 8	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5	1.5 125 12 12 12 12 12 12 12 12 12 6.6 86 12 12 12 12 M6	2 144 10 10 8 10 9 106 10 10 8 10 M8	2 164 12 16 12 16 9 119 12 16 12 16 M8	2 174 14 18 12 18 9 133 14 18 12 18 M8	2.5 206 12 16 12 16 11 154 12 16 11 154 12 16 11 16 11	2.5 236 8 12 8 12 14 172 8 12 8 12 8
c dd pe f	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 M4	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99	1.5 125 12 12 12 12 12 12 12 12 6.6 86 12 12 12 12 12 M6 S71	2 144 10 10 8 10 9 106 10 10 8 10 8 10 M8	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105	2.5 206 12 16 12 16 11 154 12 16 12 16 10 11 154 12 16 11 154 12 16 17 18 19 10 10 10 10 10 10 10 10 10 10	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135
c	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 M4	71 8 8 6 8 4.5 45 8 8 8 6 8 8	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5	1.5 125 12 12 12 12 12 12 12 12 12 6.6 86 12 12 12 12 M6	2 144 10 10 8 10 9 106 10 10 8 10 M8	2 164 12 16 12 16 9 119 12 16 12 16 M8	2 174 14 18 12 18 9 133 14 18 12 18 M8	2.5 206 12 16 12 16 11 154 12 16 11 154 12 16 11 16 11	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135
c dd de f	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.29.0×0.50 \$50	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$556	1.5 82 8 8 6 8 5.5 53 8 6 8 6 8 40.64×1.14 \$67	1.5 96 10 10 8 10 5.5 66 10 8 10 8 10 8 10 8	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 15 15 17 18 105 17 18	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155	2.5 206 12 16 12 16 11 154 12 16 12 16 10 11 154 12 16 17 18 19 10 10 10 11 11 15 10 10 10 10 10 10 10 10 10 10	2.5 236 8 12 8 12 14 172 8 12 8 12 8 12 8 12 8 12 5 135 5 5 5 5 5 5 5 5 5 5 7 8 8 15 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
c dd pe f g h i	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.5 38 8 5 5 5 5 8	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80	1.5 125 12 12 12 12 12 12 12 12 6.6 86 12 12 12 12 12 15 15 15 16 17 18 18 18	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 12 16 12 18 19 10 10 10 10 10 10 10 10 10 10	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135
c dd pe f g h i pk	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.29.0×0.50 \$50	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$556	1.5 82 8 8 6 8 5.5 53 8 6 8 6 8 40.64×1.14 \$67	1.5 96 10 10 8 10 5.5 66 10 8 10 8 10 8 10 8	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 15 15 17 18 105 17 18	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155	2.5 206 12 16 12 16 11 154 12 16 12 16 10 11 154 12 16 17 18 19 10 10 10 11 11 15 10 10 10 10 10 10 10 10 10 10	2.5 236 8 12 8 12 14 172 8 12 8 12 8 12 8 12 5135 \$205
c pd pe f g h i pk pm r	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG 系列 CSG-LW 系列 CSF-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.5 38 38 38 38 10	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$556 38	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 \$67 45	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 15 17 18 105 78	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145 107	2 174 14 18 12 18 9 133 14 18 12 18 M8 \$105 \$155 112	2.5 206 12 16 12 16 11 154 12 16 12 16 10 11 154 12 16 M10 S125 S180 135 46	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155
c pd pe f g h i pk pm	CSG-LW 系列 CSF 系列 CSF-LW 系列 CSG 系列 CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 M4 29.0×0.50 \$50 31 10 21.4	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 \$67 45	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29	1.5 125 12 12 12 12 12 12 6.6 86 12 12 12 12 M6 S71 S105 78 27	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145 107 36 45.5	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112 39 53	2.5 206 12 16 12 16 11 154 12 16 12 16 M10 S125 S180 135 46 62.8	2.5 236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155 56
c pd pe f g h i pk pm r t*	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSF-LW 系列 CSF-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 M4 29.0×0.50 \$50 31 10 21.4 1.1	71 8 8 6 8 4.5 45 8 8 6 8 M4 34.5×0.80 \$56 38 10.5 23.5	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 \$67 45 15.5 23	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4	1.5 125 12 12 12 12 12 12 12 6.6 86 12 12 12 12 M6 S71 S105 78 27 37 1.4	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	2 164 12 16 12 16 9 119 12 16 12 16 M8 \$100 \$145 107 36 45.5 3.5	2 174 14 18 12 18 9 133 14 18 12 18 M8 \$105 \$155 112 39 53 2.2	2.5 206 12 16 12 16 11 154 12 16 12 16 M10 S125 S180 135 46 62.8 3.4	2.5 236 8 12 8 12 14 172 8 12 8 12 8 12 5135 56 66.5 3.9
c pd pe f g h i pk pm r	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG 系列 CSF-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.5 38 10 21.4 1.1	71 8 8 8 6 8 4.5 45 8 8 6 8 4.5 45 8 10.5 23.5 0.8	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 \$67 45 15.5 23 1	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4	1.5 125 12 12 12 12 12 12 6.6 86 12 12 12 12 15 17 18 105 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145 107 36 45.5 3.5	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112 39 53 2.2	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180 135 46 62.8 3.4	2.5 236 8 12 8 12 14 172 8 12 8 12 8 12 8 12 8 12 8 12 6 6 6 6 6 6 7 6 6 6 6 8 48
c dd de f g h i dk dm r	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG 系列 CSF-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列 CSF-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.5 38 8 10 21.4 1.1 2 14 0.52	71 8 8 8 6 8 4.5 45 8 8 6 8 4.5 45 8 10.5 23.5 0.8 2 18	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 S67 45 15.5 23 1 2.4 21 0.98	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4 2.8 26 1.5	1.5 125 12 12 12 12 12 6.6 86 12 12 12 12 12 12 75 77 14 3 26 3.2	2 144 10 10 8 10 9 106 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	2 164 12 16 12 16 9 119 12 16 12 16 16 18 S100 S145 107 36 45.5 3.5 6.1 32 7.0	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112 39 53 2.2	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	236 8 12 8 12 14 172 8 12 8 12 M12 S135 S205 155 56 66.5 3.9 7.6 48 20.9
c dd pe f g h i pk pm r t*	CSG-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG 系列 CSF-LW 系列 CSF-LW 系列 CSF-LW 系列 CSG-LW 系列 CSG-LW 系列 CSG-LW 系列	65 8 6 6 6 4.5 38 8 6 6 6 6 4.5 38 10 21.4 1.1	71 8 8 8 6 8 4.5 45 8 8 6 8 4.5 45 8 10.5 23.5 0.8	1.5 82 8 8 6 8 5.5 53 8 8 6 8 M5 40.64×1.14 \$67 45 15.5 23 1	1.5 96 10 10 8 10 5.5 66 10 10 8 10 M5 53.28×0.99 \$80 58 20 29 1.4	1.5 125 12 12 12 12 12 12 6.6 86 12 12 12 12 15 17 18 105 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	2 144 10 10 8 10 9 106 10 10 8 10 M8 AS568-042 S125 90 34 39.5 3.3	2 164 12 16 12 16 9 119 12 16 12 16 M8 S100 S145 107 36 45.5 3.5	2 174 14 18 12 18 9 133 14 18 12 18 M8 S105 S155 112 39 53 2.2	2.5 206 12 16 12 16 11 154 12 16 12 16 12 16 M10 S125 S180 135 46 62.8 3.4	2.5 236 8 12 8 12 14 172 8 12 8 12 8 12 8 12 8 12 8 12 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6

⁽註)()內為減速比 30 時的尺寸。 ●*記號的尺寸 B、D、t 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。 ●產品交貨時,波產生器為已拆卸狀態。

角傳動精度 (相關用語說明,請參閱「技術資料」內容。)

表 130 -1 單位:×10⁻⁴rad(arc-min)

減速比	規格	型號	14	17	20	25	32	40 ~ 65
	標準品	×10⁴rad	5.8	4.4	4.4	4.4	4.4	_
30	1示午口	arc-min	(2)	(1.5)	(1.5)	(1.5)	(1.5)	_
30	特殊品	×10⁴rad	_	_	2.9	2.9	2.9	_
	行外心	arc-min	_	_	(1)	(1)	(1)	_
	標準品	×10⁴rad	4.4	4.4	2.9	2.9	2.9	2.9
50 以上	保华吅	arc-min	(1.5)	(1.5)	(1)	(1)	(1)	(1)
50 以上	特殊品	×10⁴rad	2.9	2.9	1.5	1.5	1.5	1.5
	1寸7本口口	arc-min	(1)	(1)	(0.5)	(0.5)	(0.5)	(0.5)

遲滯損失 (相關用語說明,請參閱「技術資料」內容。)

表 130 -2

減速比	型號	14	17	20	25	32	40 以上
30	×10⁴rad	8.7	8.7	8.7	8.7	8.7	_
30	arc-min	3.0	3.0	3.0	3.0	3.0	_
50	×10⁴rad	5.8	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.0	2.0	2.0	2.0	2.0	2.0
80 以上	×10⁴rad	2.9	2.9	2.9	2.9	2.9	2.9
○○以上	arc-min	1.0	1.0	1.0	1.0	1.0	1.0

最大背隙量 (相關用語說明·請參閱「技術資料」內容。)

表 130 -3

減速比	型號	14	17	20	25	32	40	45	50	58	65
30	×10⁻⁵rad	29.1	16.0	13.6	13.6	11.2	_	_	_	_	_
30	arc-sec	60	33	28	28	23	_	_	_	_	_
50	×10 ⁻⁵ rad	17.5	9.7	8.2	8.2	6.8	6.8	5.8	5.8	4.8	4.8
50	arc-sec	36	20	17	17	14	14	12	12	10	10
80	×10⁻⁵rad	11.2	6.3	5.3	5.3	4.4	4.4	3.9	3.9	2.9	2.9
80	arc-sec	23	13	11	11	9	9	8	8	6	6
100	×10 ⁻⁵ rad	8.7	4.8	4.4	4.4	3.4	3.4	2.9	2.9	2.4	2.4
100	arc-sec	18	10	9	9	7	7	6	6	5	5
100	×10⁻⁵rad	_	3.9	3.9	3.9	2.9	2.9	2.4	2.4	1.9	1.9
120	arc-sec	_	8	8	8	6	6	5	5	4	4
160	×10⁻⁵rad	_	_	2.9	2.9	2.4	2.4	1.9	1.9	1.5	1.5
160	arc-sec	_	_	6	6	5	5	4	4	3	3

剛性(彈簧常數)(相關用語說明,請參閱「技術資料」內容。)

表 130 -4

記號	_	型號		17	20	25	32	40	45	50	58	65
12300	_	N⋅m	2.0	3.9	7.0	14	29	54	76	108	168	235
	T1	kgf∙m	0.20	0.40	0.70	1.4	3.0	5.5	7.8	11	17	24
	T ₂	N⋅m	6.9	12	25	48	108	196	275	382	598	843
	12	kgf·m	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K ₁	×10⁴N·m/rad	0.19	0.34	0.57	1.0	2.4	_	_	_	_	-
	Z1	kgf·m/arc-min	0.056	0.10	0.17	0.30	0.70	_	_	1		l
	K ₂	×10⁴N·m/rad	0.24	0.44	0.71	1.3	3.0	_	_		_	ı
	IN2	kgf·m/arc-min	0.07	0.13	0.21	0.40	0.89	_	_	_	_	_
減速比	Кз	×10⁴N·m/rad	0.34	0.67	1.1	2.1	4.9	_	_	_	_	_
30	1/3	kgf·m/arc-min	0.10	0.20	0.32	0.62	1.5	_	_	_	_	_
	θι	×10⁴rad	10.5	11.5	12.3	14	12.1	_	_	_	_	_
	01	arc-min	3.6	4.0	4.1	4.7	4.3	_	_	_	_	-
	θ2	×10⁴rad	31	30	38	40	38	_	_	_	_	_
	02	arc-min	10.7	10.2	12.7	13.4	13.3	_	_	_	_	_
	K ₁	×10⁴N·m/rad	0.34	0.81	1.3	2.5	5.4	10	15	20	31	44
	KI	kgf·m/arc-min	0.1	0.24	0.38	0.74	1.6	3.0	4.3	5.9	9.3	13
	K ₂	×10⁴N·m/rad	0.47	1.1	1.8	3.4	7.8	14	20	28	44	61
	IX2	kgf·m/arc-min	0.14	0.32	0.52	1.0	2.3	4.2	6.0	8.2	13	18
減速比	Кз	×10⁴N·m/rad	0.57	1.3	2.3	4.4	9.8	18	26	34	54	78
50	1//3	kgf·m/arc-min	0.17	0.4	0.67	1.3	2.9	5.3	7.6	10	16	23
	θι	×10⁴rad	5.8	4.9	5.2	5.5	5.5	5.2	5.2	5.5	5.2	5.2
	01	arc-min	2.0	1.7	1.8	1.9	1.9	1.8	1.8	1.9	1.8	1.8
	θ2	×10⁴rad	16	12	15.4	15.7	15.7	15.4	15.1	15.4	15.1	15.1
	02	arc-min	5.6	4.2	5.3	5.4	5.4	5.3	5.2	5.3	5.2	5.2

[※] 本表數值為參考值。下限值約為標示數值的 80%。

												表 131 -1
記號	_	型號	14	17	20	25	32	40	45	50	58	65
	Τı	N⋅m	2.0	3.9	7.0	14	29	54	76	108	168	235
	11	kgf∙m	0.20	0.40	0.70	1.4	3.0	5.5	7.8	11	17	24
	T2	N⋅m	6.9	12	25	48	108	196	275	382	598	843
	12	kgf∙m	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K ₁	×10⁴N·m/rad	0.47	1	1.6	3.1	6.7	13	18	25	40	54
	K1	kgf·m/arc-min	0.14	0.3	0.47	0.92	2.0	3.8	5.4	7.4	12	16
	K ₂	×10⁴N·m/rad	0.61	1.4	2.5	5.0	11	20	29	40	61	88
	K2	kgf·m/arc-min	0.18	0.4	0.75	1.5	3.2	6.0	8.5	12	18	26
減速比	Кз	×10⁴N·m/rad	0.71	1.6	2.9	5.7	12	23	33	44	71	98
80 以上	K3	kgf·m/arc-min	0.21	0.46	0.85	1.7	3.7	6.8	9.7	13	21	29
	θ1	×10⁴rad	4.1	3.9	4.4	4.4	4.4	4.1	4.1	4.4	4.1	4.4
	01	arc-min	1.4	1.3	1.5	1.5	1.5	1.4	1.4	1.5	1.4	1.5
	θ₂	×10⁴rad	12	9.7	11.3	11.1	11.6	11.1	11.1	11.1	11.1	11.3
	02	arc-min	4.2	3.3	3.9	3.8	4.0	3.8	3.8	3.8	3.8	3.9

※ 本表數值為參考值。下限值約為標示數值的 80%。

起動轉矩(相關用語説明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

000	~ 7	T. 7	51

表 131 -2 單位:cN·m

- 000 /(7·)										車I → C(4.11)
型號減速比	14	17	20	25	32	40	45	50	58	65
50	4.5	6.7	8.6	17	34	61	85	_	_	_
80	3.1	4.4	5.4	10	21	39	54	73	108	154
100	2.8	3.7	4.7	8.8	20	34	47	64	97	132
120	_	3.4	4.2	8.0	17	31	43	57	88	121
160	_	_	3.6	6.9	15	26	36	50	75	102

■CSF 系列

表 131 -3 單位:cN·m

型號減速比	14	17	20	25	32	40	45		58	65
30	6.4	9.3	15	25	54	_	_	_	_	_
50	4.1	6.1	7.8	15	31	55	77	110	160	220
80	2.8	4	4.9	9.2	19	35	49	66	98	140
100	2.5	3.4	4.3	8	18	31	43	58	88	120
120	_	3.1	3.8	7.3	15	28	39	52	80	110
160	_	_	3.3	6.3	14	24	33	45	68	93

加速起動轉矩 (相關用語說明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■CSG 系列

表 131 -4 單位:N·m

- 00 d 7(7)										Ar 177 - 14111
型號減速比	14	17	20	25	32	40	45	50	58	65
50	1.8	3.3	5.2	9.9	20	36	52	_	_	_
80	1.8	3.3	5.3	10	21	36	53	69	106	154
100	2	3.6	5.6	11	22	40	56	75	121	165
120	_	3.9	6.1	12	24	43	61	80	121	176
160	_	_	7	14	29	51	70	94	143	198

COL	7 Fil
(>=	4 VIII

表 131 -5 單位:N·m

型號減速比	14	17	20	25	32	40	45		58	65
30	2.4	3.8	6.2	11	23	_	_		_	_
50	1.6	3	4.7	9	18	33	47	62	95	130
80	1.6	3	4.8	9.1	19	33	48	63	96	140
100	1.8	3.3	5.1	9.8	20	36	51	68	110	150
120	_	3.5	5.5	11	22	39	55	73	110	160
160	_	_	6.4	13	26	46	64	85	130	180

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

■CSG 系列

表 132 -1 單位:N·m

型號 減速比	14	17	20	25	32	40	45	50	58	65
50	110	190	280	580	1200	2300	3500	_	_	_
80	140	260	450	880	1800	3600	5000	7000	10000	14000
100	100	200	330	650	1300	2700	4000	5300	8300	12000
120	_	150	310	610	1200	2400	3600	4900	7500	10000
160	_	_	280	580	1200	2300	3300	4600	7200	10000

型號減速比	14	17	20	25	32	40	45	50	58	65
30	59	100	170	340	720	_	_	_	_	_
50	88	150	220	450	980	1800	2700	3700	5800	7800
80	110	200	350	680	1400	2800	3900	5400	8200	11000
100	84	160	260	500	1000	2100	3100	4100	6400	9400
120	_	120	240	470	980	1900	2800	3800	5800	8300
160	_	_	220	450	980	1800	2600	3600	5600	8000

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 132 - 3 單位: Nm 型號 14 17 20 25 32 40 45 50 58 65 全減速比 260 500 800 1700 3500 6700 8900 12200 19000 26600

 型號
 14
 17
 20
 25
 32
 40
 45
 50
 58
 65

 全減速比
 190
 330
 560
 1000
 2200
 4300
 5800
 8000
 12000
 17000

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive $^{\otimes}$ 所必要的輸入端(高速軸端)的轉矩。

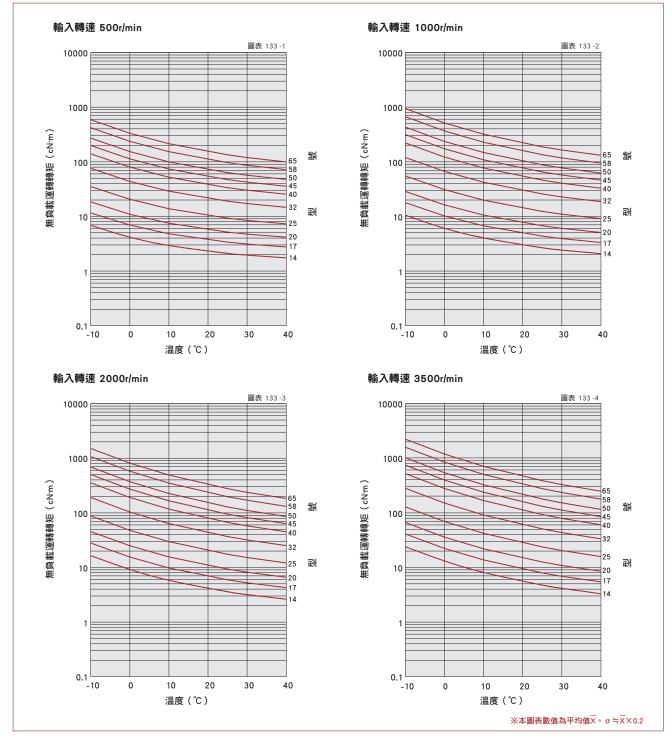
測量條件

表 132 -5

	減速比 100									
潤滑條件	潤滑脂	1 名档	Harmonic 潤滑脂® SK-1A Harmonic 潤滑脂® SK-2							
	潤滑	塗佈量	適當塗佈量							
	轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值									

※ 如為潤滑油潤滑,請洽詢本公司。

■減速比別修正量


Harmonic Drive®的無負載運轉轉矩會因速度比而變化。圖表 133-1 ~ 133-4 為減速比 100 時的數值。關於其他速度比,請加上表 132-6 所示修正量後計算。

模組型無負載運轉轉矩修正量

表 132 -6 單位:cN·m

	TWATE 10 1077				
減速比 型號	30	50	80	120	160
14	2.5	1.1	0.2	_	_
17	3.8	1.6	0.3	-0.2	_
20	5.4	2.3	0.5	-0.3	-0.8
25	8.8	3.8	0.7	-0.5	-1.2
32	16	7.1	1.3	-0.9	-2.2
40	_	12	2.1	-1.5	-3.5
45	_	16	2.9	-2.1	-4.9
50	_	21	3.7	-2.6	-6.2
58	_	30	5.3	-3.8	-8.9
65	_	41	7.2	-5.1	-12

■減速比 100 的無負載運轉轉矩

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

測量條件 表 134 -1 組裝 以建議組裝精度組裝後測量 負載轉矩 額定表所示的額定轉矩(126、127頁) 潤滑條件 潤滑脂 潤滑 各稱 潤滑 日本monic 潤滑脂® SK-1A Harmonic 潤滑脂® SK-2 塗佈量 適當塗佈量

■效率修正係數

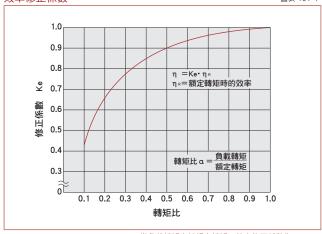
當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 134-1 求出 修正係數 Ke,並參考下列計算範例計算效率。

計算例

以 CSF-20-80-2A-GR 為例,計算下列條件下的效率 η(%)。

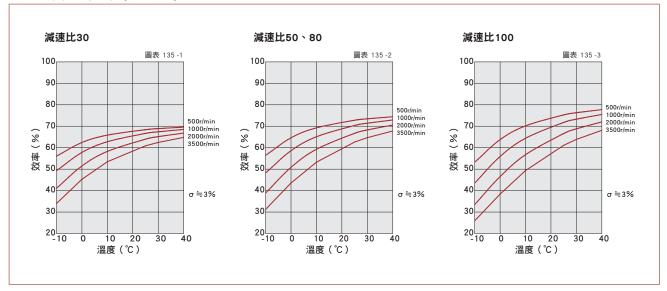
輸入轉速:1000r/min 負載轉矩:19.6N·m

潤滑方式:潤滑脂潤滑(Harmonic 潤滑脂® SK-1A)

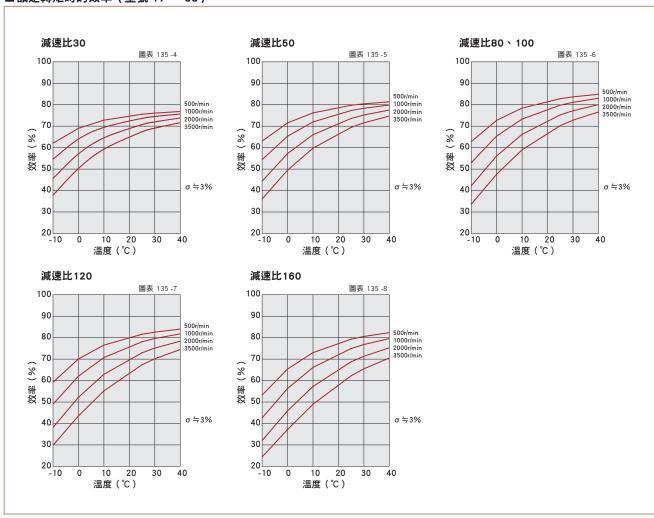

潤滑劑溫度:20℃

型號 20、減速比 80 的額定轉矩為 34N·m (額定表:127 頁),轉

矩比 α 為 0.58。 (α=19.6 / 34=0.58)


- ■依據圖表 134-1,得知效率修正係數 Ke=0.93
- ■負載轉矩 19.6N·m 時的效率 η 為 η=Ke•η_R=0.93×78%=73%。

效率修正係數 圖表 134 -1



※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

■額定轉矩時的效率(型號 14)

■額定轉矩時的效率(型號 17 ~ 65)

主軸承規格

模組型在外部負載(輸出凸緣部)的直接支撐組裝了精密交叉滾柱軸承。 為充分發揮模組型的性能,請檢查最大負載力矩負重、交叉滾柱軸承壽命以及靜態安全係數。 各數值的公式請參閱 030 ~ 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重(M max)

求出最大負載力矩負重(M max) 最大負載力矩負重(M max)≦容許力矩(Mc)

②確認壽命

求出平均徑向負載(Frav)、平均軸向負載(Faav) 求出徑向負載係數(X)、軸向負載係數(Y) 計算並確認壽命

③確認靜態安全係數

求出靜態等價徑向負載(Po) 確認靜態安全係數 (fs)

■主軸承規格

交叉滾柱軸承的規格,如表 136-1、2 所示。

規格 CSG 系列 /CSF 系列

	轉子節圓直徑	偏移量		基本額	定負載			直負重 Mc	力矩剛	l性 Km
型號	dp		基本動額	定負載 C	基本靜額	定負載 Co	谷計力料	せ貝里 IVIC	×10⁴ N·m/rad	kgf·m/arc-min
	m	m	×10 ² N	kgf	X10 ² N	kgf	N·m	kgf⋅m	∧10° N•m/rad	kgi-m/arc-min
14	0.035	0.0095	47	480	60.7	620	41	4.2	4.38	1.3
17	0.0425	0.0095	52.9	540	75.5	770	64	6.5	7.75	2.3
20	0.050	0.0095	57.8	590	90.0	920	91	9.3	12.8	3.8
25	0.062	0.0115	96.0	980	151	1540	156	16	24.2	7.2
32	0.080	0.013	150	1530	250	2550	313	32	53.9	16
40	0.096	0.0145	213	2170	365	3720	450	46	91.0	27
45	0.111	0.0155	230	2350	426	4340	686	70	141	42
50	0.119	0.018	348	3550	602	6140	759	77	171	51
58	0.141	0.0205	518	5290	904	9230	1180	120	283	84
65	0.160	0.0225	556	5670	1030	10500	1860	190	404	120

規格 CSG-I W 系列 /CSF-I W 系列

表 136 -2

が行 CSG-L	轉子節圓直徑	偏移量			定負載				力华网	
型號			# -1 -11-05	定負載 C		 定負載 Co	容許力知	負重 Mc	ノノ入口門	III KIII
至弧	dp	R							×10⁴ N·m/rad	kgf·m/arc-min
	m	m	×10 ² N	kgf	×10 ² N	kgf	N·m	kgf⋅m		, ·
14	0.035	0.0093	47	480	60.7	620	33.6	3.4	3.6	1.1
17	0.043	0.0091	52.9	540	75.5	770	52.5	5.3	6.4	1.9
20	0.050	0.0098	57.8	590	90	920	74.6	7.6	10.5	3.1
25	0.064	0.0118	96	980	151	1540	127.9	13.1	19.8	5.9
32	0.083	0.0133	150	1530	250	2550	256.7	26.2	44.2	13.1
40	0.096	0.0148	213	2170	365	3720	369	37.7	74.6	22.1
45	0.111	0.0158	230	2350	426	4340	562.5	57.4	115.6	34.4
50	0.119	0.0180	348	3550	602	6140	622	63.5	140	48.5
58	0.141	0.0205	518	5290	904	9230	838	85.4	201	59.6
65	0.160	0.0185	556	5670	1030	10500	1525	156	331	108

- ※ 基本動額定負載是指軸承的基本動額定壽命可達 100 萬次旋轉的固定靜止徑向負載。※ 基本靜額定負載是指在承受最大負載的轉動體與軌道的接觸部中央上,給予一定水準的接觸應力(4kN/mm²)之靜態負載。
- ※ 容許力矩負重是指輸出軸承上可施加的最大力矩負重,此範圍內的數值可以確保基本性能並可動作。
- ※ 力矩剛性的值為參考值。下限值約為標示數值的 80%。
- ※ 容許徑向負載、容許軸向負載,係指主軸承受單純徑向負載或軸向負載其中之一時,可滿足減速機壽命的數值。

(徑向負載為 Lr+R=0mm、軸向負載為 La=0mm 時)

設計指南 ==

機械精度

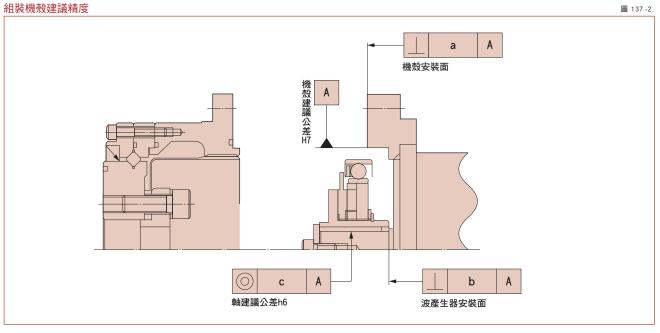


表 137 -1 單位:mm

型號記號	14	17	20	25	32	40	45		58	65
a	0.010	0.010	0.010	0.015	0.015	0.015	0.018	0.018	0.018	0.018
b	0.010	0.012	0.012	0.013	0.013	0.015	0.015	0.015	0.017	0.017
С	0.024	0.026	0.038	0.045	0.056	0.060	0.068	0.069	0.076	0.085
d	0.010	0.010	0.010	0.010	0.010	0.015	0.015	0.015	0.015	0.015
е	0.038	0.038	0.047	0.049	0.054	0.060	0.065	0.067	0.070	0.075

組裝精度

在組裝設計方面,為充分發揮模組型擁有的優異性能,應確保圖 137-1、表 137-1 所示之機殼建議精度。

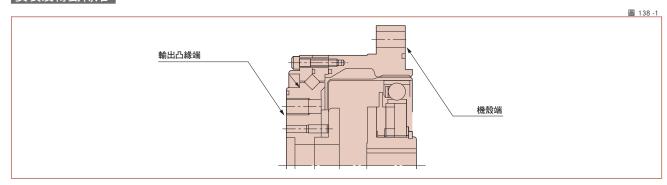

組裝機殼建議精度

表 137 -2 單位:mm

型號記號	14	17	20	25	32	40	45	50	58	65
a	0.011	0.015	0.017	0.024	0.026	0.026	0.027	0.028	0.031	0.034
h	0.017	0.020	0.020	0.024	0.024	0.032	0.032	0.032	0.032	0.032
b	(800.0)	(0.010)	(0.010)	(0.012)	(0.012)	(0.012)	(0.013)	(0.015)	(0.015)	(0.015)
	0.030	0.034	0.044	0.047	0.050	0.063	0.065	0.066	0.068	0.070
	(0.016)	(0.018)	(0.019)	(0.022)	(0.022)	(0.024)	(0.027)	(0.030)	(0.033)	(0.035)

※()內為輸入部(波產生器)為剛性型時的數值。

安裝及傳動轉矩

CSG 系列 輸出凸緣端的安裝及傳動轉矩

表 138 -1

項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		6	6	8	8	8	8	8	8	8	8
螺栓尺寸		M4	M5	M6	M8	M10	M10	M12	M14	M16	M16
螺栓鎖固 P.C.D.	mm	23	27	32	42	55	68	82	84	100	110
螺栓鎖緊轉矩	N·m	5.4	10.8	18.4	45	89	89	154	246	383	383
紫作主识系平界社	kgf⋅m	0.55	1.1	1.88	4.5	9.1	9.1	15.7	25.1	39.1	39.1
螺栓傳動轉矩	N·m	58	109	245	580	1220	1510	2624	3690	5981	6579
紫糸作王 1 等 里 川 平 等 大 上	kgf-m	5.9	11.2	25	59	124	154	268	377	610	671

CSG 系列 機殼端的安裝及傳動轉矩

表 138 -2

項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		8	8	8	10	12	10	12	14	12	8
螺栓尺寸		M4	M4	M5	M5	M6	M8	M8	M8	M10	M12
螺栓鎖固 P.C.D.	mm	65	71	82	96	125	144	164	174	206	236
螺栓鎖緊轉矩	N⋅m	4.5	4.5	9.0	9.0	15.3	37	37	37	74	128
\$A7王或只3A2平序7户	kgf⋅m	0.46	0.46	0.92	0.92	1.56	3.8	3.8	3.8	7.5	13.1
螺栓傳動轉矩	N⋅m	182	196	365	538	1200	2100	2844	3251	5717	6293
SSK 个主 1 等 里 川 半 等 大 上	kgf⋅m	19	20	37	55	122	214	290	360	583	642

(表138-1、138-2/註)

1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。

4. 鎖緊係數:A=1.4 5. 接合面摩擦係數:μ=0.15

CSG-LW 系列(輕量型)輸出凸緣端的安裝及傳動轉矩

表 138 -3

項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		6	6	8	8	8	8	8	8	8	8
螺栓尺寸		M4	M5	M6	M8	M10	M10	M12	M14	M16	M16
螺栓鎖固 P.C.D.	mm	23	27	32	42	55	68	82	84	100	110
螺栓鎖緊轉矩	N·m	5.4	10.8	18.4	45	89	89	154	246	383	383
紫性 與 案 甲	kgf⋅m	0.55	1.1	1.88	4.5	9.1	9.1	15.7	25.1	39.1	39.1
螺栓傳動轉矩	N·m	58	109	245	580	1220	1510	2624	3690	5981	6579
以永代王1等里JJ平等大L	kgf⋅m	5.9	11.2	25	59	124	154	268	377	610	671

CSG-LW 系列(輕量型)機殼端的安裝及傳動轉矩

表 138 -4

項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		6	8	8	10	12	10	16	18	16	12
螺栓尺寸		M4	M4	M5	M5	M6	M8	M8	M8	M10	M12
螺栓鎖固 P.C.D.	mm	65	71	82	96	125	144	164	174	206	236
螺栓鎖緊轉矩	N⋅m	3.2	3.2	6.4	6.4	10.8	26.5	26.5	26.5	51.9	90
燃性與案轉起	kgf⋅m	0.33	0.33	0.65	1.1	2.7	2.7	2.7	2.7	5.3	9.2
螺栓傳動轉矩	N⋅m	98	143	261	382	842	1488	2712	3237	5350	6649
SK/王1号里/J平等大□	kaf∙m	10	14.6	26.6	39	85.9	152	277	330	546	678

(表138-3、138-4/註)

1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。

2. 建議螺栓 螺栓名稱: JIS B 1176 內六角螺栓 強度區分: JIS B 1051 12.9 以上

3. 轉矩係數:K=0.2

4. 鎖緊係數:A=1.4

5. 接合面摩擦係數: μ =0.15 6. CSG-LW 系列(輕量型)機殼端的凸緣材質為 AL(鋁合金),螺栓鎖緊轉矩請遵守表 138-4 的值。 鎖緊轉矩超過表 138-4 所示數值時,恐將無法獲得應有傳動轉矩或造成鬆脫現象

敬請使用墊圈,不要讓螺栓座面直接接觸鋁合金

CSF 系列 輸出凸緣端的安裝及傳動轉矩

表 139 -1

項目	型號 ————	14	17	20	25	32	40	45	50	58	65
螺栓支數		6	6	8	8	8	8	8	8	8	8
螺栓尺寸		M4	M5	M6	M8	M10	M10	M12	M14	M16	M16
螺栓鎖固 P.C.D.	mm	23	27	32	42	55	68	82	84	100	110
螺栓鎖緊轉矩	N⋅m	4.5	9	15.3	37	74	74	128	205	319	319
紫柱與案 釋起	kgf⋅m	0.46	0.92	1.56	3.8	7.6	7.6	13.1	20.9	32.5	32.5
螺栓傳動轉矩	N·m	49	91	204	486	1108	1258	2200	3070	4980	5480
写於「王」(寺里川半寺大社	kgf⋅m	5.0	9.3	21	50	104	128	224	313	508	559

CSF 系列 機殼端的安裝及傳動轉矩

表 139 -2

	型號	1.4	17	20	OF.	20	40	45	F0	50	C.E.
項目		14	17	20	25	32	40	45	50	58	65
螺栓支數		6	6	6	8	12	8	12	12	12	8
螺栓尺寸		M4	M4	M5	M5	M6	M8	M8	M8	M10	M12
螺栓鎖固 P.C.D.	mm	65	71	82	96	125	144	164	174	206	236
螺栓鎖緊轉矩	N·m	4.5	4.5	9.0	9.0	15.3	37	37	37	74	128
\$AY王亚只 344 半守 702	kgf⋅m	0.46	0.46	0.92	0.92	1.56	3.8	3.8	3.8	7.5	13.1
螺栓傳動轉矩	N⋅m	137	147	274	431	1200	1680	2844	3040	5717	6293
5条7至1等9万半等7年	kgf⋅m	14	15	28	44	122	171	290	310	583	642
									- / 0		- 1.5

(表139-1、139-2/註)

1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。

CSF-LW 系列 輸出凸緣端的安裝及傳動轉矩

2. 建議螺栓 螺栓名稱: JIS B 1176 內六角螺栓 強度區分: JIS B 1051 12.9 以上

轉矩係數:K=0.2
 鎖緊係數:A=1.4
 接合面摩擦係數:μ=0.15

表 139-3

5. E. 1. 1/1. High Environment (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1											
項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		6	6	8	8	8	8	8	8	8	8
螺栓尺寸		M4	M5	M6	M8	M10	M10	M12	M14	M16	M16
螺栓鎖固 P.C.D.	mm	23	27	32	42	55	68	82	84	100	110
螺栓鎖緊轉矩	N⋅m	4.5	9.0	15.3	37	74	74	128	205	319	319
\$1.6 PE 34.7	kgf∙m	0.46	0.92	1.56	3.8	7.6	7.6	13.1	20.9	32.5	32.5
螺栓傳動轉矩	N⋅m	49	91	204	486	1019	1258	2200	3070	4980	5480
以系 个 主 1 寻 里 从 平 等 大 上	kgf⋅m	5.0	9.3	21	50	104	128	224	313	508	559

CSF-LW 系列 機殼端的安裝及傳動轉矩

表	1	39	-4

	型號										
項目		14	17	20	25	32	40	45	50	58	65
螺栓支數		6	8	8	10	12	10	16	18	16	12
螺栓尺寸		M4	M4	M5	M5	M6	M8	M8	M8	M10	M12
螺栓鎖固 P.C.D.	mm	65	71	82	96	125	144	164	174	206	236
螺栓鎖緊轉矩	N·m	3.2	3.2	6.4	6.4	10.8	26.5	26.5	26.5	51.9	90
写於 Y王 亚只 → ※ 半學 大上	kgf⋅m	0.33	0.33	0.65	0.65	1.1	2.7	2.7	2.7	5.3	9.2
螺栓傳動轉矩	N·m	98	143	261	382	842	1488	2712	3237	5350	6649
写於作王 寺 里// 半寺 大上	kgf⋅m	10	14.6	26.6	39	85.9	152	277	330	546	678

· (表 139-1、139-2 /註)

(表 139-1、139-2 / 註) 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。

2. 建議螺栓 螺栓名稱:JIS B 1176 內六角螺栓 強度區分:JIS B 1051 12.9 以上

2. 建讓縣住 縣住名4 3. 轉矩係數: K=0.2 4. 鎖緊係數: A=1.4

5. 接合面摩擦係數: μ=0.15

6. CSF-LW 系列機殼端的凸緣材質為 AL(鉛合金),螺栓鎖緊轉矩請遵守表 139-4 的值。 鎖緊轉矩超過表 139-4 所示數值時,恐將無法獲得應有傳動轉矩或造成鬆脫現象。

■對輸出凸緣的負載安裝上的注意事項(型號 14~25)

型號 $14 \times 17 \times 20 \times 25$ 的模組型中,輸出凸緣外圈的油封與輸出凸緣(旋轉部)端面的距離(參閱 128 頁、圖 128-1 尺寸記號 L)較短,負載與油封可能會干涉,請設計使負載不會干涉到油封。

安裝馬達

■馬達安裝用凸緣

在模組型上安裝馬達時,需要馬達安裝用凸緣。馬達安裝用凸緣的 基本部分之建議尺寸及精度如表 140-1 所示。

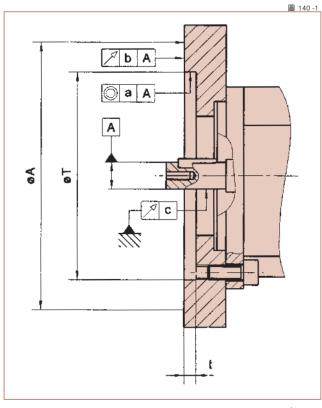


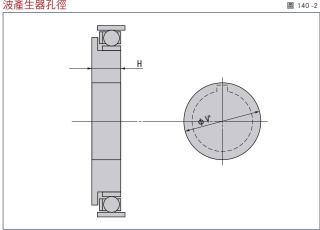
表 140 -1 單位:mm

										- i
型號記號	14	17	20	25	32	40	45	50	58	65
a	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05
b	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05
С	0.015	0.015	0.018	0.018	0.018	0.018	0.021	0.021	0.021	0.021
φА	73	79	93	107	138	160	180	190	226	260
t	3	3	4.5	4.5	4.5	6	6	6	7.5	7.5
φТ	38H7	48H7	56H7	67H7	90H7	110H7	124H7	135H7	156H7	177H7

表 140 -2

基本三零件之組裝

■安裝波產生器


最大孔徑尺寸

波產生器的標準孔徑如各型號外觀尺寸圖,但可在表中所示的最大 尺寸範圍內變更。此時的鍵槽尺寸,建議為JIS規格。鍵槽的有效 長度尺寸,應可充分承受傳動轉矩。

※ 亦可為圓錐孔等特殊形狀。

如果要讓孔徑大於最大尺寸,亦有取消 Oldham 聯結器機構的使用方 式。此時的最大孔徑,考慮負載轉矩造成波產生器栓變形等情況, 最大僅能至下表所示的值。(該值為包含鍵槽深度尺寸等的數值。)

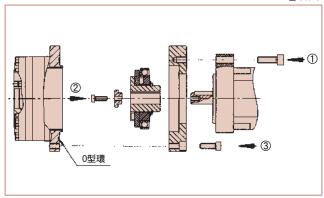
波產生器孔徑

油產生哭艷习徑

/仅/生土·价单文化1空 单位·mm											
型號 尺寸	14	17	20	25	32	40	45	50	58	65	
標準尺寸(H7)	6	8	12	14	14	14	19	19	22	24	
下孔尺寸	3	4	5	6	6	10	10	10	13	16	
最大尺寸	8	10	13	15	15	20	20	20	25	30	

表 140-3 將波產生器栓直接安裝至輸入軸時的最大栓孔徑與最小厚度 單位: mm

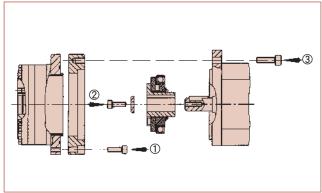
的//文件工品。15人类的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个										
型號 尺寸	14	17	20	25	32	40	45	50	58	65
最大孔徑 φ۷'	17	20	23	28	36	42	47	52	60	67
最小栓厚 H _0.1	7.2	7.6	11.3	11.3	13.7	15.9	17.8	19	21.4	23.5


■安裝步驟

如圖 141-1 及圖 141-2 所示,基本的馬達安裝步驟有 2 種,請依據 馬達安裝面接口部直徑選擇安裝步驟。表 141-1 為依據安裝面接口 部直徑的選擇基準。

表 141-1 單位:mm

型號	14	17	20	25	32	40	45	50	58	65	安裝參考圖
安裝面	<35.5	<43.5	<50.0	<62.5	<81.5	<100.0	<113.5	<124.5	<147	<167	組裝步驟 -1(圖 141-1)
接口部直徑	≧35.5	≧43.5	≧50.0	≧62.5	≧81.5	≧100.0	≧113.5	≧124.5	≧147	≧167	組裝步驟 -2(圖 141-2)



組裝步驟 -1 -

- ①將安裝用凸緣安裝在馬達安裝面
- ②將波產生器安裝在馬達輸出軸
- ③安裝模組本體

組裝步驟 -2 -

- ①將安裝用凸緣安裝在模組本體
- ②將波產生器安裝在馬達輸出軸
- ③將安裝用凸緣(模組本體)安裝在馬達安裝面

■安裝注意事項

模組型會因安裝時的不良而產生振動或異音等。組裝時,請務必注 意下列各點。

波產生器注意事項 -

- 1. 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可順利插入。
- 2. 沒有 Oldham 機構的波產生器,尤應注意讓偏心、垂直的影響保持 在建議值範圍內(參閱 137 頁「組裝精度」)。

其他注意事項 -

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 是否僅為了不干涉模組組裝部而進行倒角加工。

防鏽對策 -

元件型的表面並無防鏽處理。 如需防鏽,應塗佈防鏽劑。 另外,如需本公司進行防鏽表面處理,請洽詢本公司。

潤 滑

模組型以潤滑脂潤滑為標準,會在封入潤滑脂的狀態下交貨。 關於潤滑劑,型號 14、17為 Harmonic 潤滑脂® SK-2,型號 20至 65 為 Harmonic 潤滑脂® SK-1A。(交叉滾柱軸承部使用 Harmonic 潤滑脂®4B No.2)或為了長壽命也可以使用 Harmonic 潤滑脂®4B No.2。(潤滑脂的規格,請參閱「技術資料」內容。)

以潤滑脂潤滑時,請盡量縮小模組本體與安裝用凸緣內壁的空間, 避免運轉中潤滑脂飛散而殘留在模組內部。表 142-1 為建議尺寸。

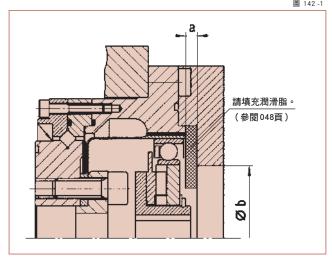


表 142 -1 單位:mm

型號記號	14	17	20	25	32	40	45	50	58	65
a ^{**}	1	1	1.5	1.5	1.5	2	2	2	2.5	2.5
a**	3	3	4.5	4.5	4.5	6	6	6	7.5	7.5
фЬ	16	26	30	37	37	45	45	45	56	62

※ 水平及垂直-波產生器在下時 ※※ 垂直-波產生器在上時

■其他注意事項

波產生器朝上或朝下(參閱 048 頁、圖 048-3)使用時,請在波產 生器與輸入蓋(馬達凸緣)的間隙上充分填满潤滑脂。

密封機構

為防止潤滑脂滲漏並維護 Harmonic Drive® 的高度耐久性,需要下列 模組型的密封處與建議密封方式 密封機構。

· 旋轉滑動部······· 油封(含彈簧)。此時請注意 勿使軸側出現損傷等不良。

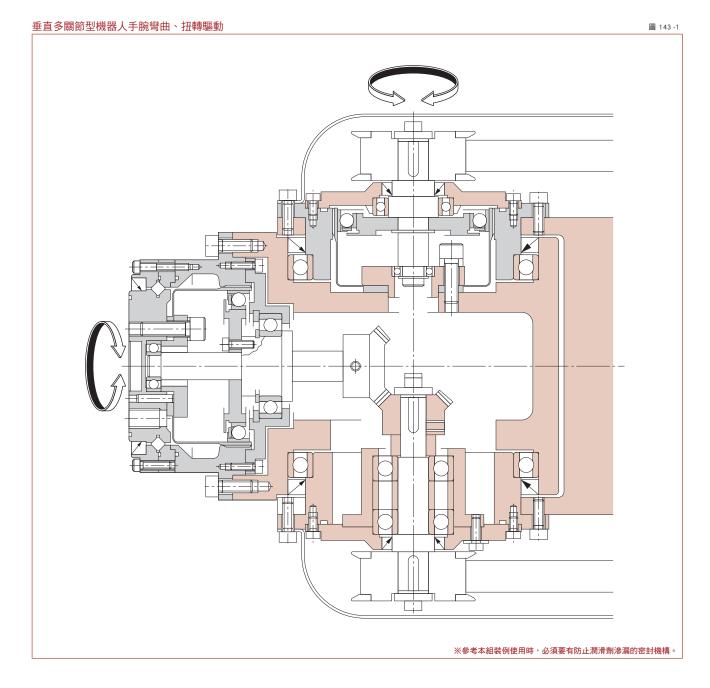
· 凸緣重合面、嵌合部········· 〇型環、密封劑。此時請注意 平面不均整、O型環遭咬入等

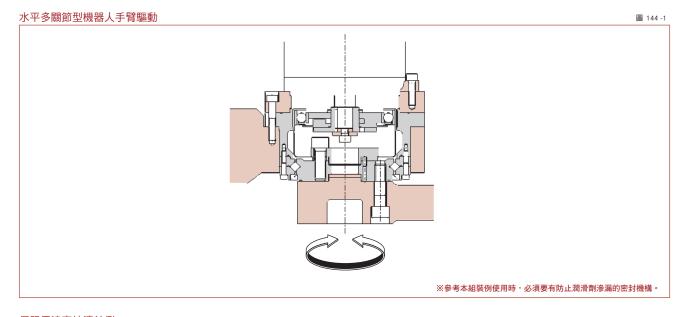
情形。

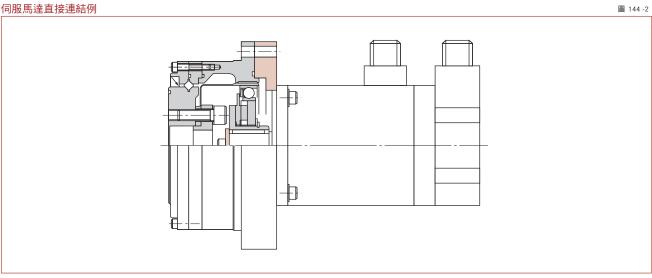
具封止效果的螺絲固定劑(建

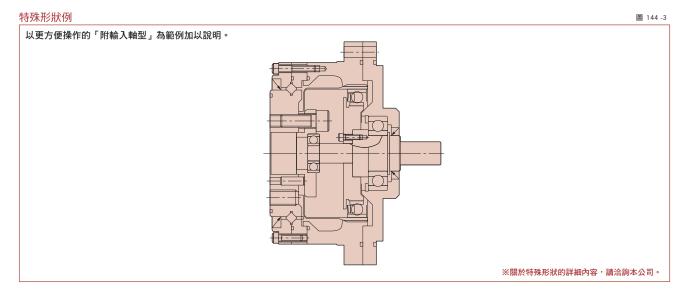
議使用LOCTITE 242)或密封 膠帶。

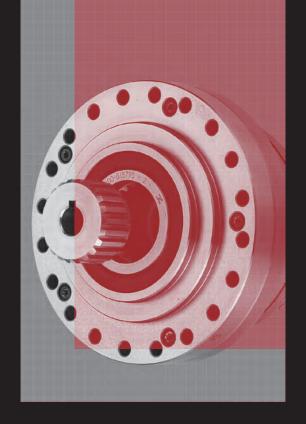
(註)尤其是使用 Harmonic 潤滑脂® 4B No.2 時,必須嚴格採用前述機構。


表	142	_


	需要密封處		建議密封方式
	輸出端	輸出凸緣中央的貫穿孔及輸出凸緣 重合面	使用 O 型環(本公司產品隨附)
		安裝螺絲處	具封止效果的螺絲固定劑 (建議使用 LOCTITE 242)
	輸入端	凸緣重合面	使用 〇 型環(本公司產品隨附)
		馬達輸出軸	請選擇附油封的型號。 無油封時,必須採用馬達安裝凸緣可 安裝油封的結構。


防鏽對策


模組型表面並無防鏽處理。如需防鏽,應塗佈防鏽劑。 另外,如需本公司進行防鏽表面處理,請洽詢本公司。


應用案例■

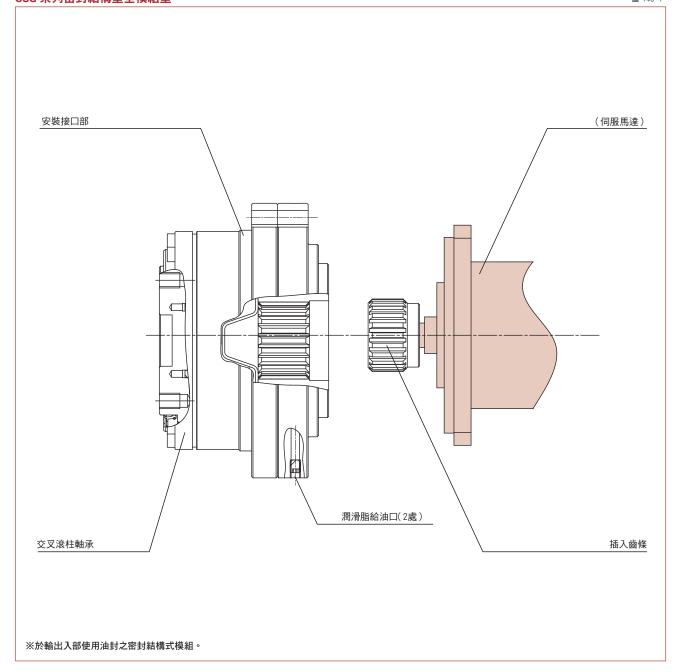
CSG系列密封結構型全模組型

	/
Unit Type CSG	
特徵	146
型式、記號	147
技術資料	147
	額定表147
	無負載運轉轉矩
	效率特性 149
	伺服馬達匹配表 152
	主軸承規格154
設計指南	154
	安裝及傳動轉矩 ······· 154
	機械精度 155
	組裝精度 155
	馬達安裝例155
	潤滑 156
	連續運轉時間
	注意項目 156

特徵!

■CSG 系列密封結構型全模組型

Harmonic Drive® 各系列中最高規格的 Harmonic Drive® CSG 系列開發了密封型全模組型。新產品保留了Harmonic Drive® 薄型外觀的特徵,透過採用密封結構,使其更易於設計及使用。


建議運用在工具機及一般工業機械的工件運送和工具庫驅動等各機 構部位。

CSG 系列的特徵 -

- ■相較於舊有產品,減少客戶的設計工時。
- ■與馬達安裝時使用的零件數量較少,產品設計輕巧。
- ■採用插入齒條,易於安裝馬達。

CSG 系列密封結構型全模組型

圖 146 -1

型式、記號■

機種名稱	型號		à	咸速比(註)			型式	齒條 外徑尺寸	形狀記號 (設計順序連號)	特殊規格
	25	50	80	100	120	160				
	32	50	80	100	120	160				
CSG	40	50	80	100	120	160	2UK =密封模組	A…約29mm B…約44mm	01~05	SP=特殊規格
CSG	45	50	80	100	120	160	2017 一品到疾怕	C···約54mm	01 -03	無記載=標準品
	58	_	80	100	120	160				
	65	_	80	100	120	160				

⁽註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

技術資料

額定表

表 147 -2

型號	減速比)r/min 時的 !轉矩		亭止時的 這值轉矩		战轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min		力矩 齒條)
		N·m	kgf⋅m	N·m	kgf·m	N·m	kgf⋅m	N·m	kgf⋅m	潤滑脂潤滑	潤滑脂潤滑	l ×10⁴kg·m²	J ×10⁻⁵kgf⋅ms²
	50	51	5.2	127	13	72	7.3	242	25				
	80	82	8.4	178	18	113	12	332	34				
25	100	87	8.9	204	21	140	14	369	38	5600	3500	0.65	0.66
	120	87	8.9	217	22	140	14	382	39				
	160	87	8.9	229	23	140	14	382	39				
	50	99	10	281	29	140	14	497	51				
	80	153	16	395	40	217	22	738	75				
32	100	178	18	433	44	281	29	841	86	4800	3500	1.4	1.4
	120	178	18	459	47	281	29	842	86				
	160	178	18	484	49	281	29	842	86				
	50	178	18	523	53	255	26	892	91				
	80	268	27	675	69	369	38	1270	130				
40	100	345	35	738	75	484	49	1400	143	4000	3000	3.55	3.6
	120	382	39	802	82	586	60	1488	152				
	160	382	39	841	86	586	60	1488	152				
	50	229	23	650	66	345	35	1235	126				
	80	407	41	918	94	507	52	1651	168				
45	100	459	47	982	100	650	66	2041	208	3800	3000	8.78	8.9
	120	523	53	1070	109	806	82	2288	233				
	160	523	53	1147	117	819	84	2483	253				
	80	714	73	1924	196	1001	102	3185	325				
58	100	905	92	2067	211	1378	141	4134	422	3000	2200	19.9	20.3
30	120	969	99	2236	228	1547	158	4329	441	3000	2200	13.3	20.3
	160	969	99	2392	244	1573	160	4459	455				
	80	969	99	2743	280	1352	138	4836	493				
65	100	1236	126	2990	305	1976	202	6175	630	2800	1900	43.8	44.7
03	120	1236	126	3263	333	2041	208	6175	630	2000	1300	43.0	77.1
	160	1236	126	3419	349	2041	208	6175	630				

⁽註) 1. 慣性力矩 $I = \frac{1}{4}$ GD² 2. 相關用語詳情,請參閱 012 頁「技術資料」內容。

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的 測量條件 輸入端(高速軸端)的轉矩。

表 148 -1

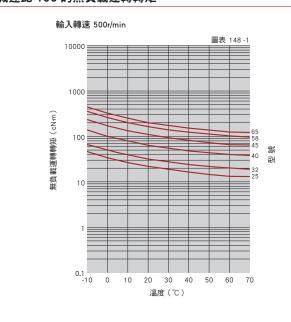
		減速比 10	
潤滑條件	潤滑脂潤滑	名稱	Harmonic 潤滑脂® 4B No.2
/闰/肖1宋1十	/国/育/旧/国/育	塗佈量	適當塗佈量
	轉矩值為輸入 200)0r/min 經 2 小	寺以上磨合運轉後的數值

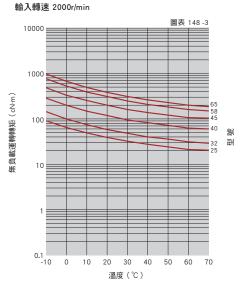
使用環境溫度範圍

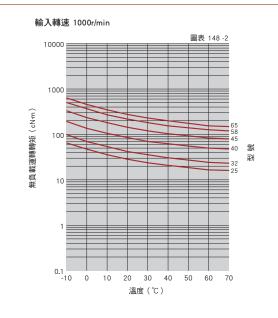
表 148 -2

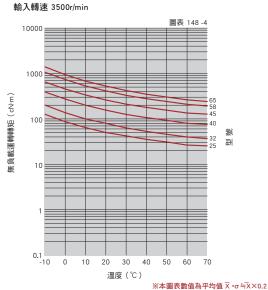
13 90 30/111/2011			
潤滑脂	Harmonic 潤滑脂® 4B No.2	-10°C∼+70°C	

■減速比別修正量


Harmonic Drive®的無負載運轉轉矩會因速度比而不同。下述圖表為 減速比 100 的數值。關於其他速度比,請加上表 148-3 所示修正量


無負載運轉轉矩修正量


表 148 -3 單位:cN·m


減速比 型號	50	80	120	160
25	3.8	0.7	-0.5	-1.2
32	7.1	1.3	-0.9	-2.2
40	12	2.1	-1.5	-3.5
45	16	2.9	-2.1	-4.9
58	_	5.3	-3.8	-8.9
65	_	7.2	-5.1	-12

■減速比 100 的無負載運轉轉矩

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量) ※ 如為潤滑油潤滑,請洽詢本公司。

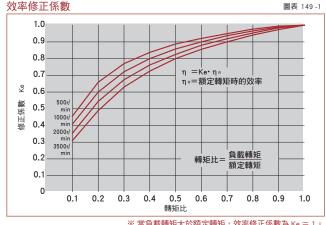
■效率修正係數與效率修正量

■效率修正公式

請由公式 149-1 的公式計算出「負載轉矩的效率修正係數」與「型 號的效率修正量」產生的效率。

公式 公式 149-1 效率= Ke× (ηR+ηe)

■依據負載轉矩的效率修正係數


當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 149-1 計算 修正係數 Ke,參考效率修正公式計算效率。

測量條件

測量	上條件			表 149 -1
	組裝		建	議值
	組裝負載轉矩		額定表所示	示的額定轉矩
		潤滑脂潤滑	名稱	Harmonic 潤滑脂® 4B No.2
'		/1号/月/1日/1号/月	塗佈量	適當塗佈量

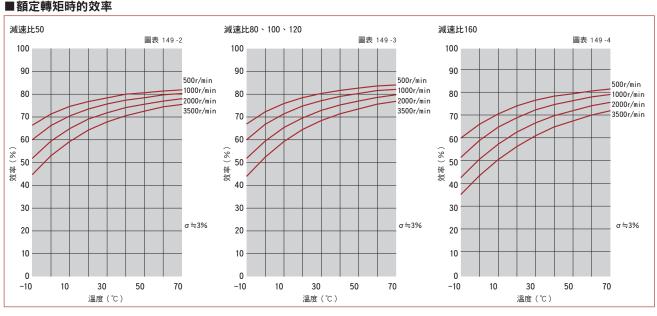
公式的記號 表 149 -2 效率 效率修正係數 Ke 圖表 149-1 額定轉矩時的效率 圖表 149-2 ~ 149-4 ηе 效率修正量 表 149-3

效率修正係數

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke = 1。

表 149 -3

■不同型號的效率修正量


CSG-2UK 的輸入端裝有支撐軸承、油封。這些的影響程度會因型號 而異。

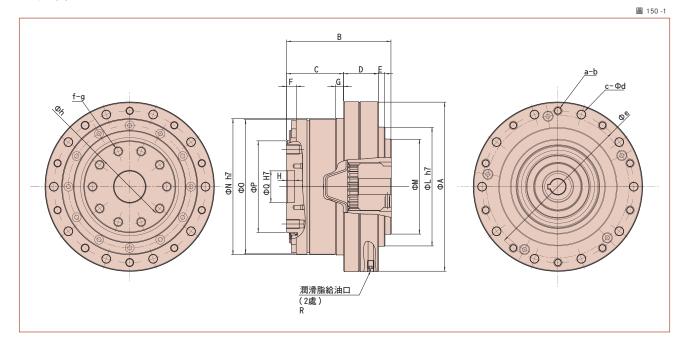
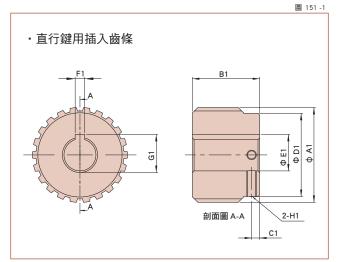
各型號對額定轉矩時的效率修正量 η e 以表 149-3 計算。

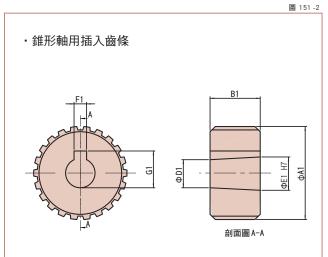
各型號的效率修正量單位

<u> </u>	1 222	1			+12 /
減速比型號	50	80	100	120	160
25	-2.0	-1.1	-4.7	-6.8	-5.8
32	1.4	2.6	0.5	-1.1	0.8
40	0.0	0.0	0.0	0.0	0.0
45	-3.7	-1.7	-4.0	-3.8	-2.5
58	_	0.6	0.2	-0.3	1.7
65	_	1.7	1.4	-0.1	1.9

■額定轉矩時的效率

■外觀圖


表 150-1 **單位:mm**

■尺	寸表
----	----

型號記號		32				65
φА	107	138	160	180	226	260
В	66	75	85	102	120	129
С	36	45	50.5	58	77	84.5
D	22	24	30	32	37	38.5
E	4	4	4.5	7	6	6
F	6.1	6	7.1	7.6	8.5	9
Н	5	5	5	6	10	6
φLh7	75	100	120	135	170	198
φМ	60	60	-	108	-	-
φ Nh7	86	113	127	148	186	212
фО	85	112	126	147	185	210
φР	58	78	90	107	135	155
ф QH7	20	26	32	32	46	52
R	M4 P=0.7	M5 P=0.8	M5 P=0.8	M6 P=1	M6 P=1	M6 P=1
а	10	12	10	12	12	8
b	M5	M6	M8	M8	M10	M12
С	10	12	10	12	12	8
фd	5.5	6.6	9	9	11	14
фе	96	125	144	164	206	236
f	10	10	12	12	8	12
g	M6	M8	M8	M10	M16	M14
φh	47	62	72	84	104	120
質量(kg)	2.2	4.5	6.5	9.7	18.5	26.3

■插入齒條的外觀尺寸圖

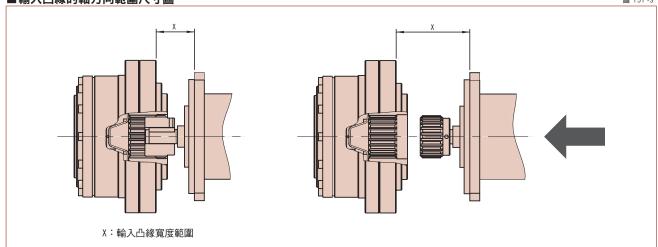

■插入齒條的外觀尺寸表

表 151 -1 **單位:mm**

插入齒條 的形狀記號	A01	A02	A03	A04	A05			B03	C01	C02	C03	C04	C05
軸的種類形 狀	直行 φ14	直行 φ10	錐型 φ11	錐型 φ14	錐型 φ16	直行 φ24	錐型 φ16	直行 φ19	直行 φ35	錐型 φ16	直行 φ19	直行 φ24	錐型 φ32
型號	25 32	25 32	25 32	25 32	32	40	40	40	45 58 65	45 58 65	45 58 65	45 58 65	45 58 65
фА1	29.75	29.75	29.75	29.75	29.75	44.667	44.667	44.667	54.5	54.5	54.5	54.5	54.5
B1	21	21	16	19	29	37	29	37	62	29	37	37	50
C1	2.5	2.5	-	-	-	5.8	-	5.8	12.5	-	5.8	5.8	-
фD1	26	26	9.4	12.1	13.1	39.4	13.1	40	48	13.1	48	48	26
фЕ1	14 +0.034 +0.016	10 +0.015	11 +0.018	14 +0.018	16 ^{+0,018}	24 +0.021	16 +0.018	19 +0.021	35 ^{+0.035} _{+0.010}	16 ^{+0.018}	16 +0.018 19 +0.021		31 ^{+0.025}
F1	5 ±0.015	3 ±0.013	4 ±0.015	4 ±0.015	5 ±0.015	8 ±0.018	5 ±0.015	6 ±0.015	10 ±0.018	5 ±0.015	6 ±0.015	8 ±0.018	7 ±0.018
G1	16.3 ^{+0.1}	11.4 +0.1	12.5 +0.1	15.8 ^{+0.1}	17.6 ^{+0.1}	27.3 +0.2	17.6 ^{+0.1}	21.8 +0.1	38.3 +0.2	38.3 ^{+0.2} 17.6 ^{+0.1} 21.8 ^{+0.1}		27.3 +0.2	33.8 ^{+0.1} ₀
H1	M3	M3	-	-	-	M5	-	M5	M5	-	M5	M5	-

■輸入凸緣的軸方向範圍尺寸圖

圖 151 -3

■輸入凸緣的軸方向範圍尺寸表

表 151-2 **單位:mm**

插入齒條 的形狀記號	A	01	A	02	Al	03	A	04		B01	B02	B03		C01			002			C03			C04		С		
軸的種類形 狀	直行	тф14	直行	ф10	錐型	<u>₹</u> φ11	錐型	ф14	錐型φ16	直行φ24	錐型φ16	直行φ19	Ī	፤ 行φ3	5	錐	型φ16		直	行ф19	9	İ	Ī行¢2	4	錐型	型φ32	
型號	25	32	25	32	25	32	25	32	32	40	40	40	45	58	65	45	58	65	45	58	65	45	58	65	45 5	58 6	5
Xmin	13	11	13	11	13	11	14	11	21	22	14.5	22.5	48.8	31.6	27.8	16	11	-	24	-	-	23	9		63.5 43	3.8 38	1.8
Xmax	17.1	14	21.1	18	16.1	13.5	19.1	16	28	33.8	25.8	34.8	56.8	56.2	56.2	22	21.4	-	31	-	-	34.3	29.4	-	67.3 6	62.4 62	.4

伺服馬達匹配表

表內的記述內容

CSG-25-50 第 1 段:產品型號 (0.7) 第 2 段:減速機價性 (×10-⁴kg·m²) (0.2) 第 3 段:價性比:減速機價性/馬達慣性

表內的顏色區分

型號	顏色	型號	顏色	型號	顏色
25		40		58	
32		45		65	

FANUC a iS 系	列				表 152 -1
馬達			減速比		
系列	50	80	100	120	160
	CSG-25-50	CSG-25-80	CSG-25-100	CSG-25-120	CSG-32-160
a iS 2/5000	(0.7)	(0.7)	(0.7)	(0.7)	(1.4)
	(0.2)	(0.2)	(0.2)	(0.2)	(0.5)
	CSG-25-50	CSG-25-80	CSG-25-100	CSG-25-120	CSG-32-160
a iS 2/6000	(0.7)	(0.7)	(0.7)	(0.7)	(1.4)
	(0.2)	(0.2)	(0.2)	(0.2)	(0.5)
	CSG-32-50	CSG-32-80	CSG-32-100	CSG-32-120	CSG-32-160
a iS 4/5000	(1.4)	(1.4)	(1.4)	(1.4)	(1.4)
	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)
	CSG-40-50	CSG-40-80	CSG-40-100	CSG-40-120	
	(3.5)	(3.5)	(3.5)	(3.5)	
a iS 8/4000	(0.3)	(0.3)	(0.3)	(0.3)	
	CSG-45-50	CSG-45-80	CSG-45-100	CSG-45-120	CSG-45-160
	(8.8)	(8.8)	(8.8)	(8.8)	(8.8)
	(0.8)	(0.8)	(0.8)	(0.8)	(0.8)
	CSG-40-50	CSG-40-80	CSG-40-100	CSG-40-120	CSG-40-160
	(3.5)	(3.5)	(3.5)	(3.5)	(3.5)
a iS 8/6000	(0.3)	(0.3)	CSG-45-100	CSG-45-120	CSG-45-160
			(8.8)	(8.8)	(8.8)
			(0.8)	(0.8)	(0.8)
	CSG-40-50		(0.8)	(0.8)	(0.8)
	(3.5)				
	(0.2)				
	CSG-45-50	CSG-45-80	CSG-45-100	CSG-45-120	CSG-45-160
a iS 12/4000	(8.8)	(8.8)	(8.8)	(8.8)	(8.8)
	(0.4)	(0.4)	(0.4)	(0.4)	(0.4)
	, ,	, ,	, ,	, ,	CSG-58-160
					(19.9)
					(0.9)
	İ	CSG-58-80	CSG-58-100	CSG-58-120	CSG-58-160
		(19.9)	(19.9)	(19.9)	(19.9)
- :0 00/4000		(0.9)	(0.9)	(0.9)	(0.9)
a iS 22/4000		CSG-65-80	CSG-65-100	CSG-65-120	CSG-65-160
		(43.8)	(43.8)	(43.8)	(43.8)
		(0.8)	(0.8)	(0.8)	(0.8)

表NUC a iF 系列 表 152-2

馬達			減速比		表 152 -2
系列	50	80	100	120	160
a iF 1/5000					CSG-25-160 (0.7) (0.2)
a iF 2/5000	CSG-25-50 (0.7) (0.1)	CSG-25-80 (0.7) (0.1)	CSG-25-100 (0.7) (0.1)	CSG-25-120 (0.7) (0.1)	
Q 1F 2/3000					CSG-32-160 (1.4) (0.3)
a iF 4/4000	CSG-32-50 (1.4) (0.1)	CSG-32-80 (1.4) (0.1)	CSG-32-100 (1.4) (0.1)	CSG-32-120 (1.4) (0.1)	
Q 1F 4/4000					CSG-40-160 (3.5) (0.3)
a iF 8/3000	CSG-40-50 (3.5) (0.1)	CSG-40-80 (3.5) (0.1)	CSG-40-100 (3.5) (0.1)	CSG-40-120 (3.5) (0.1)	CSG-40-160 (3.5) (0.1)
u ii 6/3000				CSG-45-120 (8.8) (0.3)	CSG-45-160 (8.8) (0.3)
a iF 12/3000	CSG-45-50 (8.8) (0.1)	CSG-45-80 (8.8) (0.1)	CSG-45-100 (8.8) (0.1)	CSG-45-120 (8.8) (0.1)	
Q IF 12/3000					CSG-58-160 (19.9) (0.3)
a iF 22/3000		CSG-58-80 (19.9) (0.2)	CSG-58-100 (19.9) (0.2)	CSG-58-120 (19.9) (0.2)	CSG-58-160 (19.9) (0.2)
Q 11 22/3000				CSG-65-120 (43.8) (0.4)	CSG-65-160 (43.8) (0.4)

FANUC β iS 系	列				表 153 -
馬達			減速比		
系列	50	80	100	120	160
β iS 2/4000	CSG-25-50 (0.7) (0.2)	CSG-25-80 (0.7) (0.2)	CSG-25-100 (0.7) (0.2)	CSG-25-120 (0.7) (0.2)	CSG-25-160 (0.7) (0.2)
β iS 4/4000	CSG-25-50 (0.7) (0.1)	CSG-25-80 (0.7) (0.1)			
p 15 4/4000		CSG-32-80 (1.4) (0.3)	CSG-32-100 (1.4) (0.3)	CSG-32-120 (1.4) (0.3)	CSG-32-160 (1.4) (0.3)
β iS 8/3000	CSG-40-50 (3.5) (0.3)	CSG-40-80 (3.5) (0.3)	CSG-40-100 (3.5) (0.3)	CSG-40-120 (3.5) (0.3)	CSG-40-160 (3.5) (0.3)
p 10 0/3000					CSG-45-160 (8.8) (0.8)
β iS 12/2000	CSG-40-50 (3.5) (0.2)	CSG-40-80 (3.5) (0.2)	CSG-40-100 (3.5) (0.2)	CSG-40-120 (3.5) (0.2)	CSG-40-160 (3.5) (0.2)
F 12 12,211	CSG-45-50 (8.8) (0.4)		CSG-45-100 (8.8) (0.4)	CSG-45-120 (8.8) (0.4)	CSG-45-160 (8.8) (0.4)
β iS 12/3000	CSG-40-50 (3.5) (0.2)	CSG-40-80 (3.5) (0.2)	CSG-40-100 (3.5) (0.2)	CSG-40-120 (3.5) (0.2)	
p 10 12/0000	CSG-45-50 (8.8) (0.4)	CSG-45-80 (8.8) (0.4)	CSG-45-100 (8.8) (0.4)	CSG-45-120 (8.8) (0.4)	CSG-45-160 (8.8) (0.4)
β iS 22/1500	CSG-45-50 (8.8) (0.2)	CSG-45-80 (8.8) (0.2)	CSG-45-100 (8.8) (0.2)	CSG-45-120 (8.8) (0.2)	
β 13 22/1300				CSG-58-120 (19.9) (0.4)	CSG-58-160 (19.9) (0.4)
	CSG-45-50 (8.8) (0.2)	CSG-45-80 (8.8) (0.2)	CSG-45-100 (8.8) (0.2)	CSG-45-120 (8.8) (0.2)	
β iS 22/2000				CSG-58-120 (19.9) (0.4)	CSG-58-160 (19.9) (0.4)
					CSG-65-160 (43.8) (0.8)

主軸承規格

表 154 -1

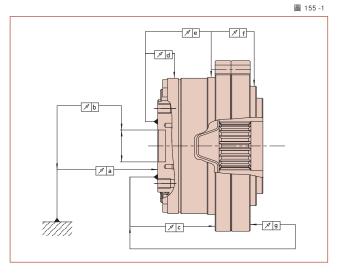
型號	轉子節圓直徑	偏移量	基本動額	基本動額定負載C		基本靜額定負載CO		容許力矩負載Mc		力矩剛性	
≃ 311.	m		×10 ² N	kgf	×10 ² N	kgf	N·m	kgf·m	×10⁴ N·m/rad	kgf·m/arc-min	
25	0.064	0.0118	96	980	151	1540	128	13.1	19.8	5.9	
32	0.083	0.0133	150	1530	250	2550	257	26.2	44.2	13.1	
40	0.096	0.0148	213	2170	365	3720	369	37.7	74.6	22.1	
45	0.111	0.0158	230	2350	426	4340	563	57.4	116	34.4	
58	0.141	0.0205	518	5290	904	9230	838	85.4	201	59.6	
65	0.160	0.0185	556	5670	1030	10500	1525	156	331	108	

設計指南

安裝及傳動轉矩

輸出凸緣(CRB)端的安裝及傳動轉矩

表 154 -2


型號		25	32	40	45	58	65
螺栓支數		10	10	12	12	8	12
螺栓尺寸		M6	M8	M8	M10	M16	M14
安裝 P.C.D	mm	47	62	72	84	104	120
螺栓鎖緊轉矩	N·m	18.4	45	45	88	382	246
\$於1主或其余·半等為2	kgf⋅m	1.88	4.6	4.6	9.0	39.0	25.1
螺栓傳動轉矩	N⋅m	448	1090	1519	2778	6211	7900
	kgf·m	46	111	155	283	634	806

輸入凸緣端的安裝及傳動轉矩

表 154 -3

型號		25	32	40	45	58	65
螺栓支數		10	12	10	12	12	8
螺栓尺寸		M5	M6	M8	M8	M10	M12
安裝 P.C.D	mm	96	125	144	164	206	236
螺栓鎖緊轉矩	N·m	9	15.3	37.2	37.2	73.5	128
	kgf⋅m	0.92	1.56	3.8	3.8	7.5	13.1
螺栓傳動轉矩	N·m	541	1194	2095	2863	5678	6312
	kgf·m	55	122	214	292	579	644

機械精度



						表 155 -1 單位:mm
型號記號	25	32	40	45		65
a	0.015	0.015	0.015	0.018	0.018	0.018
b	0.013	0.013	0.015	0.015	0.017	0.017
С	0.045	0.056	0.060	0.068	0.076	0.085
d	0.010	0.010	0.015	0.015	0.015	0.015
е	0.049	0.049	0.060	0.065	0.070	0.075
f	0.157	0.172	0.185	0.200	0.212	0.218
g	0.051	0.061	0.058	0.063	0.075	0.096

組裝精度

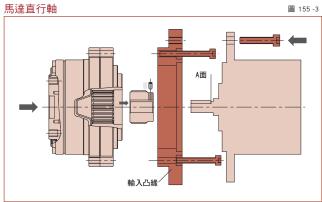
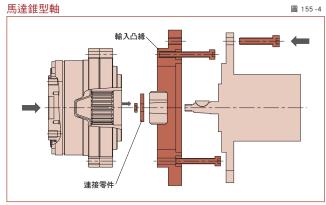

在組裝設計方面,為充分發揮模組型擁有的優異性能,應確保圖 155-2,表 155-2 所示之輸入凸緣建議精度。

表 155 -2 單位:mm



						#= 177 · 11111
型號記號	25	32		45		65
а	0.024	0.026	0.026	0.027	0.031	0.034
中心偏移	0.014	0.014	0.020	0.019	0.019	0.019

馬達安裝例

- 為確保組裝精度,建議以下安裝步驟。
- ①將齒條插入並連接馬達軸。
- ②將齒條安裝並連接模組。 ③以齒條為基準將馬達插入並連接模組。

※ 請客戶準備輸入凸緣及連接零件。

潤滑

減速機及交叉滾柱軸承使用的潤滑劑為 Harmonic 潤滑脂 ®4B No.2。 齒條部的潤滑劑由於已塗佈在模組側,因此在安裝時無需另行注入、塗佈。

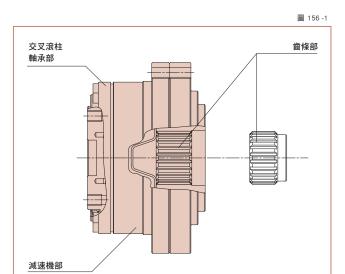


表 156-1 減速機部 Harmonic 潤滑脂® 4B No.2

交叉液柱軸承部 Harmonic 潤滑脂® 4B No.2

Molub Alloy 777

連續運轉時間

CSG-2UK 會受輸入軸 (高速旋轉側)上使用的油封、支撐軸承的影響而使內部溫度上升。連續運轉時請在表 156-3 所示運轉時間內運轉。表 156-3 的連續運轉時間是依照在表 156-2 的設定條件下,當模組內部溫度 80℃,油封部溫度上升至 100℃為止的時間而決定。連續運轉時,敬請參考表 156-3,勿超過上述溫度。

超過上述溫度時,需要檢討下述內容,請洽詢本公司。

- ■提早更換潤滑劑
- ■模組散熱對策
- ■針對模組內部壓力上升時的潤滑劑滲漏對策
- ■針對油封部的熱劣化對策

註:若為型號 25、32,則在設定條件下,模組內部溫度不會超過 80℃。

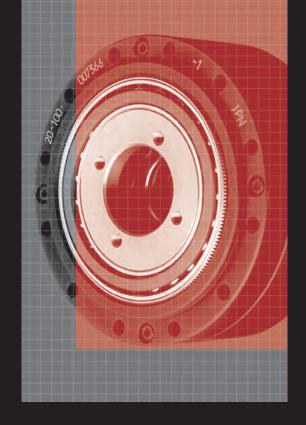
設置條件

表 156 -2

使用溫度(環境)	25°C
輸入轉速	2000r/min
散熱板	無(僅模組單獨散熱)

運轉時間

表 156 -3


Д.	일號 	無負載運轉時 連續運轉時間(分)
	25	- (註)
	32	- (註)
	40	35
	45	50
!	58	50
	65	50

注意項目

- ■輸入側無法容許徑向負載,請注意。
- ■產品表面未施以防鏽處理。

如需防鏽,應塗佈防鏽劑。

另外,如需本公司進行防鏽表面處理,請洽詢本公司。

CSD系列

Unit Type CSD	
	158
型式、記號	159
技術資料	159
	額定表159
	CSD-2UH外觀圖······· 161
	CSD-2UH尺寸表······· 161
	CSD-2UF外觀圖······· 162
	CSD-2UF尺寸表······· 162
	角傳動精度 163
	遲滯損失 163
	剛性 (彈簧常數) 163
	起動轉矩 163
	加速起動轉矩
	鬆脫轉矩 164
	屈曲轉矩 164
	無負載運轉轉矩 165
	效率特性 167
	主軸承規格 170
	機械精度 171
	組裝精度 172
	安裝及傳動轉矩 ······ 173
	潤 滑 174
	密封機構 174
應用案例	175

特徵!

■CSD 系列模組型

在近年來嶄露頭角的人形機器人、或航太領域等,持續追求「更輕」 的極限,而在有關液晶、半導體製造設備上,由於系統產線的高度 限制等背景,持續追求「更薄」的極限。

將 Harmonic Drive® 的輕量小型極致化的 CSD 系列,回應市場的需求,繼承原有產品優越的性能,並實現了大膽的形狀。

CSD 系列的特徵

- ■設計輕巧、簡單
- ■中空結構
- ■高力矩容量
- ■輸出端軸承的負載容量提升

CSD 系列模組型的結構 ■ 158-1

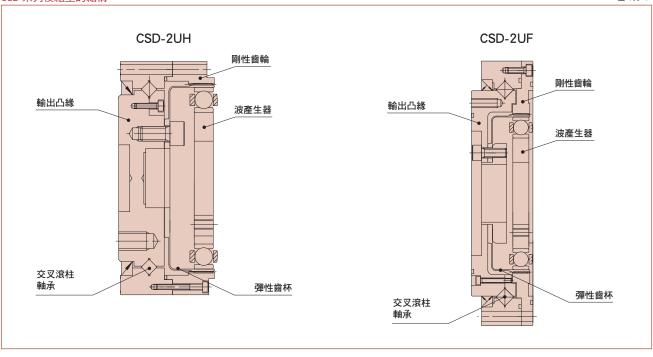


表 159 -1

型式、記號■

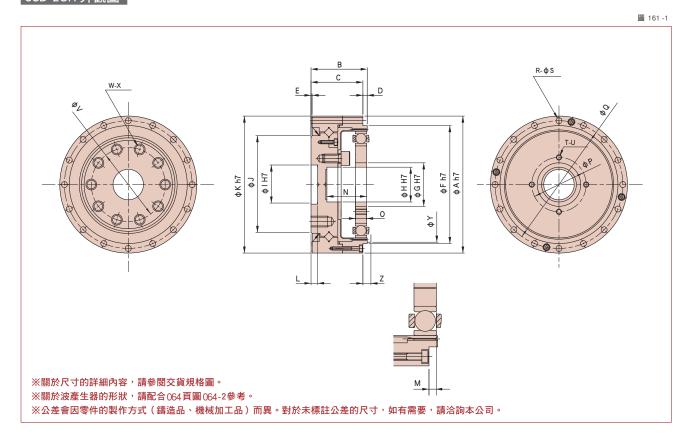
機種名稱	型號		減速比 (註)				型式	特殊規格
	14	50	80	100	_	_		
	17	50	80	100	120	_	2UH:模組型	
CCD: 47 徳刊 17 14 60	20	50	80	100	120	160	(型號 14 ~ 50)	
CSD:超薄型杯狀的 Harmonic Drive®	25	50	80	100	120	160	2UF:利用中空孔結構提升主軸承容	無記載:標準品 SP:形狀或性能等特殊規格
Hamoric Brive	32	50	80	100	120	160	量的類型	OI · NOINSKITHE 410 MARTIN
	40	50	80	100	120	160	(型號 14 ~ 40)	
	50	50	80	100	120	160		

⁽註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

技術資料 ===

額定表

													表 159 -2
型號 減速比		輸入 2000r/min 時的額定轉矩			亭止時的 :值轉矩		載轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min	慣性力矩	
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑脂	潤滑脂	I (×10 ⁻⁴ kg·m²)	J (X10 ⁻⁵ kgf·ms ²)
	50	3.7	0.38	12	1.2	4.8	0.49	24	2.4				
14	80	5.4	0.55	16	1.6	7.7	0.79	35	3.6	8500	3500	0.021	0.021
	100	5.4	0.55	19	1.9	7.7	0.79	35	3.6				
	50	11	1.1	23	2.3	18	1.8	48	4.9				
17	80	15	1.5	29	3.0	19	1.9	61	6.2	7300 3500	2500	0.054	0.055
17	100	16	1.6	37	3.8	27	2.8	71	7.2	7300	3300	0.054	0.055
	120	16	1.6	37	3.8	27	2.8	71	7.2				
	50	17	1.7	39	4.0	24	2.4	69	7.0				
[80	24	2.4	51	5.2	33	3.4	89	9.1]			
20	100	28	2.9	57	5.8	34	3.5	95	9.7	6500	3500	0.090	0.092
ſ	120	28	2.9	60	6.1	34	3.5	95	9.7	1			
ĺ	160	28	2.9	64	6.5	34	3.5	95	9.7	1			
	50	27	2.8	69	7.0	38	3.9	127	13				0.288
ĺ	80	44	4.5	96	9.8	60	6.1	179	18	1			
25	100	47	4.8	110	11	75	7.6	184	19	5600	3500	0.282	
Ī	120	47	4.8	117	12	75	7.6	204	21	1			
ĺ	160	47	4.8	123	13	75	7.6	204	21	ĺ			
	50	53	5.4	151	15	75	7.6	268	27				
ĺ	80	83	8.5	213	22	117	12	398	41	1			
32	100	96	9.8	233	24	151	15	420	43	4800	3500	1.09	1.11
ĺ	120	96	9.8	247	25	151	15	445	45	1			
ĺ	160	96	9.8	261	27	151	15	445	45	1			
	50	96	9.8	281	29	137	14	480	49				
ĺ	80	144	15	364	37	198	20	686	70	ĺ			
40	100	185	19	398	41	260	27	700	71	4000	3000	2.85	2.91
Ì	120	205	21	432	44	315	32	765	78				
	160	206	21	453	46	316	32	765	78				
	50	172	18	500	51	247	25	1000	102				
Ì	80	260	27	659	67	363	37	1300	133	1			
50	100	329	34	686	70	466	48	1440	147	3500	2500	8.61	8.78
Ì	120	370	38	756	77	569	58	1565	160				
Ì	160	370	38	823	84	590	60	1715	175	1			

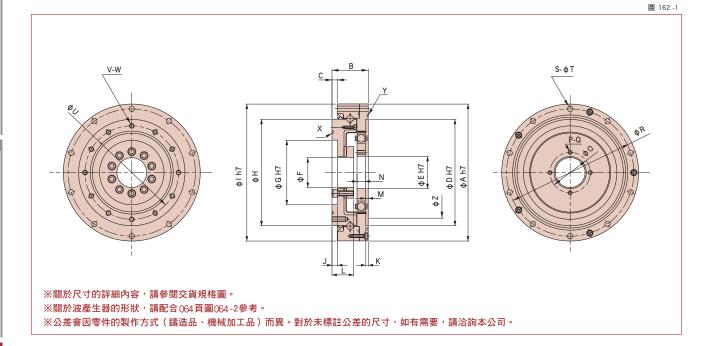

(註) 慣性力矩 I= 1/4 GD²

■CSD-2UF 表 160 -1

型號	減速比		000r/min i定轉矩		亭止時的 :值轉矩		或轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min	慣性	力矩	
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑脂	潤滑脂	I (×10 ⁻⁴ kg·m²)	J (X10 ⁻⁵ kgf·ms²)	
	50	3.7	0.38	12	1.2	4.8	0.49	24	2.4					
14	80	5.4	0.55	16	1.6	7.7	0.79	35	3.6	8500	3500	0.021	0.021	
	100	5.4	0.55	19	1.9	7.7	0.79	35	3.6					
	50	11	1.1	23	2.3	18	1.8	48	4.9					
17	80	15	1.5	29	3.0	19	1.9	61	6.2	7300	3500	0.054	0.055	
''	100	16	1.6	37	3.8	27	2.8	71	7.2	1500	3300	0.034	0.055	
	120	16	1.6	37	3.8	27	2.8	71	7.2					
	50	17	1.7	39	4.0	24	2.4	69	7.0					
	80	24	2.4	51	5.2	33	3.4	89	9.1	ļ				
20	100	28	2.9	57	5.8	34	3.5	95	9.7	6500	3500	0.090	0.092	
	120	28	2.9	60	6.1	34	3.5	95	9.7					
	160	28	2.9	64	6.5	34	3.5	95	9.7					
	50	27	2.8	69	7.0	38	3.9	127	13	5600 3500				
	80	44	4.5	96	9.8	60	6.1	179	18					
25	100	47	4.8	110	11	75	7.6	184	19		5600	3500	0.282	0.288
	120	47	4.8	117	12	75	7.6	204	21			1		
	160	47	4.8	123	13	75	7.6	204	21					
	50	53	5.4	151	15	75	7.6	268	27					
	80	83	8.5	213	22	117	12	398	41	ļ				
32	100	96	9.8	233	24	151	15	420	43	4800	3500	1.09	1.11	
	120	96	9.8	247	25	151	15	445	45	ļ				
	160	96	9.8	261	27	151	15	445	45					
	50	96	9.8	281	29	137	14	480	49					
	80	144	15	364	37	198	20	686	70					
40	100	185	19	398	41	260	27	700	71	4000	3000	2.85	2.91	
	120	205	21	432	44	315	32	765	78					
	160	206	21	453	46	316	32	765	78					

(註)慣性力矩 I= 1/4 GD²

CSD-2UH 外觀圖



CSD-2UH 尺寸表

表 161 -1 單位:mm

							単位:mm
型號記號	14	17	20	25	32	40	50
φA h7	55	62	70	85	112	126	157
В	25	26.5	29.7	37.1	43	51.7	62.5
С	23	24.5	27.7	34.1	40	47.7	58.5
D	2	2	2	3	3	4	4
E	0.5	0.5	0.5	0.5	1	1	1
φF h7	42.5	49.5	58	73	96	108.5	136
φG H7	11	15	20	24	32	40	50
фН Н7	11	11	16	20	30	32	44
ф1 Н7	12	14	18	24	32	36	48
фЈ	31	38	45	58	78	90	112
φK h7	55	62	70	85	112	126	157
L	5	5	5	5.5	5.5	6	7
М	1.7 0	1.7 0	1.7 0	2.6 _0.2	2.5 0	3.4 _0.2	3.2 0
N	14.8	16.3	18.8	23.7	30.6	36.5	44.3
0	4 _0.1	5 0	5.2 _{-0.1}	6.3 -0.1	8.6 -0.1	10.3 _0.1	12.7 0
φP (PCD)	17	21	26	30	40	50	60
φQ (PCD)	49	56	64	79	104	117.5	147
R	6	10	12	18	18	18	22
φS	3.4	3.4	3.4	3.4	4.5	5.5	6.6
Т	4	4	4	4	4	4	4
U	M3	M3	M3	M3	M4	M5	M6
φV (PCD)	25	27	34	42	57	72	88
W	10	8	8	8	10	10	10
X	M3×7	M5×8	M6×9	M8×12	M8×12	M10×15	M12×18
фΥ	38	45	53	66	86	106	133
Z	3	3	3.5	4.5	5	6.5	7.5
重量 (kg)	0.35	0.46	0.65	1.2	2.4	3.6	6.9

CSD-2UF 外觀圖

CSD-2UF 尺寸表

表 162 -1 單位:mm φA h7 70 80 90 110 142 170 22.7 31.5 37 45 В 22 26.8 С 0.5 0.5 2.3 2.1 2.8 6.5 фD Н7 48 56 64 80 106 132 фЕ Н7 11 15 20 24 32 40 9 9 18 22 29 37 ΦF ΦG H7 30 34 40 52 70 80 59 φН 49 69 84 110 132 φl h7 70 80 90 110 142 170 4.9 5.4 4.8 5.5 6 7 K 2.5 2.5 2.5 3 3 3 12.9 13.4 16.8 19.5 22 27 2.8 +0.1 2.8 +0.1 2.8 +0.2 3.4 +0.2 3.5 +0.2 3.6 +0.1 М 6.3 -0. 8.6 -0.1 Ν 4 _0. 5 -0. 5.2 -0.1 10.3 _0. φ0 (PCD) 21 30 40 4 4 4 4 4 4 M5 Q М3 М3 М3 М3 M4 φR (PCD) 64 74 84 102 132 158 6 8 8 10 10 10 3.4 5.5 3.4 3.4 4.5 6.6 φТ φU (PCD) 42 50 60 73 96 116 10 12 W M3×5 M3×6 M4×8 M5×8 M6×10 M6×10 34.5×0.8 38.0×1.2 S48 S60 S80 S100 Υ 49.0×1.50 59.4×1.20 S70 S85 S115 S140 φΖ 45 53 106 66 86 重量(kg) 0.50 0.66 0.94 1.7 3.3 5.7

角傳動精度 (相關用語說明·請參閱「技術資料」內容。)

								₹₹ Ib3 -I
型	· 號	14	17	20	25	32	40	50
各/ 南新記学	×10⁴rad	4.4	4.4	2.9	2.9	2.9	2.9	2.9
角傳動誤差	arc-min	1.5	1.5	1.0	1.0	1.0	1.0	1.0

遲滯損失 (相關用語說明,請參閱「技術資料」內容。)

表 163 -2

減速比	型號單位	14	17	20	25	32	40	50
50	×10⁴rad	7.3	5.8	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.5	2.0	2.0	2.0	2.0	2.0	2.0
80 以上	×10⁴rad	5.8	2.9	2.9	2.9	2.9	2.9	2.9
80 以上	arc-min	2.0	1.0	1.0	1.0	1.0	1.0	1.0

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

表 163 -3

									26 100 -0
項目		型號單位	14	17	20	25	32	40	50
	T ₁	N⋅m	2.0	3.9	7.0	14	29	54	108
	Ιı	kgf·m	0.2	0.4	0.7	1.4	3.0	5.5	11
	T ₂	N⋅m	6.9	12	25	48	108	196	382
	12	kgf·m	0.7	1.2	2.5	4.9	11	20	39
	K ₁	×10⁴N·m/rad	0.29	0.67	1.1	2.0	4.7	8.8	17
	K1	kgf·m/arc-min	0.085	0.2	0.32	0.6	1.4	2.6	5.0
	K ₂	×10⁴N·m/rad	0.37	0.88	1.3	2.7	6.1	11	21
	K2	kgf·m/arc-min	0.11	0.26	0.4	0.8	1.8	3.4	6.3
減速比	K ₃	×10⁴N·m/rad	0.47	1.2	2.0	3.7	8.4	15	30
50	K3	kgf·m/arc-min	0.14	0.34	0.6	1.1	2.5	4.5	9.0
	θ1	X10⁴rad	6.9	5.8	6.4	7.0	6.2	6.1	6.4
	01	arc-min	2.4	2.0	2.2	2.4	2.1	2.1	2.2
	θ2	X10⁴rad	19	14	19	18	18	18	18
	02	arc-min	6.4	4.6	6.6	6.1	6.1	5.9	6.2
	K ₁	×10⁴N·m/rad	0.4	0.84	1.3	2.7	6.1	11	21
	K ₁	kgf·m/arc-min	0.12	0.25	0.4	0.8	1.8	3.2	6.3
	K ₂	×10⁴N·m/rad	0.44	0.94	1.7	3.7	7.8	14	29
	K2	kgf·m/arc-min	0.13	0.28	0.5	1.1	2.3	4.2	8.5
減速比	1/	×10⁴N·m/rad	0.61	1.3	2.5	4.7	11	20	37
80 以上	K ₃	kgf·m/arc-min	0.18	0.39	0.75	1.4	3.3	5.8	11
		×10⁴rad	5.0	4.6	5.4	5.2	4.8	4.9	5.1
	θ1	arc-min	1.7	1.6	1.8	1.8	1.7	1.7	1.7
	θ2	×10⁴rad	16	13	15	13	14	14	13
	92	arc-min	5.4	4.3	5.0	4.5	4.8	4.8	4.6

⁽註)本表數值為參考值。下限值約為標示數值的 80%。

起動轉矩 (相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 163 -4 單位:cN·m

CSD-2UH							表 163 -4 單位:cN·m
型號減速比	14	17	20	25	32	40	50
50	4.4	6.7	8.9	16	32	55	102
80	3.2	4.4	5.7	10	22	36	68
100	2.8	3.8	5.1	9.1	20	32	60
120	_	3.6	4.5	8.2	17	29	56
160	_	-	3.9	7.2	15	26	47

CSD-2UF						表 163 -5 單位:cN·m
型號減速比	14	17	20	25	32	40

型號減速比	14	17	20	25	32	40
50	5.3	7.5	9.7	17	34	58
80	3.8	4.9	6.2	11	23	37
100	3.2	4.2	5.5	9.6	21	33
120	_	4.0	4.8	8.6	18	30
160	_	_	4.1	7.4	16	27

加速起動轉矩	加速起動轉矩 (相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。										
■ CSD-2UH											
型號減速比	14	17	20	25	32	40	50				
50	2.9	4.3	5.2	9.5	19	33	61				
80	2.9	4.1	5.7	10	21	35	66				
100	3.5	4.6	6.0	11	23	38	71				
120	_	5.1	6.4	12	24	41	78				
160	_	_	7.4	13	30	48	89				

CSD-2UF	表 164 -2 單位:N·m					
型號減速比	14	17	20	25	32	40
50	3.3	4.7	5.6	10	20	34
80	3.3	4.5	6.1	10	22	36
100	3.9	5.0	6.4	11	24	39
120	_	5.6	6.8	12	25	42
160	_	_	7.8	14	31	49

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 164 -3 單位:N·m

型號減速比	14	17	20	25	32	40	50
50	88	150	220	450	980	1800	3700
80	110	200	350	680	1400	2800	5400
100	84	160	260	500	1000	2100	4100
120		120	240	470	980	1900	3800
160	_	_	220	450	980	1800	3600

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 164 -4 單位:N·m

							—
型號	14	17	20	25	32	40	50
全減速比	190	330	560	1000	2200	4300	8000

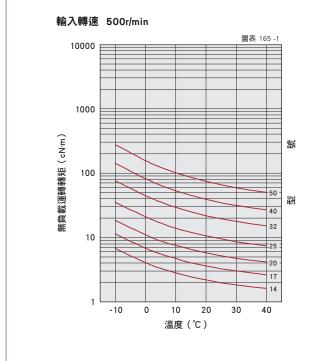
無負載運轉轉矩

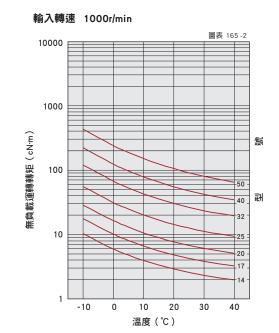
無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸入端(高速軸端)的轉矩。

 測量條件
 表 165 -1

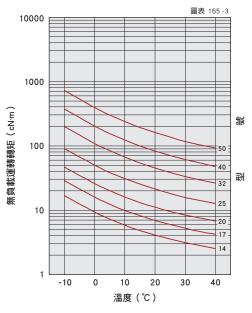
 減速比 100

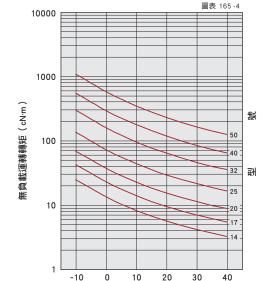
 潤滑條件
 潤滑脂


 名稱
 Harmonic 潤滑脂 * SK-1A (型號 20 以上) Harmonic 潤滑脂 * SK-2 (型號 14 \ 17)

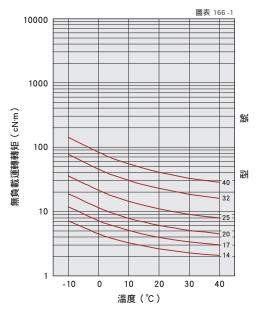

 塗佈量
 適當塗佈量

轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值

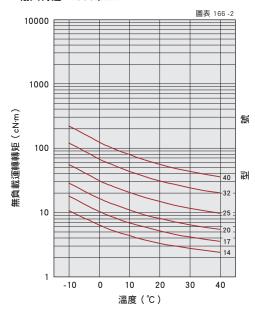

■減速比 100 的無負載運轉轉矩


CSD-2UH

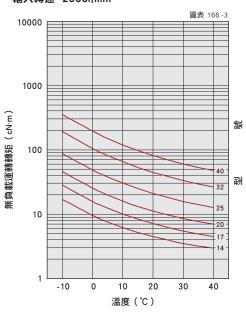
輸入轉速 2000r/min

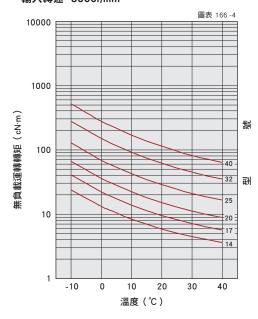

温度(℃)

輸入轉速 3500r/min


※本圖表數值為平均值X。σ≒X×0.2

CSD-2UF


輸入轉速 500r/min


輸入轉速 1000r/min

輸入轉速 2000r/min

輸入轉速 3500r/min

※本圖表數值為平均值X。σ≒X×0.2

■減速比別修正量

模組型的無負載運轉轉矩會因減速比而變化。圖表 165-1 ~ 166-4 為減速比 100 時的數值。

關於其他減速比,請加上表 166-1 所示修正量後計算。

無負載運轉轉矩修正量

表 166 -1 單位:cN·m

一元 子が王 ナサナサ	ハーシエ	<u> </u>	華原・(14111					
減速比					2UF			
型號	50	80	120	160	50	80	120	160
14	+0.93	+0.2	_	_	+1.4	+0.3	_	_
17	+1.5	+0.3	-0.2	_	+1.8	+0.4	-0.3	_
20	+2.3	+0.4	-0.3	-0.70	+2.6	+0.5	-0.4	-0.84
25	+3.8	+0.7	-0.5	-1.2	+4.3	+0.8	-0.6	-1.3
32	+7.3	+1.3	-0.9	-2.2	+8.2	+1.5	-1.1	-2.5
40	+12	+2.1	-1.5	-3.6	+14	+2.5	-1.8	-4.2
50	+22	+3.8	-2.7	-6.4		_	_	_

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑劑種類與使用量)

測量條件 表 167-1 以建議組裝精度組裝後測量 額定表所示的額定轉矩(159頁) 負載轉矩 ※ 當負載轉矩小於額定轉矩時,效率值將下降。 請參照下列效率修正係數。 Harmonic 潤滑脂® SK-1A(型號 20 以上) Harmonic 潤滑脂® SK-2(型號 14、17) 潤滑條件 潤滑脂 適當塗佈量

■效率修正係數與效率修正量

■效率修正公式

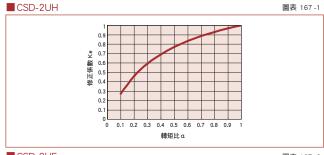
請由公式 167-1 的公式計算出「負載轉矩的效率修正係數」與「型 號的效率修正量」產生的效率。

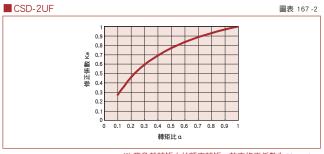
公式 公式 167-1

效率= Ke× (ηR+ηe)

■依據負載轉矩的效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 167-1、2 計算修正係數 Ke,參考效率修正公式計算效率。


公式的記號


表 167-2

η	效率	_
Ke	效率修正係數	圖表 167-1、2
η _R	額定轉矩時的效率	圖表 168-1 ~ 169-5
ηе	效率修正量	表 167-3、4

效率修正係數

CSD-2UH

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke = 1。

■不同型號的效率修正量

CSD-2UH、CSD-2UF 的輸入端裝有支撐軸承、油封。這些的影響程 度會因型號而異。

各型號對額定轉矩時的效率修正量 ne以表 167-3、4計算。

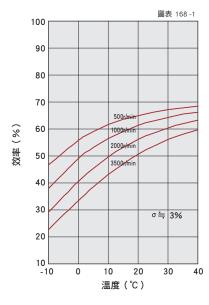
各型號的效率修正量單位

CSD-2UH

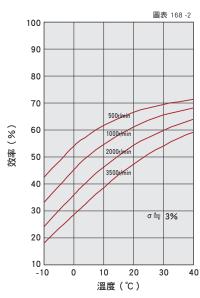
	160	
	_	
2	-	
7	1.3	

單位:%

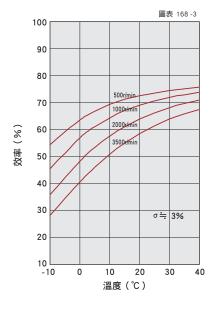
減速比型號				120	160					
14	0.0	3.1	0.0	_	_					
17	3.0	2.3	0.4	-2.2	-					
20	2.4	2.3	1.8	-0.7	1.3					
25	-0.3	1.8	-0.1	-2.7	-0.7					
32	-1.4	-0.1	-0.8	-3.4	-1.6					
40	-1.4	-0.9	0.0	-0.9	1.0					
50	-2.4	-1.9	-1.2	-1.9	0.0					
■CSD-2UF										

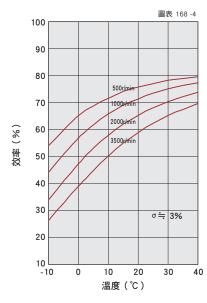

CSD-2UF

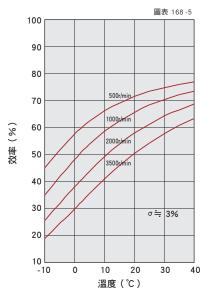
減速比 型號	50		100	120	160
14	0.0	2.9	0.0	_	_
17	1.9	1.6	-0.2	-2.8	-
20	1.8	1.9	1.5	-0.9	1.1
25	-0.1	1.6	-0.3	-2.8	-0.8
32	-1.9	-0.3	-0.9	-3.5	-1.6


■額定轉矩時的效率

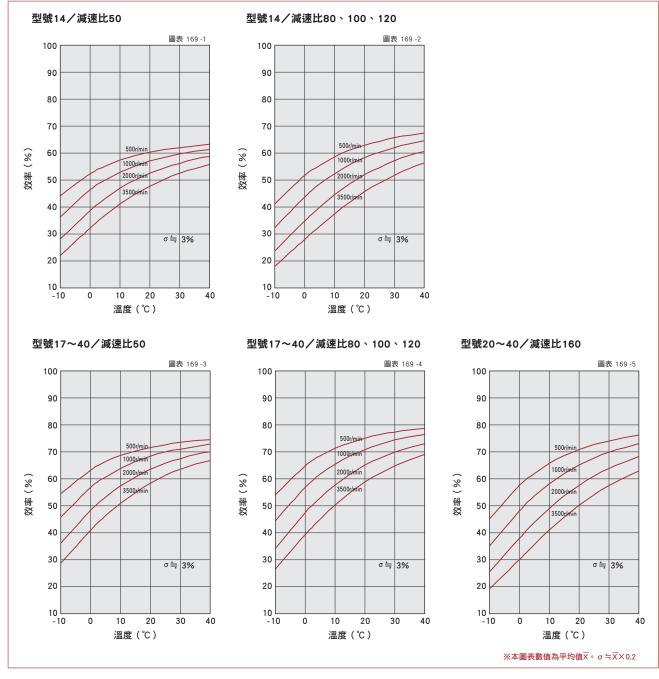
CSD-2UH


型號14/減速比50


型號14/減速比80、100、120


型號17~50/減速比50

型號17~50/減速比80、100、120



型號20~50/減速比160

※本圖表數值為平均值X。σ≒X×0.2

主軸承規格

模組型在外部負載的直接支撐組裝了精密交叉滾柱軸承(輸出凸緣部)。 為充分發揮模組型的性能,請檢查最大負載力矩負重、交叉滾柱軸承壽命以及靜態安全係數。 各數值的公式請參閱 030 ~ 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重(M max)

求出最大負載力矩負重(M max) 量大負載力矩負重(M max)≦容許力矩(Mc)

②確認壽命

求出平均徑向負載(Frav)、平均軸向負載(Frav) 求出徑向負載係數(X)、軸向負載係數(Y) 計算並確認壽命

③確認靜態安全係數

求出靜態等價徑向負載(Po) 確認靜態安全係數(fs)

■主軸承規格

交叉滾柱軸承的規格,如表 170-1、2 所示。

C 3D												£K 110-1
	轉子節圓直徑	偏移量		基本額	定負載		容許力矩負重 Mc		力矩剛性 Km		容許	容許
型號	dp	R m	基本動額定負載C		基本靜額	基本靜額定負載 Co			×10 ⁴	kgf·m	軸向 負載 Fa	徑向 負載 Fr
	m		×10²N	kgf	×10²N	kgf	N·m	kgf⋅m	N·m ∕ rad	∕ arc-min	×10²N	X10 ² N
14	0.035	0.0095	47	480	60.7	620	41	4.2	4.38	1.3	10.1	6.74
17	0.0425	0.0099	52.9	540	75.5	770	64	6.5	7.75	2.3	11.3	7.58
20	0.050	0.0102	57.8	590	90	920	91	9.3	12.8	3.8	12.4	8.28
25	0.062	0.0130	96.0	980	151	1540	156	16	24.2	7.2	20.5	13.8
32	0.080	0.0144	150	1530	250	2550	313	32	53.9	16	32.1	21.5
40	0.096	0.0151	213	2170	365	3720	450	46	91	27	45.6	30.5
50	0.119	0.0192	348	3550	602	6140	759	77	171	51	74.4	49.9

_ COD	-201								4K 110 -Z			
	轉子節圓直徑	偏移量		基本額	定負載		容許力知	負重 Mc	力矩剛性 Km		容許	容許
型號	dp	R	基本動額定負載 C		基本靜額定負載 Co		Non		×10⁴	kgf⋅m	軸向 負載 Fa	徑向 負載 Fr
	m	m	×10²N	kgf	×10²N		N·m	kgf·m	N·m ∕ rad	/ arc-min	×10²N	×10²N
14	0.050	0.0118	57.8	590	90	920	91	9.3	12.8	3.8	12.4	8.28
17	0.060	0.0123	104	1060	163	1670	124	12.6	15.4	4.6	22.2	14.9
20	0.070	0.0128	146	1490	220	2250	187	19.1	25.2	7.5	31.2	20.9
25	0.085	0.0140	218	2230	358	3660	258	26.3	39.2	11.6	46.6	31.2
32	0.111	0.0168	382	3900	654	6680	580	59.1	100	29.6	81.7	54.7
40	0.133	0.0215	433	4410	816	8330	849	86.6	179	53.2	92.6	62.0

- (註)※基本動額定負載是指軸承的基本動額定壽命可達100萬次旋轉的一定靜止徑向負載。
 - ※基本靜額定負載是指在承受最大負載的轉動體與軌道的接觸部中央上,給予一定水準的接觸應力(4kN/mm²)之靜態負載。
 - ※ 容許力矩負重是指輸出軸承上可施加的最大力矩負重,此範圍內的數值可以確保基本性能並可動作。
 - ※ 力矩剛性的值為參考值。下限值約為標示數值的 80%
 - ※ 容許徑向負載、容許軸向負載,係指主軸承受單純徑向負載或軸向負載其中之一時,可滿足減速機壽命的數值。(徑向負載為 Lr+R=0mm、軸向負載為 La=0mm 時)

機械精度

模組型的機械精度。

輸入:波產生器 輸出:剛性齒輪 固定:彈性齒杯

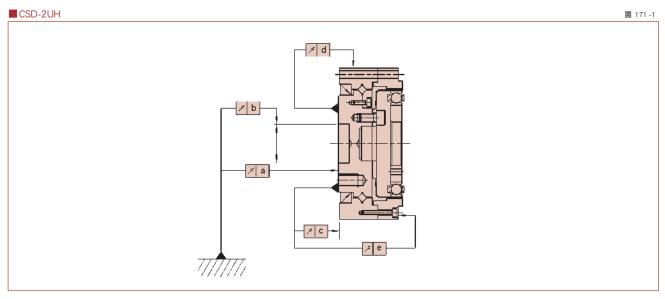


表 171 -1 單位:mm

							事位・川川
型號記號	14	17	20	25	32	40	50
а	0.010	0.010	0.010	0.015	0.015	0.015	0.018
b	0.010	0.012	0.012	0.013	0.013	0.015	0.015
С	0.007	0.007	0.007	0.007	0.007	0.007	0.007
d	0.010	0.010	0.010	0.010	0.010	0.015	0.015
е	0.025	0.025	0.025	0.035	0.037	0.037	0.040

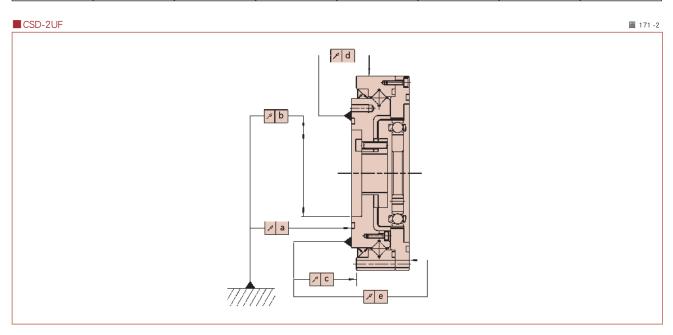
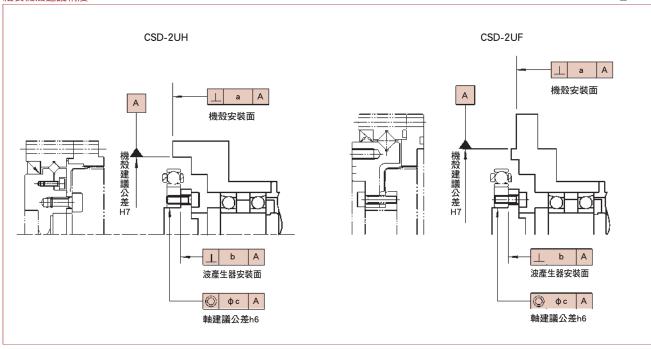


表 171 -2 單位:mm

型號 記號 14		17	20	25	32	40
a	0.010	0.010	0.010	0.015	0.015	0.015
b	0.010	0.010	0.010	0.010	0.013	0.013
С	0.010	0.010	0.010	0.010	0.013	0.013
d	0.010	0.010	0.010	0.010	0.013	0.013
е	0.031	0.031	0.031	0.041	0.047	0.047


組裝精度

關於組裝設計,若為導致安裝面變形等異常組裝,則可能造成性能降低。

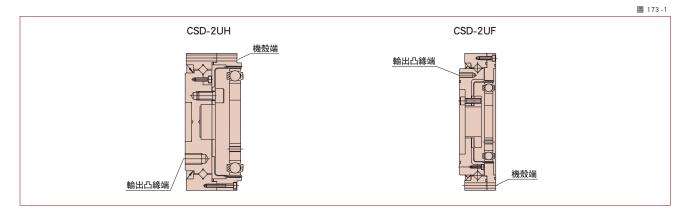
為充分發揮 Harmonic Drive® 的優異性能,請注意以下事項,保持圖 172-1 及表 172-1、2 所示組裝機殼建議精度,並採用不會漏油的設計。

- ●安裝面彎曲、變形
- ●咬入異物
- ●安裝孔螺孔部週邊的毛邊、隆起、位置度異常
- ●安裝接口部倒角不足
- ●安裝接口部真圓度異常

組裝機殼建議精度 圖 172-1

CSD-2UH 組裝機殼建議精度

表 172 -1 單位:mm


1							
型號記號	14	17	20	25	32	40	50
a	0.011	0.015	0.017	0.024	0.026	0.026	0.028
b	0.008	0.010	0.012	0.012	0.012	0.012	0.015
фс	0.016	0.018	0.019	0.022	0.022	0.024	0.030

CSD-2UF 組裝機殼建議精度

表 172 -2 單位:mm

1222417077	1127 NAME AND 1112											
型號記號	14	17	20	25	32	40						
a	0.011	0.015	0.017	0.024	0.026	0.026						
b	b 0.008		0.012	0.012	0.012	0.012						
фс	0.016	0.018	0.019	0.022	0.022	0.024						

安裝及傳動轉矩

■輸出凸緣端的安裝及傳動轉矩

CSD-2UH

■ CSD-2UH 表 173 -1											
項目	型號		17	20	25	32	40	50			
螺栓支數		10	8	8	8	10	10	10			
螺栓尺寸		M3	M5	M6	M8	M8	M10	M12			
螺栓鎖固 P.C.D.	mm	25	27	34	42	57	72	88			
螺栓鎖緊	N⋅m	2.0	9.0	15.3	37	37	74	128			
轉矩	kgf⋅m	0.20	0.92	1.56	3.8	3.8	7.5	13.1			
螺栓	N·m	52	121	216	485	823	1660	2930			
傳動轉矩	kgf⋅m	5.3	12.4	22.1	49.5	84.0	169	298			

CSD-2UF 表 173 -2

型號項目		14	17	20	25	32	40
螺栓支數		8	10	8	8	8	12
螺栓尺寸		M3	M3	M4	M5	M6	M6
螺栓鎖固 P.C.D.	mm	42	50	60	73	96	116
螺栓鎖緊	N·m	2.0	2.0	4.5	9.0	15.3	15.3
轉矩	kgf⋅m	0.20	0.20	0.46	0.9	1.56	1.56
螺栓	N·m	70	104	168	328	612	1100
傳動轉矩	kgf⋅m	7.1	10.6	17.2	33.5	62.4	112

■機殼端的安裝及傳動轉矩

CSD-2UH 表 173 -3

項目	型號	14	17	20	25	32	40	50
螺栓支數		6	10	12	18	18	18	22
螺栓尺寸		M3	M3	M3	M3	M4	M5	M6
螺栓鎖固 P.C.D.	mm	49	56	64	79	104	117.5	147
螺栓鎖緊	N⋅m	2.0	2.0	2.0	2.0	4.5	9.0	15.3
轉矩	kgf∙m	0.20	0.20	0.20	0.20	0.46	0.9	1.56
螺栓	N⋅m	61	116	160	296	658	1180	2570
傳動轉矩	kgf∙m	6.2	11.9	16.3	30.0	67.0	121	262

CSD-2UF 表 173 -4

項目	型號	14	17	20	25	32	40
螺栓支數		6	8	8	10	10	10
螺栓尺寸		M3	M3	M3	M4	M5	M6
螺栓鎖固 P.C.D.	mm	64	74	84	102	132	158
螺栓鎖緊	N·m	2.0	2.0	2.0	4.5	9.0	15.3
轉矩	kgf⋅m	0.20	0.20	0.20	0.46	0.9	1.56
螺栓	N·m	80	123	140	358	742	1250
傳動轉矩	kgf⋅m	8.2	12.6	14.3	36.6	75.7	127

(表 173-1~173-4/註)

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建蠶螺栓 螺栓名稱:JIS B 1176內六角螺栓 強度區分:JIS B 1051 12.9以上 3. 轉矩係數:K=0.2 4. 鎖緊係數:A=1.4

- 5. 接合面摩擦係數:μ=0.15

潤 滑

CSD 系列模組型的標準潤滑方式為潤滑脂潤滑。出貨前已封入潤滑 脂,組裝時無需另行注入、塗佈。

以潤滑脂潤滑時,為了讓運轉中潤滑脂不致四下飛濺而殘留於 Harmonic Drive®內部,Harmonic Drive®與機殼內壁之間應盡可能符 合建議尺寸。如果無法確保建議尺寸,請洽詢本公司。

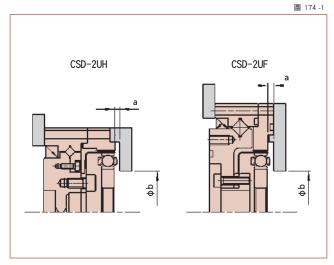


表 174 -1

_								≠ l
記	型號 B號	14	17		25	32	40	50
Г	a [*]	1	1	1.5	1.5	2	2.5	3.5
	a**	3	3	4.5	4.5	6	7.5	10.5
Г	фb +0.5	16	26	30	37	37	45	45

※ 波產生器朝下時 ※※ 波產生器朝上時

■其他注意事項

波產生器朝上或朝下(參閱048頁、圖048-3)使用時,請在波產 生器與輸入蓋(馬達凸緣)的間隙上充分填满潤滑脂。

■各型號適用的潤滑脂

根據型號,適用不同的潤滑脂。請參閱下列潤滑脂適用表。

一般情況,建議使用 SK-1A 及 SK-2。

潤滑脂的詳情,請參閱 016 頁「技術資料」內容。

泗	沿	R比	油	\mathbf{H}	ᆂ

閏/7 指適用表 表 174-2										
型號	14	17								
SK-1A	_	-	0	0	0	0	0			
SK-2	0	0	Δ	Δ	Δ	Δ	Δ			
4BNo.2										

※○:標準潤滑脂

△:次標準潤滑脂

□:長使用壽命以及高負載情況的建議潤滑脂

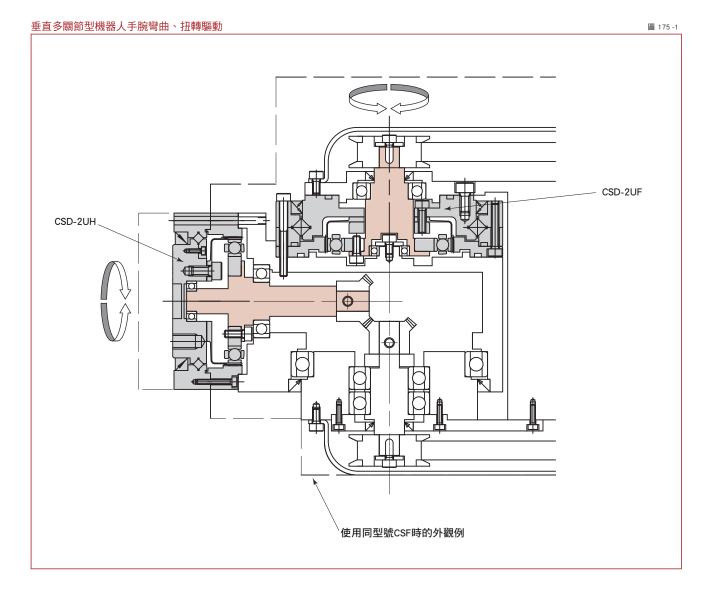
密封機構

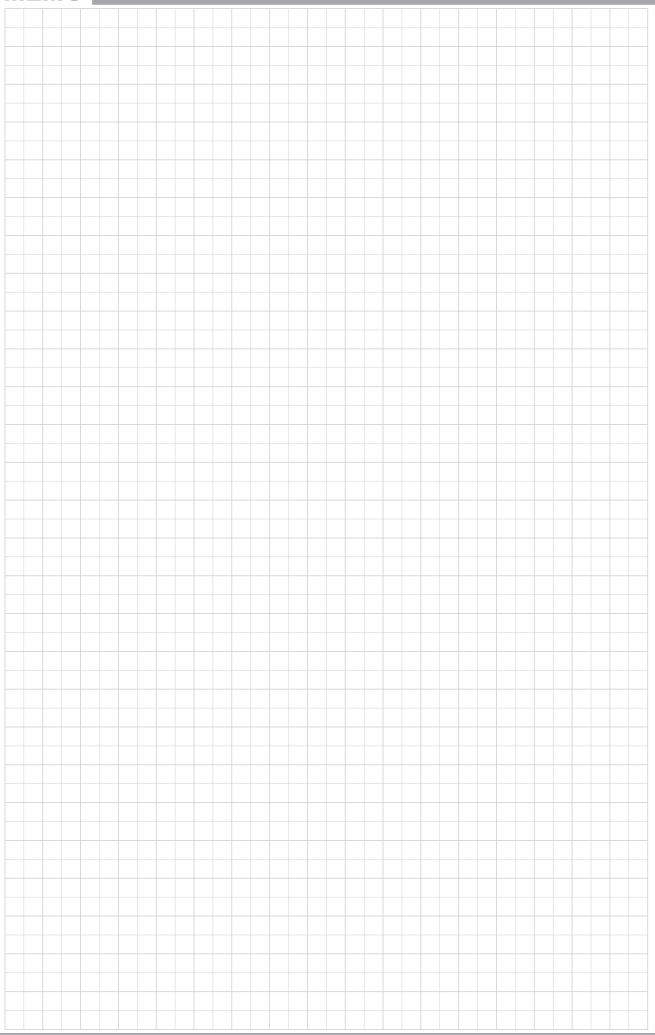
為防止潤滑脂滲漏並維護 Harmonic Drive® 的高度耐久性,需要下列 模組型的密封處與建議密封方式 密封機構。

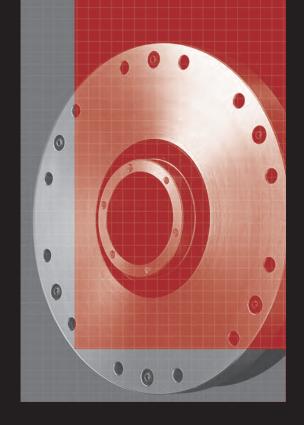
· 旋轉滑動部······· 油封(含彈簧)。此時請注意 勿使軸側出現損傷等不良。

· 凸緣重合面、嵌合部······· 〇型環、密封劑。此時請注意 平面不均整、O型環遭咬入等

具封止效果的螺絲固定劑(建

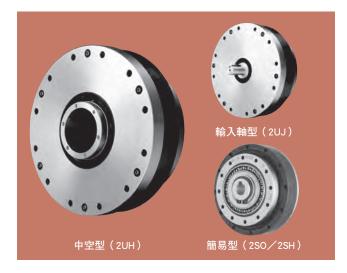

議使用LOCTITE 242)或密封


(註)尤其是使用 Harmonic 潤滑脂 ®4B No.2 時,必須嚴格採用前述機構。


表 174 -3

	需要密封處	建議密封方式			
輸出端	輸出凸緣中央的貫穿孔及輸出凸緣 重合面	使用 O 型環(本公司產品隨附)			
	安裝螺絲處	具封止效果的螺絲固定劑 (建議使用 LOCTITE 242)			
	凸緣重合面	使用 O 型環(本公司產品隨附)			
輸入端	馬達輸出軸	請選擇附油封的型號。 無油封時,必須採用馬達安裝凸緣可 安裝油封的結構。			

應用案例■



SHG/SHF系列

Unit Type SHG	S/SHF		
特 徵	178	技術資料 輸入軸型 (2UJ)1	97
	179	• \$20152(11 155) (12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	180	輸入軸型 (2UJ) 尺寸表···············1	
	額定表180	輸入軸型 (2UJ) 質 量 ················ 1	
	角傳動精度······ 182	輸入軸型 (2UJ) 慣性力矩 ············· 1	
	遲滯損失 182	輸入軸型 (2UJ) 起動轉矩 ············· 1	
	最大背隙量······182	輸入軸型 (2UJ) 加速起動轉矩 ········· 1	
	剛性 (彈簧常數) ······· 182	無負載運轉轉矩1	
	鬆脫轉矩·······183	效率特性 2	00
	屈曲轉矩 183	輸入軸型 (2UJ) 輸入軸的容許負載… 2	01
	主軸承規格······· 184	技術資料 簡易模組型 (2SO、2SH)2	02
	機械精度 185	簡易模組型 (2SO) 外觀圖············· 2	02
	模組型的旋轉方向與減速比 186	簡易模組型 (2SO) 尺寸表············· 2	03
設計指南	187	簡易模組型 (2SO) 質 量················· 2	03
	潤 滑 ······ 187	簡易模組型 (2SH) 外觀圖 ············· 2	04
	防鏽對策	簡易模組型 (2SH) 尺寸表 ·············· 2	05
	組裝注意事項188	簡易模組型 (2SH) 質 量················ 2	06
	安裝及傳動轉矩 ······· 188	潤 滑 2	06
	安裝注意事項 ······· 190	簡易模組型組裝精度2	07
技術資料 中空型	(2UH) ·····191	組裝注意事項	07
	中空型 (2UH) 外觀圖······· 191	應用案例2	09
	中空型 (2UH) 尺寸表 191		
	中空型 (2UH) 質 量······· 192		
	中空型 (2UH) 慣性力矩 ······ 192		
	中空型 (2UH) 起動轉矩 ······ 192		
	中空型 (2UH) 加速起動轉矩········ 192		
	無負載運轉轉矩 192		
	效率特性 ······ 194		
	中空型 (2UH) 的連續運轉時間 ········ 195		
	中空型 (2UH) 輸入部的容許負載 196		

■SHG/SHF 系列模組型

SHG/SHF 系列模組型是以元件型為核心,容易使用的模組化產品。 外部負載的直接支撐(主軸承)內建精密、高剛性交叉滾柱軸承。

SHG/SHF 系列的特徵

- ■大口徑中空孔、薄型
- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

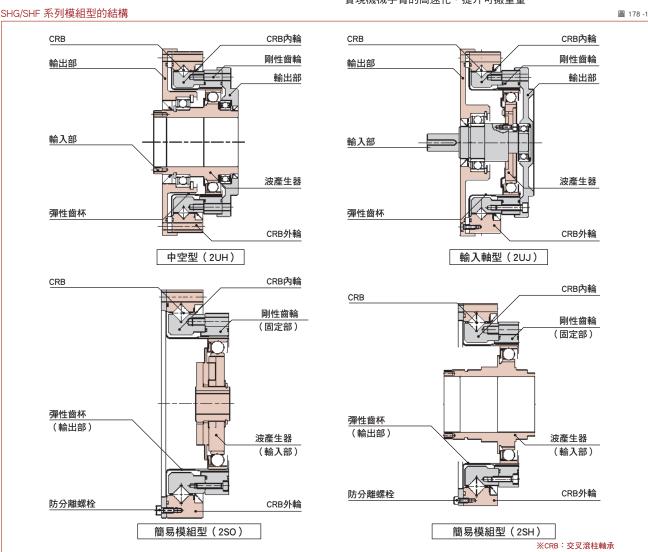
形狀種類

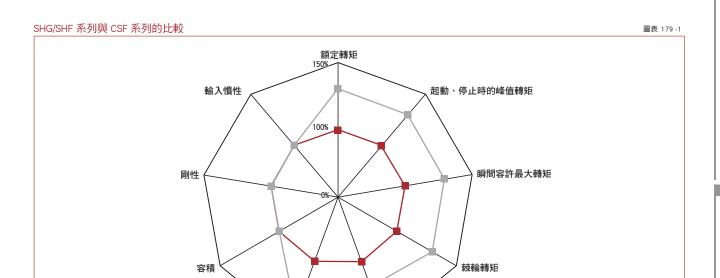
SHG/SHF 系列模組型有 4 種形狀種類選擇,請配合機械、裝置的設 計需求,選擇最適合的形狀。

■大口徑中空孔結構:中空型(2UH) ■對應多種輸入型態:輸入軸型(2UJ) ■更容易使用 :標準簡易型(2SO) :中空簡易型(2SH)

新種類

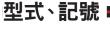
SHG 系列: 高轉矩用


· 較 SHF 系列提升 30% 轉矩容量


· 較 SHF 系列延長 43% 使用壽命 (10000 小時)

減速比30:高速用

·保留無背隙 Harmonic Drive® 的優點,實現減速比 30 SHG/SHF-LW 系列:輕量型


- · 重新設計形狀並採用輕量構件,達成約 20%的輕量化
- · 額定轉矩、性能與以往產品相同
- · 實現機械手臂的高速化,提升可搬重量

破壞轉矩

額定壽命

160

120

(註)減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。

80

100

65

- (註)1. 減速比表示為輸入:波產生器、固定:剛性齒輪、輸出:彈性齒杯。
 - 2. 型號 11 僅有型式 2UH 型。

技術資料 💳

額定表

■SHG 系列

表 180 -1

■ SHG 永列 — — — — — — — — — — — — — — — — — —											
型號	減速比		000r/min i定轉矩		亭止時的 值轉矩		或轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min
		N⋅m	kgf⋅m	N⋅m	kgf⋅m	N⋅m	kgf⋅m	N⋅m	kgf⋅m	潤滑脂	潤滑脂
	50	7.0	0.7	23	2.3	9	0.9	46	4.7		
14	80	10	1.0	30	3.1	14	1.4	61	6.2	8500	3500
	100	10	1.0	36	3.7	14	1.4	70	7.2		
	50	21	2.1	44	4.5	34	3.4	91	9		
17	80	29	2.9	56	5.7	35	3.6	113	12	7300	3500
11	100	31	3.2	70	7.2	51	5.2	143	15	7300	3300
	120	31	3.2	70	7.2	51	5.2	112	11		
	50	33	3.3	73	7.4	44	4.5	127	13		
	80	44	4.5	96	9.8	61	6.2	165	17	_	
20	100	52	5.3	107	10.9	64	6.5	191	20	6500	3500
	120	52	5.3	113	11.5	64	6.5	191	20		
	160	52	5.3	120	12.2	64	6.5	191	20		
	50	51	5.2	127	13	72	7.3	242	25	5600	
	80	82	8.4	178	18	113	12	332	34		
25	100	87	8.9	204	21	140	14	369	38		3500
	120	87	8.9	217	22	140	14	395	40		
	160	87	8.9	229	23	140	14	408	42		
	50	99	10	281	29	140	14	497	51		
	80	153	16	395	40	217	22	738	75		
32	100	178	18	433	44	281	29	841	86	4800	3500
	120	178	18	459	47	281	29	892	91		
	160	178	18	484	49	281	29	892	91		
	50	178	18	523	53	255	26	892	91		3000
	80	268	27	675	69	369	38	1270	130		
40	100	345	35	738	75	484	49	1400	143	4000	
	120	382	39	802	82	586	60	1530	156		
	160	382	39	841	86	586	60	1530	156		
	50	229	23	650	66	345	35	1235	126		
45	80	407	41	918 982	94	507	52 66	1651	168	2000	2000
45	100 120	459			100 109	650		2041	208	3800	3000
	160	523 523	53 53	1070 1147	117	806 819	82 84	2288 2483	233 253		
	80	484	49	1223	125	675	69	2418	247		
	100	611	62	1274	130	866	88	2678	273		
50	120	688	70	1404	143	1057	108	2678	273	3500	2500
	160	688	70	1534	156	1096	112	3185	325		
	80	714	73	1924	196	1001	102	3185	325		
	100	905	92	2067	211	1378	141	4134	422		
58	120	969	99	2236	228	1547	158	4329	441	3000	2200
	160	969	99	2392	244	1573	160	4459	455		
	80	969	99	2743	280	1352	138	4836	493		
	100	1236	126	2990	305	1976	202	6175	630		
65	120	1236	126	3263	333	2041	208	6175	630	2800	1900
-	160	1236	126	3419	349	2041	208	6175	630		
(計)1 /問州:											

⁽註) 1. 慣性力矩 $I = \frac{1}{4}$ GD² 2. 相關用語詳情,請參閱 012 頁「技術資料」內容。

■SHF 系列 表 181 -1

SHF 杀死	/ IJ									容許最高輸入	表 18
型號	減速比		000r/min 定轉矩		亭止時的 :值轉矩	平均負載 容許量	战轉矩的 是大值	瞬間容許	最大轉矩	轉速	轉速
<u> </u>	//W.EE.FC		()=+4/1=		· IET-1774					r/min	r/min
		N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	潤滑脂	潤滑脂
11	50	3.5	0.36	8.3	0.85	5.5	0.56	17	1.73	8500	3500
	100	5	0.51	11	1.12	8.9	0.91	25	2.55		
	30	4.0	0.41	9.0	0.92	6.8	0.69	17	1.7		
14	50	5.4	0.55	18	1.8	6.9	0.70	35	3.6	8500	3500
	80	7.8	0.80	23	2.4	11	1.1	47	4.8		
	100	7.8	0.80	28	2.9	11	1.1	54	5.5		
	30	8.8	0.90	16	1.6	12	1.2	30	3.1		
	50	16	1.6	34	3.5	26	2.6	70	7.1		
17	80	22	2.2	43	4.4	27	2.7	87	8.9	7300	3500
	100	24	2.4	54	5.5	39	4.0	110	11		
	120	24	2.4	54	5.5	39	4.0	86	8.8		
	30	15	1.5	27	2.8	20	2.0	50	5.1		
	50	25	2.5	56	5.7	34	3.5	98	10		
20	80	34	3.5	74	7.5	47	4.8	127	13	6500	3500
	100	40	4.1	82	8.4	49	5.0	147	15		
	120	40	4.1	87	8.9	49	5.0	147	15		
	160	40	4.1	92	9.4	49	5.0	147	15		
	30	27	2.8	50	5.1	38	3.9	95	9.7		
	50	39	4.0	98	10	55	5.6	186	19		
25	80	63	6.4	137	14	87	8.9	255	26	5600	3500
23	100	67	6.8	157	16	108	11	284	29	3000	3300
	120	67	6.8	167	17	108	11	304	31		
	160	67	6.8	176	18	108	11	314	32		
	30	54	5.5	100	10	75	7.7	200	20		
	50	76	7.8	216	22	108	11	382	39		
32	80	118	12	304	31	167	17	568	58	4800	3500
32	100	137	14	333	34	216	22	647	66	4000	3500
	120	137	14	353	36	216	22	686	70		
	160	137	14	372	38	216	22	686	70		
	50	137	14	402	41	196	20	686	70		
	80	206	21	519	53	284	29	980	100		
40	100	265	27	568	58	372	38	1080	110	4000	3000
	120	294	30	617	63	451	46	1180	120		
	160	294	30	647	66	451	46	1180	120		
	50	176	18	500	51	265	27	950	97		
	80	313	32	706	72	390	40	1270	130		
45	100	353	36	755	77	500	51	1570	160	3800	3000
	120	402	41	823	84	620	63	1760	180		
	160	402	41	882	90	630	64	1910	195		
	50	122	12	715	73	175	18	1430	146		
	80	372	38	941	96	519	53	1860	190		
50	100	470	48	980	100	666	68	2060	210	3500	2500
	120	529	54	1080	110	813	83	2060	210		
	160	529	54	1180	120	843	86	2450	250		
	50	176	18	1020	104	260	27	1960	200		
	80	549	56	1480	151	770	79	2450	250		
58	100	696	71	1590	162	1060	108	3180	325	3000	2200
	120	745	76	1720	176	1190	121	3330	340		
										<u> </u>	

⁽註) 1. 慣性力矩 I= ¼ GD² 2. 相關用語詳情 ,請參閱 012 頁「技術資料」內容。 3. 型號 11 僅有型式 2UH 型。

角傳動精度 (相關用語說明,請參閱「技術資料」內容。)

表 182 -1

減速比	規格	型號	11	14	17	20	25	32	40 以上
	標準品	×10⁴rad	_	5.8	4.4	4.4	4.4	4.4	_
30	标华加	arc-min		2	1.5	1.5	1.5	1.5	_
30	特殊品	×10⁴rad	_	_	_	2.9	2.9	2.9	_
	1寸7不口口	arc-min	_	_	_	1	1	1	_
	標準品	×10⁴rad	5.8 (4.4)	4.4	4.4	2.9	2.9	2.9	2.9
50 以上		arc-min	2 (1.5)	1.5	1.5	1	1	1	1
50 以上	特殊品	×10⁴rad	_	2.9	2.9	1.5	1.5	1.5	1.5
	行外向	arc-min	_	1	1	0.5	0.5	0.5	0.5

※:型號 11 的()內為減速比 100 的數值。

遲滯損失 (相關用語說明 ,請參閱「技術資料」內容。)

表 182 -2

減速比	型號單位	11	14	17	20	25	32	40 以上
30	×10 ⁻⁴ rad	_	8.7	8.7	8.7	8.7	8.7	_
30	arc-min	_	3.0	3.0	3.0	3.0	3.0	_
50	×10 ⁻⁴ rad	5.8	5.8	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.0	2.0	2.0	2.0	2.0	2.0	2.0
80 以上	×10 ⁻⁴ rad	5.8	2.9	2.9	2.9	2.9	2.9	2.9
00 以上	arc-min	2.0	1.0	1.0	1.0	1.0	1.0	1.0

最大背隙量 (相關用語說明·請參閱「技術資料」內容。)

表 182 -3

減速比	型號	11	14	17	20	25	32	40	45	50	58	65
30	×10 ⁻⁵ rad	_	29.1	16.0	13.6	13.6	11.2	_	-	_	_	_
30	arc-sec	_	60	33	28	28	23	_	_	_	_	_
50	×10 ⁻⁵ rad	(註)	17.5	9.7	8.2	8.2	6.8	6.8	5.8	5.8	4.8	_
50	arc-sec	(註)	36	20	17	17	14	14	12	12	10	_
80	×10 ⁻⁵ rad	_	11.2	6.3	5.3	5.3	4.4	4.4	3.9	3.9	2.9	2.9
80	arc-sec	_	23	13	11	11	9	9	8	8	6	6
100	×10 ⁻⁵ rad	(註)	8.7	4.8	4.4	4.4	3.4	3.4	2.9	2.9	2.4	2.4
100	arc-sec	(註)	18	10	9	9	7	7	6	6	5	5
100	×10 ⁻⁵ rad	_	_	3.9	3.9	3.9	2.9	2.9	2.4	2.4	1.9	1.9
120	arc-sec	_	_	8	8	8	6	6	5	5	4	4
160	×10 ⁻⁵ rad	_	_	_	2.9	2.9	2.4	2.4	1.9	1.9	1.5	1.5
160	arc-sec	-	_	ı	6	6	5	5	4	4	3	3

(註)型號 11 的波產生器結構僅有剛性型。詳細內容,請參閱「技術資料」。

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

表 182 -4

記號	_	型號	11	14	17	20	25	32	40	45	50	58	65
	Tı	N⋅m	0.8	2.0	3.9	7.0	14	29	54	76	108	168	235
		kgf·m	0.082	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24
	T ₂	N·m	2.0	6.9	12	25	48	108	196	275	382	598	843
	12	kgf·m	0.2	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K ₁	×10⁴N·m/rad	-	0.19	0.34	0.57	1.0	2.4	_	_	_	_	_
	KI	kgf·m/arc-min	_	0.056	0.10	0.17	0.30	0.70	_	_	_	_	_
	K ₂	×10⁴N·m/rad	-	0.24	0.44	0.71	1.3	3.0	_	_	_	_	_
	N2	kgf·m/arc-min	-	0.07	0.13	0.21	0.40	0.89	_	_	_	_	_
減速比	K ₃	×10⁴N·m/rad	ı	0.34	0.67	1.1	2.1	4.9	_	_	_	_	_
30	1/3	kgf·m/arc-min	_	0.10	0.20	0.32	0.62	1.5	_	_	_	_	_
	θ1	×10⁴rad	I	10.5	11.5	12.3	14	12.1	_	_	_	_	_
	01	arc-min	_	3.6	4.0	4.1	4.7	4.3	_	_	_	_	_
	θ2	×10⁴rad	-	31	30	38	40	38	_	_	_	_	_
	02	arc-min	_	10.7	10.2	12.7	13.4	13.3	_	_	_	_	_
	K ₁	×10⁴N·m/rad	0.22	0.34	0.81	1.3	2.5	5.4	10	15	20	31	_
	Ki	kgf·m/arc-min	0.066	0.1	0.24	0.38	0.74	1.6	3.0	4.3	5.9	9.3	_
	K ₂	×10⁴N·m/rad	0.3	0.47	1.1	1.8	3.4	7.8	14	20	28	44	_
	N2	kgf·m/arc-min	0.09	0.14	0.32	0.52	1.0	2.3	4.2	6.0	8.2	13	_
減速比	Кз	×10⁴N·m/rad	0.32	0.57	1.3	2.3	4.4	9.8	18	26	34	54	_
50	N3	kgf·m/arc-min	0.096	0.17	0.4	0.67	1.3	2.9	5.3	7.6	10	16	_
	θι	×10⁴rad	3.6	5.8	4.9	5.2	5.5	5.5	5.2	5.2	5.5	5.2	_
	01	arc-min	1.2	2.0	1.7	1.8	1.9	1.9	1.8	1.8	1.9	1.8	_
	θ2	×10⁴rad	8.0	16	12	15.4	15.7	15.7	15.4	15.1	15.4	15.1	_
	02	arc-min	2.6	5.6	4.2	5.3	5.4	5.4	5.3	5.2	5.3	5.2	_

※ 本表數值為參考值。下限值約為標示數值的 80%。

													表 183 -1
記號		型號	11	14	17	20	25	32	40	45	50	58	65
	T ₁	N·m	0.8	2.0	3.9	7.0	14	29	54	76	108	168	235
	11	kgf·m	0.82	0.2	0.4	0.7	1.4	3.0	5.5	7.8	11	17	24
	T ₂	N·m	2	6.9	12	25	48	108	196	275	382	598	843
	12	kgf⋅m	0.2	0.7	1.2	2.5	4.9	11	20	28	39	61	86
	K ₁	×10⁴N·m/rad	0.27	0.47	1	1.6	3.1	6.7	13	18	25	40	54
	N1	kgf·m/arc-min	0.08	0.14	0.3	0.47	0.92	2.0	3.8	5.4	7.4	12	16
	K ₂	×10⁴N·m/rad	0.34	0.61	1.4	2.5	5.0	11	20	29	40	61	88
	N2	kgf·m/arc-min	0.1	0.18	0.4	0.75	1.5	3.2	6.0	8.5	12	18	26
減速比	Кз	×10⁴N·m/rad	0.44	0.71	1.6	2.9	5.7	12	23	33	44	71	98
80 以上	K3	kgf·m/arc-min	0.13	0.21	0.46	0.85	1.7	3.7	6.8	9.7	13	21	29
	θ1	×10⁴rad	3	4.1	3.9	4.4	4.4	4.4	4.1	4.1	4.4	4.1	4.4
	01	arc-min	1	1.4	1.3	1.5	1.5	1.5	1.4	1.4	1.5	1.4	1.5
	θ2	×10⁴rad	6	12	9.7	11.3	11.1	11.6	11.1	11.1	11.1	11.1	11.3
1	02	arc-min	2.2	4.2	3.3	3.9	3.8	4.0	3.8	3.8	3.8	3.8	3.9

※ 本表數值為參考值。下限值約為標示數值的 80%。

鬆脫轉矩	(相關用語說明,請參閱「技術資料」	, 內容。)

■ SHG 系列

表 183 -2 單位:N·m

表 183 -3 單位:N·m ■ SHF 系列

										—
型號減速比	11	14	17	20	25	32	40	45	50	58
30	_	59	100	170	340	720	_	_	_	-
50	34	88	150	220	450	980	1800	2700	3700	5800
80	_	110	200	350	680	1400	2800	3900	5400	8200
100	43	84	160	260	500	1000	2100	3100	4100	6400
120	-	_	120	240	470	980	1900	2800	3800	5800
160	_	-	_	220	450	980	1800	2600	3600	5600

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

■ SHG 系列										表 183 -4 單位:N·m
型號	14	17	20	25	32	40	45	50	58	65
全減速比	180	350	590	1100	2400	4400	6300	8600	13400	18800

■ SHF 系列										表 183 -5 單位:N·m	
型號	11	14	17	20	25	32	40	45	50	58	
全減速比	90	140	270	440	890	1750	3750	5400	7500	11800	

主軸承規格

模組型在外部負載的直接支撐組裝了精密交叉滾柱軸承(輸出凸緣部)。

為充分發揮模組型的性能,請檢查最大負載力矩負重、交叉滾柱軸承壽命以及靜態安全係數。 各數值的公式請參閱 030 ~ 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重(M max)

求出最大負載力矩負重(M max) 最大負載力矩負重(M max)≦容許力矩(Mc)

②確認壽命

求出平均徑向負載(Frav)、平均軸向負載(Faav) 求出徑向負載係數(X)、軸向負載係數(Y) 計算並確認壽命

③確認靜態安全係數

求出靜態等價徑向負載(Po) 確認靜態安全係數(fs)

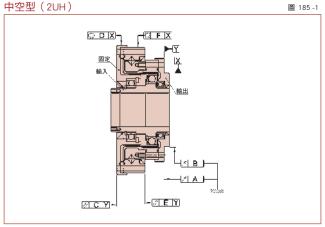
■主軸承規格

交叉滾柱軸承的規格,如表 184-1 所示。

規格 表 184-1

	轉子節圓直徑	偏移量		基本額	定負載		rio Etc + hr	· 4千.,	力矩岡	l性 Km
型號	dp	R	基本動額	定負載 C	基本靜額	定負載 Co	容許力知	貝里 MC	×10⁴N·m/rad	1
	m	m	×10 ² N	kgf	×10 ² N	kgf	N·m	kgf·m	∧ I U*IN·m/rad	kgf·m/arc-min
11	0.043	0.018	52.9	540	75.5	770	74	7.6	6.5	1.8
14	0.050	0.0217	58	590	86	880	74	7.6	8.5	2.5
17	0.060	0.0239	104	1060	163	1670	124	12.6	15.4	4.6
20	0.070	0.0255	146	1490	220	2250	187	19.1	25.2	7.5
25	0.085	0.0296	218	2230	358	3660	258	26.3	39.2	11.6
32	0.111	0.0364	382	3900	654	6680	580	59.1	100	29.6
40	0.133	0.044	433	4410	816	8330	849	86.6	179	53.2
45	0.154	0.0475	776	7920	1350	13800	1127	115	257	76.3
50	0.170	0.0525	816	8330	1490	15300	1487	152	351	104
58	0.195	0.0622	874	8920	1710	17500	2180	222	531	158
65	0.218	0.072	1300	13300	2230	22700	2740	280	741	220

- (註)※基本動額定負載是指軸承的基本動額定壽命可達 100 萬次旋轉的一定靜止徑向負載。
 - ※ 基本靜額定負載是指在承受最大負載的轉動體與軌道的接觸部中央上,給予一定水準的接觸應力(4kN/mm²)之靜態負載。
 - ※ 签本解析化具氧定组任务支收人具氧的特别值换机值的按例部中关上,和了一定小年的按例能力(和 ※ 容許力矩負重是指輸出軸承上可施加的最大力矩負重,此範圍內的數值可以確保基本性能並可動作。
 - ※ 力矩剛性的值為參考值。下限值約為標示數值的 80%。
 - ※ 容許徑向負載、容許軸向負載,係指主軸承受單純徑向負載或軸向負載其中之一時,可滿足減速機壽命的數值。(徑向負載為 Lr+R=0mm、軸向負載為 La=0mm 時)

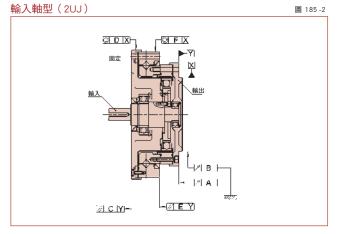

機械精度

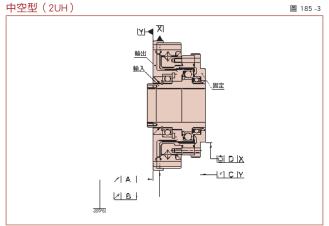
模組型的機械精度。

■彈性齒杯固定

輸入:波產生器 輸出:剛性齒輪 固定:彈性齒杯

中空型 (2UH)




表 185 -1 單位:mn

											幸[改・川川
型號記號	11	14	17	20	25	32	40	45	50	58	65
Α	0.033	0.033	0.038	0.040	0.046	0.054	0.057	0.057	0.063	0.063	0.067
В	0.035	0.035	0.035	0.039	0.041	0.047	0.050	0.053	0.060	0.063	0.063
С	0.053	0.064	0.071	0.079	0.085	0.104	0.111	0.118	0.121	0.121	0.131
D	0.053	0.053	0.050	0.059	0.061	0.072	0.075	0.078	0.085	0.088	0.089
E	0.039	0.040	0.045	0.051	0.057	0.065	0.071	0.072	0.076	0.076	0.082
F	0.038	0.038	0.038	0.047	0.049	0.054	0.060	0.065	0.067	0.070	0.072

■剛性齒輪固定

輸入:波產生器 輸出:彈性齒杯 固定:剛性齒輪

中空型 (2UH)

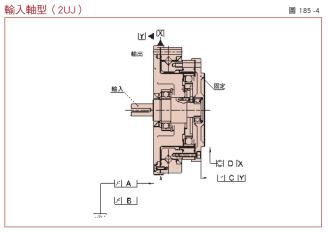
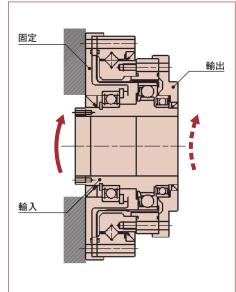


表 185 -2

型號記號	11	14	17	20	25	32	40	45	50	58	65
Α	0.027	0.037	0.039	0.046	0.047	0.059	0.060	0.070	0.070	0.070	0.076
В	0.031	0.031	0.031	0.038	0.038	0.045	0.048	0.050	0.050	0.050	0.054
С	0.053	0.064	0.071	0.079	0.085	0.104	0.111	0.118	0.121	0.121	0.131
D	0.053	0.053	0.053	0.059	0.061	0.072	0.075	0.078	0.085	0.088	0.089

模組型的旋轉方向與減速比

模組型的旋轉方向與減速比會因為固定的凸緣而變化,使用時敬請注意。


■彈性齒杯固定

輸入:波產生器 輸出:剛性齒輪 固定:彈性齒杯

輸出旋轉方向:與輸入旋轉方向相同

減速比 (i): i= 1 R + 1

中空型(2UH)

圖 186-1 輸入軸型 (2UJ)

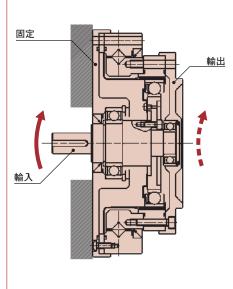
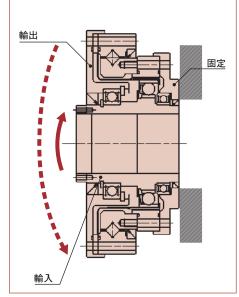
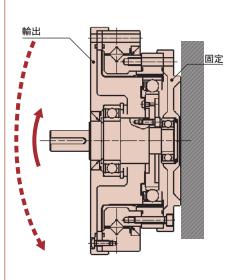


圖 186 -2

圖 186 -4


■剛性齒輪固定

輸入:波產生器 輸出:彈性齒杯 固定:剛性齒輪


輸出旋轉方向:與輸入旋轉方向相反

減速比(i): i= <u>-1</u> R

中空型 (2UH)

圖 186-3 輸入軸型 (2UJ)

設計指南

潤 滑

模組型減速機部的標準潤滑劑是 Harmonic 潤滑脂 ®SK-1A 及 SK-2。(交叉滾柱軸承部使用 Harmonic 潤滑脂 ®4B No.2)或為了長壽命也可以使用 Harmonic 潤滑脂 ®4B No.2。

潤滑脂的規格刊載於 016 頁。

■密封機構

·旋轉滑動部………………………油封(含彈簧)。

此時請注意勿使軸側出現損傷等不良。

· 凸緣重合面、嵌合處··········· O型環、密封劑。此時請注意平面不均整、O型環遭咬入等情形。

·螺孔部············ 具封止效果的螺絲固定劑(建議使用 LOCTITE 242)或密封膠帶。

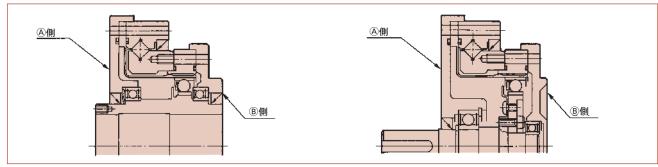
(註)尤其是使用 Harmonic 潤滑脂 ®4B No.2 時,請嚴格採用前述機構。

防鏽對策

模組型未在交叉滾柱軸承部以外的表面施加防鏽處理。如需防鏽,應塗佈防鏽劑。此外,在交叉滾柱軸承部的表面上,已施加冷電鍍處理。 另外,如需本公司進行防鏽表面處理,請洽詢本公司。

組裝注意事項

關於組裝設計,若為導致安裝面變形等異常組裝,則可能造成性能降低。


為充分發揮模組型所具有的優異性能,敬請注意下列事項。

另外,SHG 系列的轉矩容量較 SHF 系列增大,敬請根據各系列進行安裝。

- ●安裝面彎曲、變形
- ●咬入異物
- ●安裝孔螺孔部週邊的毛邊、隆起、位置度異常
- ●安裝接口部倒角不足
- ●安裝接口部真圓部異常

安裝及傳動轉矩

圖 188 -1

SHG 系列A側的安裝及傳動轉矩

表 188 -1

項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		8	12	12	12	12	12	18	12	16	16
螺栓尺寸		M3	M3	M3	M4	M5	M6	M6	M8	M8	M10
螺栓鎖固 P.C.D.	mm	64	74	84	102	132	158	180	200	226	258
螺栓鎖緊轉矩	N⋅m	2.4	2.4	2.4	5.4	10.8	18.4	18.4	44	44	74
紫柱 與 案 平	kgf⋅m	0.24	0.24	0.24	0.55	1.10	1.87	1.87	4.5	4.5	7.6
螺栓傳動轉矩	N⋅m	128	222	252	516	1069	1813	3098	4163	6272	9546
紫糸作王 1 等 里 川 平等 大上	kgf·m	13	23	26	53	109	185	316	425	640	974

SHF 系列@側的安裝及傳動轉矩

表 188 -2

項目	型號	11	14	17	20	25	32	40	45	50	58
螺栓支數		4	8	12	12	12	12	12	18	12	16
螺栓尺寸		M3	M3	M3	M3	M4	M5	M6	M6	M8	M8
螺栓鎖固 P.C.D.	mm	56.4	64	74	84	102	132	158	180	200	226
螺栓鎖緊轉矩	N·m	2	2.0	2.0	2.0	4.5	9.0	15.3	15.3	37	37
紫性 與 案 甲	kgf⋅m	2.0	0.20	0.20	0.20	0.46	0.92	1.56	1.56	3.8	3.8
螺栓傳動轉矩	N·m	47	108	186	206	431	892	1509	2578	3489	5263
以永代王1等里JJ平等大L	kgf⋅m	4.7	11	19	21	44	91	154	263	356	974

- (表 188-1、188-2 /註)
- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 2. 建議螺栓 螺栓名稱:JIS B 1176 內六角螺栓 強度區分:JIS B 1051 12.9 以上
- 2. 建锇螺性 螺性石 3. 轉矩係數: K=0.2
- 4. 鎖緊係數:A=1.4
- 5. 接合面摩擦係數 μ=0.15
- 6. SHG/SHF-LW 系列從心側用螺絲緊固時,敬請使用墊圈,不要讓螺絲座面直接接觸鋁合金。

SHG 系列®側的安裝及傳動轉矩

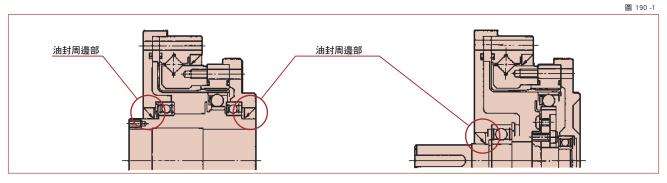
項目	型號	14	17	20	25	32	40	45	50	58	65
螺栓支數		8	16	16	16	16	16	12	16	12	16
螺栓尺寸		M3	M3	M3	M4	M5	M6	M8	M8	M10	M10
螺栓鎖固 P.C.D.	mm	44	54	62	77	100	122	140	154	178	195
★田士へ今米 B∇ 市市 ケロ	N⋅m	2.4	2.4	2.4	5.4	10.8	18.36	44	44	89	89
螺栓鎖緊轉矩	kgf⋅m	0.24	0.24	0.24	0.55	1.10	1.87	4.5	4.5	9.1	9.1
螺栓傳動轉矩	N·m	88	216	248	520	1080	1867	2914	4274	5927	8658
5条7王1守里川半守大臣	kgf⋅m	9.0	22	25.3	53	110	191	297	436	605	883

SHF 系列®側的安裝及傳動轉矩

表 189 -2

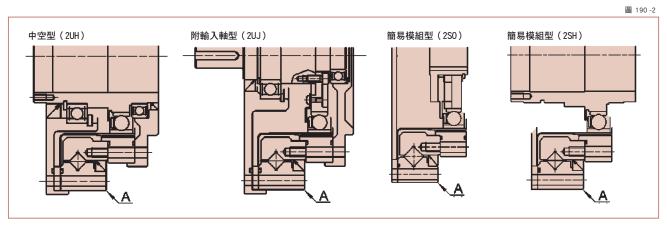
表 189 -1

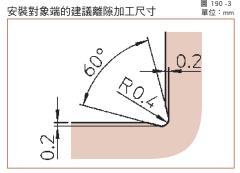
6								50	58
	I 8	16	16	16	16	16	12	16	12
M3	M3	M3	M3	M4	M5	M6	M8	M8	M10
37	44	54	62	77	100	122	140	154	178
1 2	2.0	2.0	2.0	4.5	9.0	15.3	37	37	74
n 0.2	0.20	0.20	0.20	0.46	0.92	1.56	3.8	3.8	7.5
n 46	72	176	206	431	902	1558	2440	3587	4910
n 4.6	7.3	18	21	44	92	159	249	366	501
	37 n 2 m 0.2 n 46	1 37 44 1 2 2.0 m 0.2 0.20 1 46 72	37 44 54 1 2 2.0 2.0 1 0.2 0.20 0.20 1 46 72 176	1 37 44 54 62 1 2 2.0 2.0 2.0 1 0.2 0.20 0.20 0.20 1 46 72 176 206	1 37 44 54 62 77 1 2 2.0 2.0 2.0 4.5 m 0.2 0.20 0.20 0.20 0.46 n 46 72 176 206 431	1 37 44 54 62 77 100 1 2 2.0 2.0 2.0 4.5 9.0 m 0.2 0.20 0.20 0.20 0.46 0.92 n 46 72 176 206 431 902	1 37 44 54 62 77 100 122 1 2 2.0 2.0 2.0 4.5 9.0 15.3 m 0.2 0.20 0.20 0.20 0.46 0.92 1.56 n 46 72 176 206 431 902 1558	1 37 44 54 62 77 100 122 140 1 2 2.0 2.0 2.0 4.5 9.0 15.3 37 m 0.2 0.20 0.20 0.20 0.46 0.92 1.56 3.8 n 46 72 176 206 431 902 1558 2440	1 37 44 54 62 77 100 122 140 154 1 2 2.0 2.0 2.0 4.5 9.0 15.3 37 37 m 0.2 0.20 0.20 0.20 0.46 0.92 1.56 3.8 3.8 n 46 72 176 206 431 902 1558 2440 3587


- (表 189-1、189-2 / 註)
 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
- 熱情報引臭の形が外えを結び上端を特別に同じた。 建議課栓 螺栓名稱: JIS B 1176 内六角螺栓 強度區分: JIS B 1051 12.9 以上 3. 轉矩係數: K=0.2

- 5. 接合面摩擦係數 μ=0.15

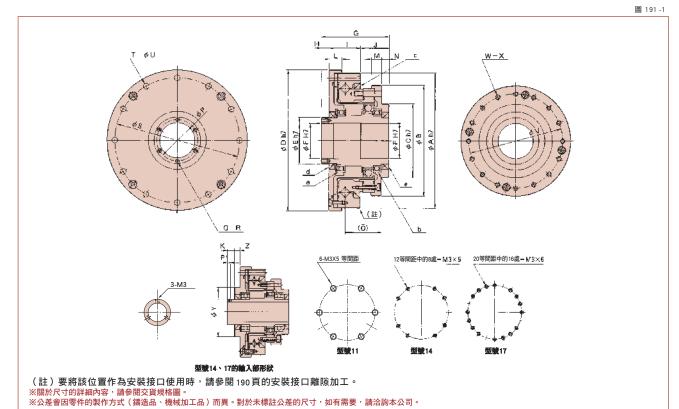
安裝注意事項


■油封周邊部的安裝


對象端安裝面與油封請保持 1mm 以上的間隙安裝,使其不會互相干涉。

■安裝接口離隙加工

模組型若將下圖 A 部作為安裝接口使用時,請在安裝對象端進行離隙加工。



技術資料 中空型(2UH) ===

中空型(2UH)外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

中空型(2UH)尺寸表

表 191 -1 單位:mm

												單位:mm
記號	型號	11	14	17	20	25	32	40	45	50	58	65
	φA h7	62	70	80	90	110	142	170	190	214	240	276
φВ	SHG/SHF 系列	45.3	54	64	75	90	115	140	160	175	201	221
ΨΒ	SHG/SHF-LW 系列	_	52	62	73	88	115	140	160	168	195	213
	фС h7	30.5	36	45	50	60	85	100	120	130	150	160
	φD h7	64	74	84	95	115	147	175	195	220	246	284
	φE h7	18	20	25	30	38	45	59	64	74	84	96
	фF Н7	14	14	19	21	29	36	46	52	60	70	80
	G	48	52.5	56.5	51.5	55.5	65.5	79	85	93	106	128
	Н	14	12	12	5	6	7	8	8	9	10	14
	1	19	20.5	23	25	26	32	38	42	45	52	56.5
	J	15	20	21.5	21.5	23.5	26.5	33	35	39	44	57.5
	K	6.5	6.5	6.5	_	_	_	_	_	_	_	_
	L	8	9	10	10.5	10.5	12	14	15	16	17	18
м	SHG/SHF 系列	6.5	8	8.5	9	8.5	9.5	13	12	12	15	19.5
IVI	SHG/SHF-LW 系列	_	11.5	12	13.5	15.5	20.5	25	27	30	35	42.5
	N	6.5	7.5	8.5	7	6	5	7	7	7	7	12
	0	17.5	21.7	23.9	25.5	29.6	36.4	44	47.5	52.5	62.2	72
	фР (Р)	_	(2.5)	(2.5)	25.5	33.5	40.5	52	58	67	77	88
	Q	_	3	3	6	6	6	6	6	6	8	6
	R	_	M3	M3	M3×6	M3×6	M3×6	M4×8	M4×8	M4×8	M4×8	M5×10
	φS	56.4	64	74	84	102	132	158	180	200	226	258
	Т	4	8	12	12	12	12	12	18	12	16	16
	φU	3.5	3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
	φ٧	37	44	54	62	77	100	122	140	154	178	195
	W	6	12 等間距中 8 處	20 等間距中 16 處	16	16	16	16	12	16	12	16
	SHG/SHF 系列	M3×5	M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
×	3110/3111 7(3)	φ3.4×8.5	ф3.5×11.5	φ3.5×12	ф3.5×13.5	φ4.5×15.5	φ5.5×20.5	φ6.6×25	φ9×27	ф9×30	φ11×35	φ11×42.5
^	SHG/SHF-LW 系列	_	M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
	3HQ/3HI -LW 7KYI	_	ф3.5×11.5	φ3.5×12	φ3.5×13.5	φ4.5×15.5	φ6×20.5	φ6.6×25	φ9×27	ф9×30	φ11×35	φ11×42.5
	φΥ	36	36	45	_	_	_	_	_	_	_	_
	Z	7.5	5.5	5.5	_	_	_		_	_	_	_
	a	6804 ZZ	6804 ZZ	6805 ZZ	6806 ZZ	6808 ZZ	6909 ZZ	6912 ZZ	6913 ZZ	6915 ZZ	6917 ZZ	6920 ZZ
b	SHG/SHF 系列	6704 ZZ	6804 ZZ	6805 ZZ	6806 ZZ	6808 ZZ	6809 ZZ	6812 ZZ	6813 ZZ	6815 ZZ	6817 ZZ	6820 ZZ
U	SHG/SHF-LW 系列	_	6804 ZZ	6805 ZZ	6806 ZZ	6808 ZZ	6809 ZZ	6812 ZZ	6813 ZZ	6815 ZZ	6817 ZZ	6820 ZZ
	С	D41.950.95	D49585	D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D21623811
d	SHG/SHF 系列	S18274	S20304.5	S25356	S30405	S38475	S45607	S60789	S658510	S759510	S8511012	S10012513
u	SHG/SHF-LW 系列	_	S20304.5	S25356	S30405	S38475	S45607	S60789	S658510	S759510	S8511012	S10012513
е	SHG/SHF 系列	S18274	S20304.5	S25356	S30405	S38475	S45555	S59685	S59685	S69785	S84945	S961128
"	SHG/SHF-LW 系列	_	S20304.5	S25356	S30405	S38475	S45555	S59685	S59685	S69785	S84945	S961128

中中刊/	OLILL'	
	7 U I H)

表 192 -1 單位:kd

											単 I · Kg
記號		14	17	20	25	32	40	45	50	58	65
2UH	0.53	0.71	1.00	1.38	2.1	4.5	7.7	10.0	14.5	20.0	28.5
2UH-LW(輕量型)	-	0.55	0.8	1.1	1.6	3.6	6.2	8	11.8	16.4	23.3

中空型(2UH)慣性力矩

表 192 -2

記號	_	型號	11	14		20	25	32	40	45	50	58	65
慣性力矩	-	×10 ⁻⁴ kg·m ²	0.080	0.091	0.193	0.404	1.070	2.85	9.28	13.8	25.2	49.5	94.1
「良」主ノノスピ	J	×10 ⁻⁵ kgf·ms ²	0.082	0.093	0.197	0.412	1.090	2.91	9.47	14.1	25.7	50.5	96.0

中空型(2UH)起動轉矩 (相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■ SHG 系列

表 192-3 單位:cN·m

減速比	14	17	20	25	32	40	45	50	58	65
50	8.8	27	36	56	85	136	165	_	_	_
80	7.5	25	33	50	74	117	138	179	244	314
100	6.9	24	32	49	72	112	131	171	231	297
120	_	24	31	48	68	110	126	165	223	287
160	_	_	31	47	67	105	122	156	213	276

■ SHF 系列

表 192 -4 單位:cN·m

減速比 型號	11	14	17	20	25	32	40	45	50	58
30	-	11	30	43	64	112	_	_	-	_
50	7.1	8.8	27	36	56	85	136	165	216	297
80	_	7.5	25	33	50	74	117	138	179	244
100	5.9	6.9	24	32	49	72	112	131	171	231
120	-	_	24	31	48	68	110	126	165	223
160	_	_	_	31	47	67	105	122	156	213

中空型(2UH)加速起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■ SHG 系列

表 192-5 單位:N·m

減速比	14	17	20	25	32	40	45	50	58	65
50	5.3	16	22	34	51	82	99	_	_	_
80	7.2	24	31	48	70	112	133	172	234	301
100	8.2	29	38	59	86	134	158	205	278	356
120	_	34	45	69	97	158	182	237	322	413
160	_	_	59	90	128	201	233	299	408	530

■ SHF 系列

表 192 -6 單位:N·m

減速比	11	14	17	20	25	32	40	45	50	58
30	_	5.4	17	23	35	57	_	_	_	_
50	4.6	5.3	16	22	34	51	82	99	129	178
80	_	7.2	24	31	48	70	112	133	172	234
100	7.6	8.2	29	38	59	86	134	158	205	278
120	_	_	34	45	69	97	158	182	237	322
160	_	_	_	59	90	128	201	233	299	408

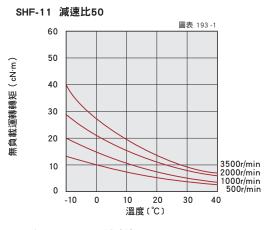
無負載運轉轉矩

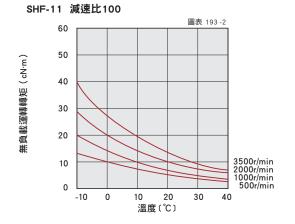
無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸 入端(高速軸端)的轉矩。

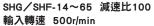
表 192 -7

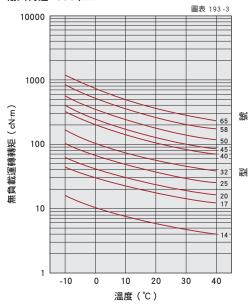
	減速比 100									
	潤滑脂	名稱	Harmonic 潤滑脂® SK-1A							
潤滑條件	潤滑	72789	Harmonic 潤滑脂® SK-2							
	/担/月	塗佈量	適當塗佈量							
轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值										

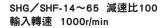
■減速比別修正量

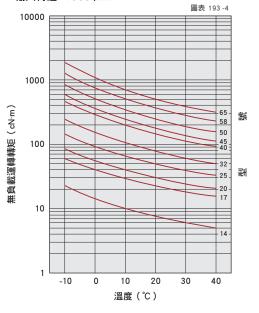

模組型的無負載運轉轉矩會因減速比而變化。圖表 193-1 ~ 193-4 中空型無負載運轉轉矩修正量 為減速比 100 時的數值。

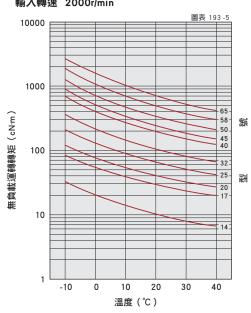

關於其他減速比,請加上表 192-8 所示修正量後計算。

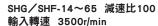

表 192 -8 單位:cN·m

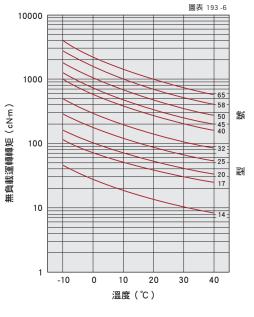

1 1 1 1 1 1 1 1	キルスエ ナサナサバト	10111			±17 . CI41II
減速比型號	30	50	80	120	160
11	_	+0.5	_	_	_
14	+2.6	+1.1	+0.2		_
17	+4.1	+1.8	+0.4	-0.2	_
20	+5.9	+2.6	+0.5	-0.4	-0.8
25	+9.6	+4.2	+0.8	-0.6	-1.3
32	+18.3	+8.0	+1.5	-1.1	-2.5
40		+13.3	+2.4	-1.7	-4.0
45	_	+18.2	+3.3	-2.4	-5.5
50	_	+23.9	+4.3	-3.1	-7.2
58	_	+34.6	+6.2	-4.4	-10.3
65	_	_	+8.1	-5.8	-13.7


■無負載運轉轉矩









SHG/SHF-14~65 減速比100 輸入轉速 2000r/min

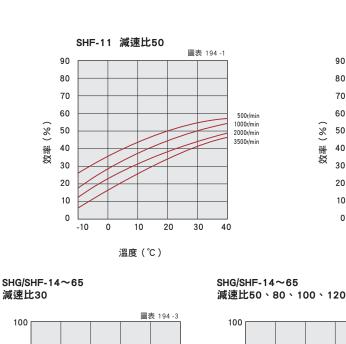
※本圖表數值為平均值X。 σ ≒ X × 0.2

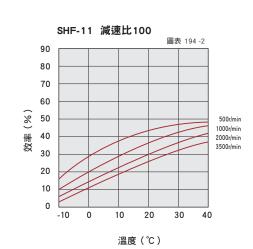
效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑劑種類與使用量)

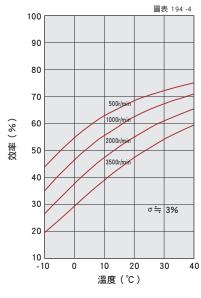
測量條件 表 194 -1 組裝 以建議組裝精度組裝後測量 負載轉矩 額定表所示的額定轉矩(180、181頁) Harmonic 潤滑脂® SK-1A 名稱 潤滑脂 潤滑條件 Harmonic 潤滑脂® SK-2


塗佈量


適當塗佈量

SHG/SHF-14~65

減速比160


■額定轉矩時的效率

潤滑

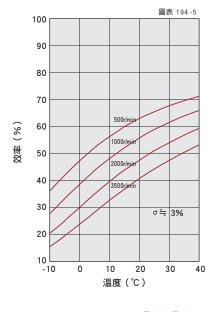
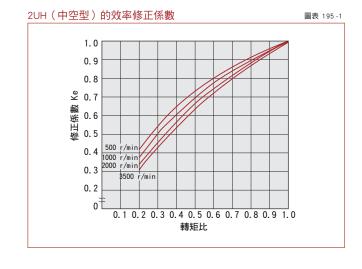


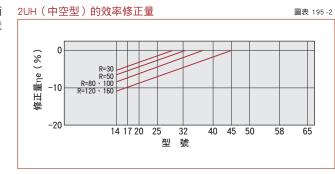
表 195-3

20


10

■效率修正係數與效率修正量

依據負載轉矩的效率修正係數


當負載轉矩小於額定轉矩,效率值將下降。 請依據圖表 195-1 求出修正係數 Ke。

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

不同型號的效率修正量 -

模組型的輸入端裝有支撐軸承、油封。這些的影響程度會因型號而異。請依據圖表 195-2 計算出不同型號額定轉矩時的效率修正量 ne。

效率修正公式 -

請由下列公式計算出「負載轉矩的效率修正係數」與「型號的效率修正量」產生的效率。

公式 公式 195-1

效率η=Ke×(ηR+ηe)

公式的記	己號	表 195 -1
η	效率	
Ke	效率修正係數	參閱圖表 195-1
ηR	額定轉矩時的效率	參閱圖表 194-1 ~ 194-5
ηе	效率修正量	參閱圖表 195-2

中空型(2UH)的連續運轉時間

中空型(2UH)會受輸入軸(高速旋轉側)上使用的油封、支撐軸承的影響而使內部溫度上升。連續運轉時請在表 195-2 所示運轉時間內運轉。

表 195-2 的運轉時間是依照在右述的設定條件下,當模組內部溫度 80° C,油封部溫度上升至 100° C為止的時間而決定。連續運轉時,敬請考慮勿超過上述溫度。

超過上述溫度時,需要檢討下述內容,請洽詢本公司。

- 變更潤滑劑的更換時期
- 變更潤滑劑
- 針對模組內部壓力上升時採取潤滑劑滲漏對策
- 針對油封部的熱劣化採取對策

設定條件 表 195-2 使用温度 25℃(大氣) 輸入轉速 2000 r/min 模組設置 固定彈性齒杯側,輸出剛性齒輪側

無負載運轉時 車續運轉時間(分鐘 運轉時間 額定負載 90 11 60 14 90 60 17 90 60 20 90 60 25 60 45 32 45 35 40 40 30 45 35 25

30

20

15

※ 依據使用條件不同,上述連續運轉時間會有很大的差異,敬請洽詢本公司。

連續運轉時間

50

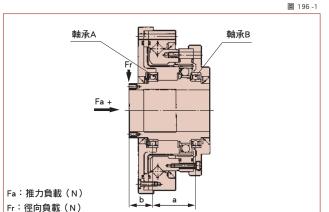
58

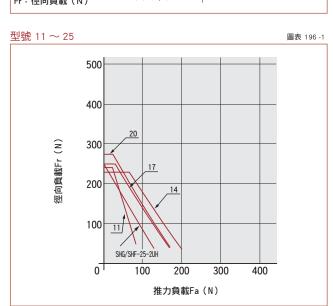
65

中空型(2UH)輸入部的容許負載

中空型的中空輸入部是由 2 個單列深溝軸承所支撐。為充分發揮模組型的性能,請確認施加在輸入部上的負重。

圖 196-1 為軸承的支撐點。『a』『b』尺寸請參閱表 196-1。此外,下方圖表 196-1、196-2 則顯示不同型號的最大容許徑向負載與推力負載的關係。


圖表 196-1、196-2 的值是在平均輸入轉速 2000r/min、基本額定 壽命 L₁₀₌7000h 時的值。


例:在 SHF-40-2UH 的中空輸入部上施加 500N 的推力負載(Fa)時,容許最大徑向負載(Fr)的值為 400N。

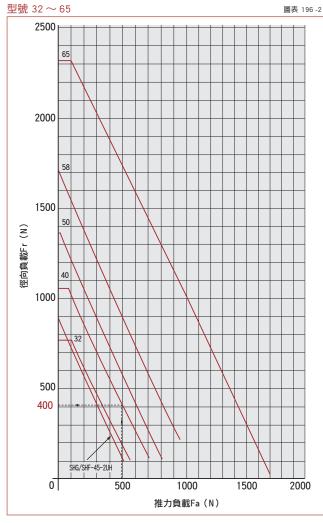

輸入部的軸承規格

表 196 -1

		軸承 A			軸承B			,	最大徑向負載
型號	型號	基本動額定負載	基本靜額定負載	型號	基本動額定負載	基本靜額定負載		b	取人徑问貝戴
	至抓	Cr (N)	Cor (N)	至加	Cr (N)	Cor (N)	(mm)	(mm)	Fr (N)
11	6804ZZ	4000	2470	6704ZZ	1400	720	25.7	15.5	_
14	6804ZZ	4000	2470	6804ZZ	4000	2470	27	16.5	230
17	6805ZZ	4300	2950	6805ZZ	4300	2950	29	17.5	250
20	6806ZZ	4500	3450	6806ZZ	4500	3450	27	15.5	275
25	6808ZZ	4900	4350	6808ZZ	4900	4350	29.5	16.5	250
32	6909ZZ	14100	10900	6809ZZ	5350	5250	33	23	770
40	6912ZZ	16400	14300	6812ZZ	11500	10900	39.5	27.5	1060
45	6913ZZ	17400	16100	6813ZZ	11900	12100	44	28.5	900
50	6915ZZ	24400	22600	6815ZZ	12500	13900	49	31.5	1370
58	6917ZZ	32000	29600	6817ZZ	18700	20000	56.2	36.5	1720
65	6920ZZ	42500	36500	6820ZZ	19600	21200	67	44.5	2300

技術資料 輸入軸型(2UJ)

輸入軸型(2UJ)外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號14、17的輸入膨胀状

型號17

型號14、17的輸入膨胀状

型號17

型號14、17的輸入膨胀状

型號17

工學期應中的16億 M3×6

工会別 190 页的安裝接口 開除加工。

※四膝尺寸的鲜细肉膏:誘导棚交貨規格圖。
第四次 190 次 19

輸入軸型(2UJ)尺寸表

表 197-1 單位:mm

										單位:mm
型號記號	14	17	20	25	32	40	45	50	58	65
φA h7	70	80	90	110	142	170	190	214	240	276
φВ	54	64	75	90	115	140	160	175	201	221
фС h7	36	45	50	60	85	100	120	130	150	160
φD h7	74	84	95	115	147	175	195	220	246	284
φE h6	6	8	10	14	14	16	19	22	22	25
F	50.5	56	63.5	72.5	84.5	100	108	121	133	156
G	15	17	21	26	26	31	31	37	37	42
Н	20.5	23	25	26	32	38	42	45	52	56.5
1	15	16	17.5	20.5	26.5	31	35	39	44	57.5
J	14	16	20	25	25	30	30	35	35	40
K	9	10	10.5	10.5	12	14	15	16	17	18
L	8	8.5	9	8.5	9.5	13	12	12	15	19.5
М	2.5	3	3	3	5	5	7	7	7	12
N	21.7	23.9	25.5	29.6	36.4	44	47.5	52.5	62.2	72
0	11	12	16.5	22.5	22.5	27.5	28	33	33	39
Р	_	_	8.2 -0.1	11 0	11 0	13 -0.1	15.5 0	18.5 0	18.5 0	21 -0.1
Q	0.5	0.5	3 -0.025	5 _{-0.030}	5 ⁰ _{-0.030}	5 ⁰ _{-0.030}	6 -0.030	6 -0.030	6 -0.030	7 -0.036
R	_	_	3 0	5 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 ⁰ _{-0.030}	6 -0.030	6 -0.030	6 -0.030	8 0
S	_	_	M3×6	M5×10	M5×10	M5×10	M6×12	M6×12	M6×12	M8×16
φТ	64	74	84	102	132	158	180	200	226	258
U	8	12	12	12	12	12	18	12	16	16
φ٧	3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
фW	44	54	62	77	100	122	140	154	178	195
X	12 等間距中 8 處	20 等間距中 16 處	16	16	16	16	12	16	12	16
Υ	M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
т 	ф3.5×11.5	ф3.5×12	φ3.5×13.5	φ4.5×15.5	φ5.5×20.5	φ6.6×25	φ9×28	ф9×30	φ11×35	φ11×42.5
а	698 ZZ	6900 ZZ	6902 ZZ	6002 ZZ	6004 ZZ	6006 ZZ	6206 ZZ	6207 ZZ	6208 ZZ	6209 ZZ
b	695 ZZ	697 ZZ	698 ZZ	6900 ZZ	6902 ZZ	6003 ZZ	6004 ZZ	6005 ZZ	6006 ZZ	6007 ZZ
С	D49585	D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D21623811
d	G8184	D10205	D15255	D15255	D20355	D30457	D30457	D35557	D40607	D45607

献	柚 刑 ((
田田 人			

										單位: kg	
型號	14	17	20	25	32	40	45	50	58	65	
質量 (kg)	0.66	0.94	1.38	2.1	4.4	7.3	9.8	13.9	19.4	26.5	

輸入軸型(2UJ)慣性力矩

表 198 -2

表 198 -3

表 108 1

記號	_	型號	14	17	20	25	32	40	45	50		65
慣性力矩	-1	×10 ⁻⁴ kg·m ²	0.025	0.059	0.137	0.320	1.20	3.41	5.80	9.95	20.5	35.5
1月1117772	J	×10 ⁻⁵ kgf·ms ²	0.026	0.060	0.140	0.327	1.22	3.48	5.92	10.2	20.9	36.2

輸入軸型(2UJ)起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

■ SHG 系列												
減速比	14	17	20	25	32	40	45	50	58	65		
50	5.7	9.7	14	22	41	72	94	_	_	_		
80	4.4	7.2	11	15	29	52	68	88	125	163		
100	3.7	6.5	9.9	14	27	47	60	80	113	147		
120	_	6.2	9.3	13	24	44	55	74	105	137		
160	_	_	8.6	12	23	39	50	66	94	122		

■ SHF 系列									表 198-4 單位:cN·m
減速比		17	20	25	32	40	45	50	58
30	6.8	11	19	26	63	_	_	_	_
50	5.7	9.7	14	22	41	72	94	125	178
80	4.4	7.2	11	15	29	52	68	88	125
100	3.7	6.5	9.9	14	27	47	60	80	113
120	_	6.2	9.3	13	24	44	55	74	105

輸入軸型(2UJ)加速起動轉矩 (相關用語說明·請參閱「技術資料」內容·)下表數值會因使用條件不同而異,僅作參考值之用。

表 198 -5 單位:N·m ■ SHG 系列

減速比	14	17	20	25	32	40	45	50	58	65
50	3.4	5.8	8.4	13	25	43	56	_	_	_
80	4.2	6.9	10	15	28	50	65	85	120	154
100	4.5	7.8	12	17	33	56	72	96	135	176
120	_	8.9	13	19	34	63	79	106	151	198
160	_	_	17	23	43	75	96	126	181	235

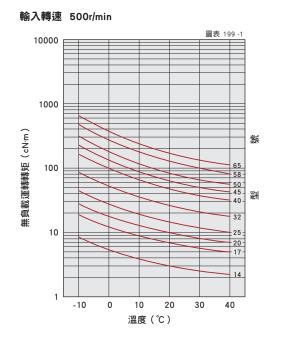
表 198-6 單位:N·m ■ SHF 系列 30 50 3.4 5.8 8.4 25 43 56 75 107 13 80 4.2 6.9 10 15 28 50 65 85 120 100 33 56 4.5 12 17 72 96 135 120 89 13 19 34 63 79 106 151 160 23 43 75 96 126 181

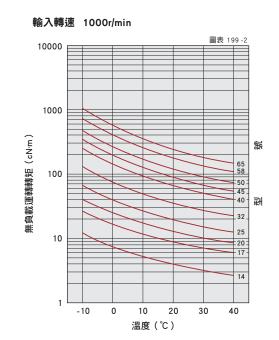
無負載運轉轉矩

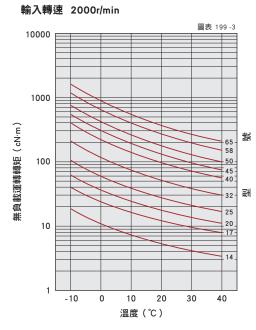
無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸 入端(高速軸端)的轉矩。

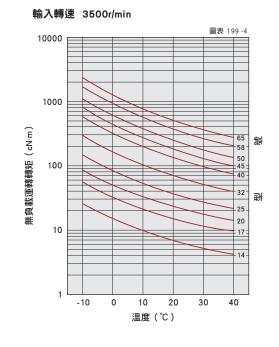
名稱	Harmonic 潤滑脂® SK-1A
	Harmonic 潤滑脂® SK-2
塗佈量	適當塗佈量
C	塗佈量)r/min 經 2 /

■減速比別修正量


模組型的無負載運轉轉矩會因減速比而變化。圖表 199-1 ~ 199-4 附輸入軸型的無負載運轉轉矩修正量 為減速比 100 時的數值。


關於其他減速比,請加上表 198-8 所示修正量後計算。

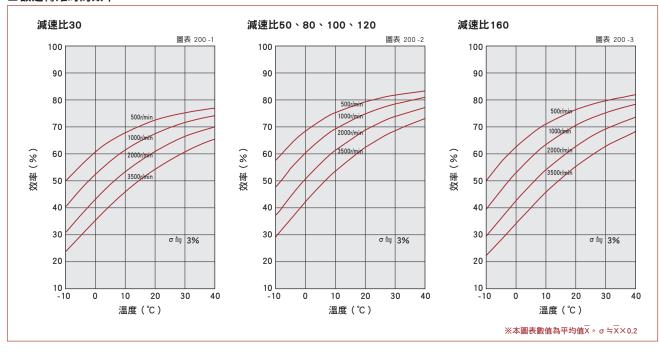

表 198 -8


門쀄八顆空	的制入軸空的無負載建特特定形正里 単位·cN·r										
減速比型號	30	50	80	120	160						
14	+2.6	+1.1	+0.2	_	_						
17	+4.1	+1.8	+0.4	-0.2	_						
20	+5.9	+2.6	+0.5	-0.4	-0.8						
25	+9.6	+4.2	+0.8	-0.6	-1.3						
32	+18.3	+8.0	+1.5	-1.1	-2.5						
40	_	+13.3	+2.4	-1.7	-4.0						
45	_	+18.2	+3.3	-2.4	-5.5						
50	_	+23.9	+4.3	-3.1	-7.2						
58	_	+34.6	+6.2	-4.4	-10.3						
65		-	+8.1	-5.8	-13.7						

■減速比 100 的無負載運轉轉矩

※本圖表數值為平均值X。 σ ≒X × 0.2

效率特性


效率因下列條件而異。

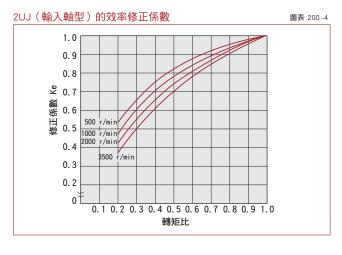
- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑劑種類與使用量)

測量條件

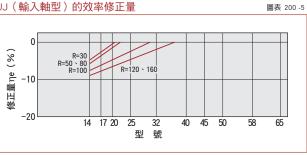
組裝	以建議組裝精度組裝後測量								
負載轉矩	額定表所示的	定表所示的額定轉矩(180、181 頁)							
	潤滑脂	名稱	Harmonic 潤滑脂 ® SK-1A						
潤滑條件	周	10円	Harmonic 潤滑脂 ® SK-2						
	//当/月	塗佈量	適當塗佈量						

■額定轉矩時的效率

■效率修正係數與效率修正量


依據負載轉矩的效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。 請依據圖表 200-1 求出修正係數 Ke。


※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

不同型號的效率修正量 -

模組型的輸入端裝有支撐軸承、油封。這些的影響程度會因型號而 異。不同型號額定轉矩時的效率修正量 ηe,請依據圖表 200-2 求 出。

2UJ(輸入軸型)的效率修正量

效率修正公式·

請由下列公式計算出「負載轉矩的效率修正係數」與「型號的效率 修正量」產生的效率。

公式 公式 200 -1

效率η=Ke×(ηR+ηe)

公式的記號 表 200 -2 效率 效率修正係數 參閱圖表 200-1 額定轉矩時的效率 參閱圖表 200-1 ~ 200-3 效率修正量 參閱圖表 200-2

輸入軸型(2UJ)輸入軸的容許負載

附輸入軸型的輸入軸是由 2 個單列深溝軸承所支撐。

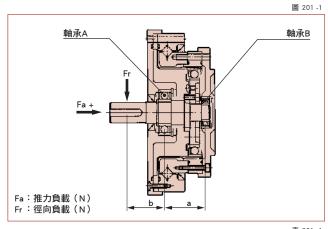
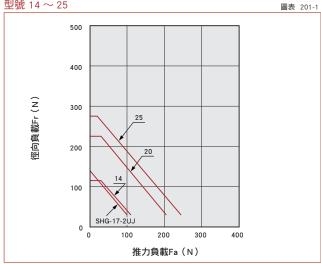
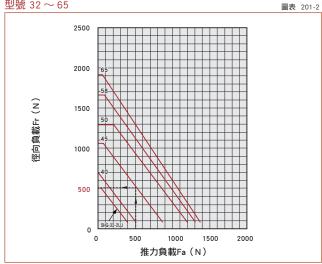

為充分發揮模組型的性能,請確認施加在輸入軸上的負重。

圖 201-1 為軸承的支撐點。『a』『b』尺寸請參閱表 201-1。此外, 下方圖表 201-1、201-2 則顯示不同型號的最大容許徑向負載與推 力負載的關係。

圖表 201-1、201-2 的值是在平均輸入轉速 2,000r/min、基本額定 壽命 L10=7,000h 時的值。

例:在 SHF-45-2UJ 的輸入軸上施加 500N 的推力負載 (Fa) 時,容 許最大徑向負載(Fr)的值為 400N。


※ 在結構上,當輸入軸上施加外力時則朝軸向方向動,這並非異常。

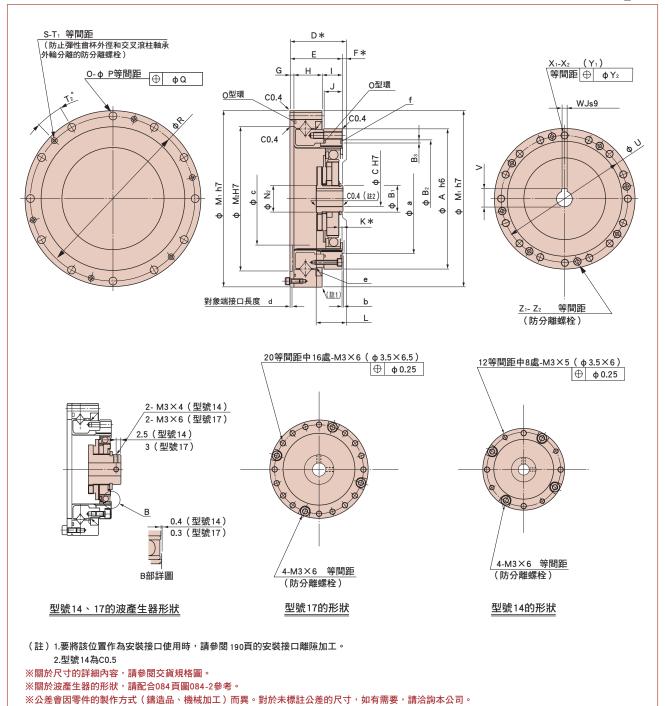

龄 7 邮价邮报担权

 輸入 	人軸的軸承規格 — — — — — — — — — — — — — — — — — — —											
		軸承 A			軸承B			b	最大徑向負載			
型號	型號	基本動額定負載	基本靜額定負載型號基		基本動額定負載	基本靜額定負載		b	取八江門只料			
	至抓	Cr (N)	Cor (N)	空弧	Cr (N)	Cor (N)	(mm)	(mm)	Fr (N)			
14	698ZZ	2240	910	695ZZ	1080	430	21.0	17.0	115			
17	6900ZZ	2700	1270	697ZZ	1610	710	23.5	19.0	140			
20	6902ZZ	4350	2260	698ZZ	2240	910	26.5	21.5	225			
25	6002ZZ	5600	2830	6900ZZ	2700	1270	28.0	25.5	275			
32	6004ZZ	9400	5000	6902ZZ	4350	2260	36.0	27.0	505			
40	6006ZZ	13200	8300	6003ZZ	6000	3250	43.0	32.5	705			
45	6206ZZ	19500	11300	6004ZZ	9400	5000	47.5	34.5	1060			
50	6207ZZ	25700	15300	6005ZZ	10100	5850	53.0	39.0	1290			
58	6208ZZ	29100	17900	6006ZZ	13200	8300	62.5	40.0	1665			
65	6209ZZ	31500	20400	6007ZZ	16000	10300	79.0	43.0	1915			

型號 14 ~ 25

型號 32 ~ 65

※請注意勿拆卸防分離螺栓。


技術資料 簡易模組型 (2SO、2SH)

簡易模組型(2SO)外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

圖 202 -1

簡易模組型(2SO)尺寸表

表 203 -1 單位:mm

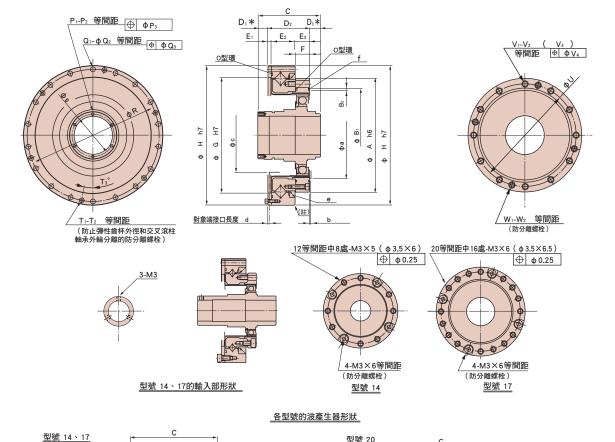
_												# 12 · 11111
記號	_	型號	14	17	20	25	32	40	45	50	58	65
	φAh	6	50	60	70	85	110	135	155	170	195	215
	φВ₁		14	18	21	26	26	32	32	32	40	48
	φВ₂		_	_	_			_	128	141	163	180.4
	φВ₃		_	_	_	_	_	_	2.7	2.7	2.7	2.7
		標準 (H7)	6	8	9	11	14	14	19	19	22	24
	φС	最大尺寸	8	10	13	15	16	20	20	20	25	30
		SHF 系列	28.5 0	32.5 0	33.5 -1.0	37 -1.1	44 -1.1	53 -1.1	58 _{-1.2}	64 -1.3	75.5 ⁰	-
	D *	SHG 系列	28.5 0	32.5 0	33.5 0	37 _{-0.5}	44 -0.6	53 _{-0.6}	58 _{-0.6}	64 -0.7	75.5 _{-0.7}	83 0
	Е	•	23.5	26.5	29	34	42	51	56.5	63	73	81.5
	F *		5	6	4.5	3	2	2	1.5	1	2.5	1.5
	G		2.4	3	3	3.3	3.6	4	4.5	5	5.8	6.5
	Н		14.1	16	17.5	18.7	23.4	29	32	34	40.2	43
	1		7	7.5	8.5	12	15	18	20	24	27	32
	J		6	6.5	7.5	10	14	17	19	22	25	29
	K *	SHF 系列	0.4	0.3	0.1	2.1	2.5	3.3	3.7	4.2	4.8	_
	K A	SHG 系列	1.4	1.6	1.5	3.5	4.2	5.6	6.3	7	8.2	9.5
		SHF 系列	17.6 -0.1	19.5 -0.1	20.1 -0.1	20.2 -0.1	22 -0.1	27.5 -0.1	27.9 -0.1	32 -0.1	34.9 -0.1	_
	L	SHG 系列	18.5 -0.1	20.7 -0.1	21.5 -0.1	21.6 -0.1	23.6 -0.1	29.7 -0.1	30.5 -0.1	34.8 -0.1	38.3 -0.1	44.6 -0.1
	φМ₁	h7	70	80	90	110	142	170	190	214	240	276
	фМ2	H7	48	60	70	88	114	140	158	175	203	232
	φN2		_	_	_	_	_	32	_	32	_	48
	0		8	12	12	12	12	12	18	12	16	16
	φР		3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
	φQ		0.25	0.25	0.25	0.25	0.25	0.3	0.3	0.5	0.5	0.5
	φR		64	74	84	102	132	158	180	200	226	258
	S		2	4	4	4	4	6	6	6	8	8
	T ₁		M3×6	M3×6	M3×8	M3×8	M4×8	M4×10	M4×8	M5×12	M5×12	M6×16
	T ₂ ()	角度)	22.5°	15°	15°	15°	15°	15°	10°	15°	11.25°	11.25°
	φU		44	54	62	77	100	122	140	154	178	195
	V		_	_	10.4	12.8	16.3	16.3	21.8	21.8	24.8	27.3
	W Js	9	_	_	3	4	5	5	6	6	6	8
	X ₁		12 等間距中 8 處	20 等間距中 16 處	16	16	16	16	12	16	12	16
	X ₂		M3×5	M3×6	M3×6	M4×7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
	Y1		φ3.5×6	ф3.5×6.5	φ3.5×7.5	φ4.5×10	φ5.5×14	ф6.6×17	φ9×19	φ9×22	φ11×25	φ11×29
	Y ₂		0.25	0.25	0.25	0.25	0.25	0.3	0.5	0.5	0.5	0.5
	Z ₁		4	4	4	4	4	4	4	8	6	8
	Z ₂		M3×6	M3×6	M3×8	M3×10	M4×16	M5×20	M5×20	M5×25	M6×25	M6×30
1/4/ ±0 3 F2 ±	фа		38	45	53	66	86	106	119	133	154	172
機殼內壁	b		1	1	1.5	1.5	1.5	2	2	2	2.5	2.5
	фс		31	38	45	56	73	90	101	113	131	150
	d		1.7	2.1	2	2	2	2	2.3	2.5	2.9	3.5
	е		D49585	D59685	D69785	D84945	D1101226	D1321467	D1521707	D1681868	D1932129	D21623811
	f								d1 121.5 d2 2.0	S135	d1 157.0 d2 2.0	S175
												20011111

●下述尺寸可變更或追加加工。

波產生器:尺寸 C 彈性齒杯:尺寸 O、P 剛性齒輪:尺寸 X₁、X₂

- ●*記號的尺寸 D、F、K 尺寸為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛 性齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。
- ●型號 14 ~ 40 的剛性齒輪上沒有密封用的 O 型環溝(記號:f),因此在設計、安裝時請 充分採取密封對策。
- ●由於彈性齒杯會彈性變形,為了避免與機殼接觸,內壁的尺寸請保持在 фa、b、φc 以上, ● 由於弹性國科音彈性變形,為了避免與性 且勿超過尺寸 d。 ● 產品交貨時,波產生器為已拆卸狀態。

簡易模組型(2SO)質量

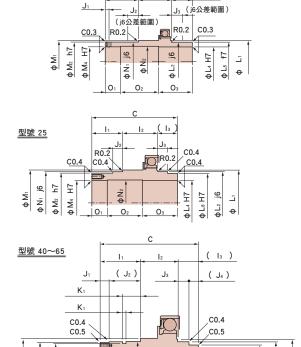

表 203 -2

型號記號	14	17	20	25	32	40	45	50	58	65
質量 (kg)	0.41	0.57	0.81	1.31	2.94	5.1	6.5	9.6	13.5	19.5

簡易模組型(2SH)外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。 URL:https://www.hds.co.jp/

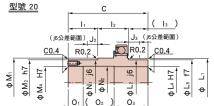
圖 204 -1

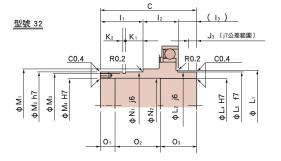

φL₂ j6

0

ф L₄ Н7

φL₃h9


C0.4



O₂

Оз

(13)

- (註)要將該位置作為安裝接口使用時,請參 閱190頁的安裝接口離隙加工。
- ※關於尺寸的詳細內容,請參閱交貨規格圖。 特別是波產生器的形狀,因各型號皆不同,請務必參閱 交貨規格圖內容。(請配合084頁圖084.2參考。) ※公差會因零件的製作方式(鑄造品、機械加工)而異。 對於未標註公差的尺寸,如有需要,請洽詢本公司。
- ※請注意勿拆卸防分離螺栓。

φM₂ h7

φW

도 C0.4

φ

簡易模組型(2SH)尺寸表

表 205 -1 單位:mm

	型號										
			17	20	25	32	40		50	58	
	φA h6	50	60	70	85	110	135	155	170	195	215
	φВ ₁	_	_	_	_	-	_	128	141	163	180.4
	B ₂	_		_	_	_	_	2.7	2.7	2.7	2.7
	С	52.5 _{-0.1}	56.5 ⁰	51.5 0 -0.1	55.5 ⁰ -0.1	65.5 ⁰	79 -0.1	85 _{-0.1}	93 -0.1	106 -0.1	128 -0.1
	SHF	16 ^{+0.8}	16 ^{+0.9}	9.5 +1.0	10 +1.1	12 +1.1	13 +1.1	13.5 +1.2	15 ^{+1.3}	16 ^{+1.3}	21 +1.3
	D ₁ * SHG	16 ^{+0.4}	16 ^{+0.4}	9.5 +0.4	10 +0.5	12 ^{+0.6}	13 +0.6	13.5 +0.6	15 ^{+0.7}	16 ^{+0.7}	21 +0.7
	D ₂	23.5	26.5	29	34	42	51	56.5	63	73	81.5
	D ₃ *	13	14	13	11.5	11.5	15	15	15	17	25.5
	E ₁	2.4	3	3	3.3	3.6	4	4.5	5	5.8	6.5
	E ₂	14.1	16	17.5	18.7	23.4	29	32	34	40.2	43
	E ₃	7	7.5	8.5	12	15	18	20	24	27	32
	F	6	6.5	7.5	10	14	17	19	22	25	29
	фG H6	48	60	70	88	114	140	158	175	203	232
	φH h6	70	80	90	110	142	170	190	214	240	276
	SHF	20±0.1	21.5±0.1	19±0.1	20±0.1	29±0.1	34±0.1 28±0.1	35±0.1	39.5±0.1	45.3±0.1	54.5±0.1
	I ₂ SHG	20±0.1	21.5±0.1	20±0.1	22.5±0.1	23.5±0.1	28.5±0.1	32.5±0.1	36±0.1	40.7±0.1	_
	SHF						(17)				
	I ₃ SHG	(12.5)	(13.5)	(12.5)	(13)	(13)	(16.5)	(17.5)	(17.5)	(20)	_
	J ₁	2.5	2.5	_		_	_	8	9	10	14
	J ₂	7	7	7	6.5	_	_	(27)	(30.5)	(35.3)	(40.5)
	J ₃	7	7	7	6.5	_	9.5	9.5	9.5	12.5	11.5
	SHF		_		_		(7.5)	(8)	(8)	(75)	(115)
	J ₄ SHG		_		_	_	(7)	(8)	(8)	(7.5)	(11.5)
	K ₁	_	_	_	_	13.9	15.1	15.6	18.6	21.1	23.1
· · · · · · · · · · · · · · · · · · ·	K ₂					1.9	2.2	2.7	2.7	3.2	3.1
	φL ₁	22	27	32	42	47	62	69	79	90	106
ŀ	φL ₂ j6	20	25	30	40	45	60	65	75	85	100
}	φL ₃ h9		_	_	38	_	59	59	69	84	96
	φL ₄ H7 φL ₅ f7	14 20	19 25	21 30		36 45	46 —	52 —	60 —	70 —	80
	ΦМ1	22	27	32	42	49	65	70	80	91.5	111
ł	φM ₂ h7	20	25	30	38	45	59	64	74	84	96
ŀ	фМ3		_	_	_	42.5	57	62	72	81.5	96.5
}	φM ₄ H7	14	19	21	29	36	46	52	60	70	80
	φΝ1 ј6	20	25	30	40	45	60	65	75	85	100
	φN ₂	14.5	19.5	21.5	29.5	36.5	46.5	52.5	60.5	70.5	80.5
	O ₁	10	10	10	10	10	12	15	15	15	20
ļ	O ₂	22.5	24.5	(19.5)	22.5	(30.5)	(35)	35	41	48	54
	O ₃	20	22	22	23	25	32	35	37	43	54
	P ₁	3	3	6	6	6	6	6	6	8	6
	P ₂ ΦP ₃	M3 —	M3 —	M3×6 0.25	M3×6 0.25	M3×6 0.25	M4×8 0.25	M4×8 0.25	M4×8 0.25	M4×8 0.25	M5×10 0.25
	Q ₁	8	12	12	12	12	12	18	12	16	16
	φQ ₂	3.5	3.5	3.5	4.5	5.5	6.6	6.6	9	9	11
	φQ ₃	0.25	0.25	0.25	0.25	0.25	0.3	0.3	0.5	0.5	0.5
	φR	64	74	84	102	132	158	180	200	226	258
	φS	_	_	25.5	33.5	40.5	52	58	67	77	88
	T ₁	2	4	4	4	4	6	6	6	8	8
	T ₂	M3×6	M3×6	M3×8	M3×8	M4×8	M4×10	M4×10	M5×12	M5×12	M6×16
	T3 (角度)	22.5°	15°	15°	15°	15°	15°	10°	15°	11.25°	11.25°
	фU	44	54	62	77	100	122	140	154	178	195
	V ₁	12 等間距中 8 處	20 等間距中 16 處	16	16	16	16	12	16	12	16
	V ₂	M3×5	M3×6	M3×6	M4X7	M5×8	M6×10	M8×10	M8×11	M10×15	M10×15
	V ₃	φ3.5×6 0.25	φ3.5×6.5 0.25	φ3.5×7.5 0.25	φ4.5×10 0.25	φ5.5×14 0.25	φ6.6×17 0.3	ф9×19 0.5	φ9×22 0.5	φ11×25 0.5	φ11×29 0.5
	W ₁	4	4	4	4	4	4	4	8	6	8
	W ₂	M3×6	M3×6	M3×8	M3×10	M4×16	M5×20	M5×20	M5×25	M6×25	M6×30
	фа	38	45	53	66	86	106	119	133	154	172
			1	1.5	1.5	1.5	2	2	2	2.5	2.5
[b	1									
機殼內壁		31	38	45	56	73	90	101	113	131	150
機殼內壁	b				56 2	73 2	90	101 2.3	113 2.5		150 3.5
機殼內壁	b фc	31	38	45						131	

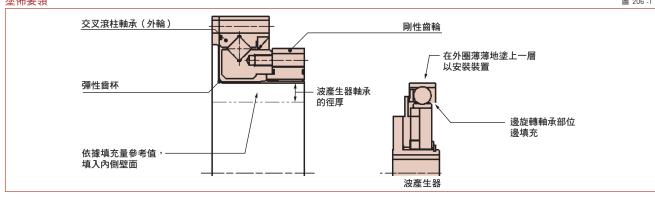
- ●由於彈性齒杯會彈性變形,為了避免與機殼接觸,內壁的尺寸請保持在 φa、b、φc以上,且勿超過尺寸 d。
- * 記號的尺寸 D₁、D₃ 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪) 軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。
- ●型號 14 ~ 40 的剛性齒輪上沒有密封用的 O 型環溝(記號:f),因此在設計、安裝時請充分採取密封對策。
- ●產品交貨時,波產生器為已拆卸狀態。

簡易模組型(2SH)質 量

表 206 -1

										単Ⅲ・K
型號記號	14	17	20	25	32	40	45	50	58	65
質量 (kg)	0.45	0.63	0.89	1.44	3.1	5.4	6.9	10.2	14.1	20.9

潤 滑


簡易模組型的標準潤滑方式為潤滑脂潤滑。潤滑劑的詳情,請參閱 016 頁「技術資料」內容。

塗佈要領

簡易模組型出貨時交叉滾柱軸承的外輪及彈性齒杯為暫時固定。

除齒槽以外並未封入潤滑脂,因此請依照下述塗佈要領塗佈潤滑脂。

塗佈要領 圖 206 -1

塗佈量 -表 206 -2

											単位・9
使用方法	型號	14	17	20	25	32	40	45	50	58	65
水平	使用	5.8	11	18	32	64	120	185	235	385	495
垂直体田	輸出軸朝上	7.5	13	19	37	74	130	200	255	400	530
垂直使用	輸出軸朝下	8.9	15	22	42	84	150	230	290	480	630

潤滑脂更換時期 -

潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。

潤滑脂性能會隨溫度而變化,越高溫越容易劣化,需要儘早更換。右方圖表是根據平均負載轉矩低於額定轉矩時,潤滑脂溫度與波產生器 總旋轉數關連性所表示的更換時期基準。當平均負載轉矩超過額定轉矩,可依下列公式計算更換時期。

平均負載轉矩超過額定轉矩時的公式

公式 206 -1

|--|

※ 波產生器的壽命,係指受損機率 10%

公式的記號

表 206 -3 超過額定轉矩的更換時期 轉數 未超過額定轉矩的更換時期 轉數 參閱左圖 額定轉矩 參閱 180.181 頁額定表 N·m, kgf·m 輸出端的平均負載轉矩 公式:參閱 014 頁

■其他注意事項

- 1. 切忌與其他潤滑脂混用。此外,Harmonic Drive®應先安裝至單獨 機殼後再組裝至裝置。
- 2. Harmonic Drive® 在波產生器朝上(參閱 050 頁圖 050-2)的狀態, 且一定負載往單一方向低速旋轉(輸入轉速:1000r/min 以下)使 用時,可能造成潤滑不良,若於此使用情形時,請洽詢本公司營 業據點。
- 3. 波產生器朝上或朝下(參閱 094 頁、圖 094-2)使用時,請在波 產生器與輸入蓋(馬達凸緣)的間隙上充分加滿潤滑脂。

簡易模組型組裝精度

為充分發揮 2SO 模組型的優異性能,應確保圖 207-1、表 207-1 所示之建議精度。

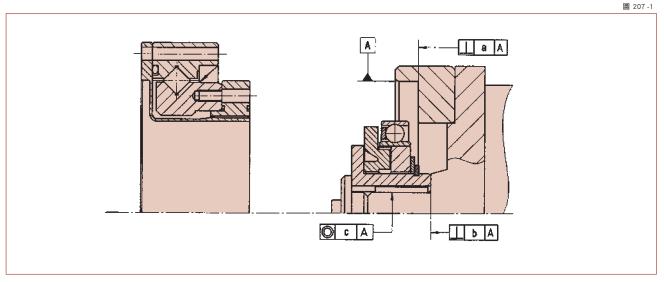
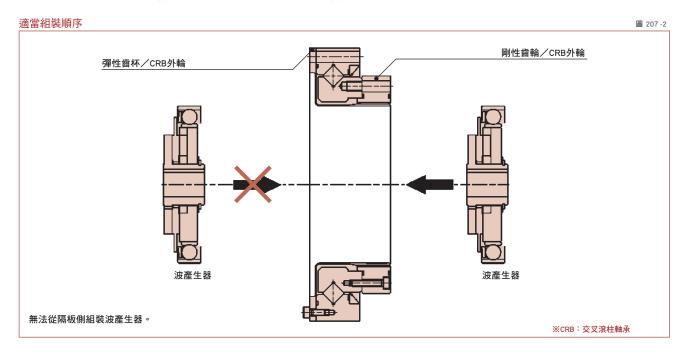


表 207 -1 單位:mm

尺寸	14	17	20	25	32	40	45	50	58
a	0.011	0.015	0.017	0.024	0.026	0.026	0.027	0.028	0.031
l.	0.017	0.020	0.020	0.024	0.024	0.024	0.032	0.032	0.032
b	(0.008)	(0.010)	(0.010)	(0.012)	(0.012)	(0.012)	(0.012)	(0.015)	(0.015)
_	0.030	0.034	0.044	0.047	0.047	0.050	0.063	0.066	0.068
С	(0.016)	(0.018)	(0.019)	(0.022)	(0.022)	(0.022)	(0.024)	(0.030)	(0.033)


※()內為剛性型波產生器的數值(沒有 Oldham 聯結器機構)

組裝注意事項

■組裝順序

將剛性齒輪及彈性齒杯安裝至裝置後,組裝波產生器。

若用其他方法組裝,可能造成齒輪嚙合空轉狀態(參閱029頁),齒面損傷。務請注意。

■組裝注意事項

Harmonic Drive®可能因組裝時的不良,產生震動或異音。組裝時,應避免對波產生器軸承過度施力。

波產生器注意事項 -

- 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可順利插入。
- 2. 沒有 Oldham 機構的波產生器,尤應注意讓偏心、垂直的影響保持 在建議值範圍內(參閱 207 頁「組裝精度」)。

剛性齒輪注意事項 -

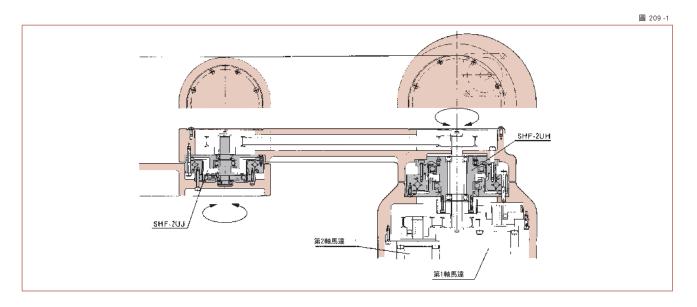
- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查剛性齒輪組裝進外殼後是否可旋轉,有無干涉卡住。
- 5. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與剛性齒輪干涉,導致螺栓旋轉困難。
- 6. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 7. 盡量避免釘扎剛性齒輪,以免降低旋轉精度。

彈性齒杯注意事項

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 檢查外殼組裝部是否針對彈性齒杯彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與彈性齒杯干涉,導致螺栓旋轉困難。
- 5. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 6. 檢查彈性齒杯與剛性齒輪組合時,有無極度偏往單側、嚙合不良的情形。如果偏往單側,應為該兩個零件出現偏心或垂直。

防鏽對策 -

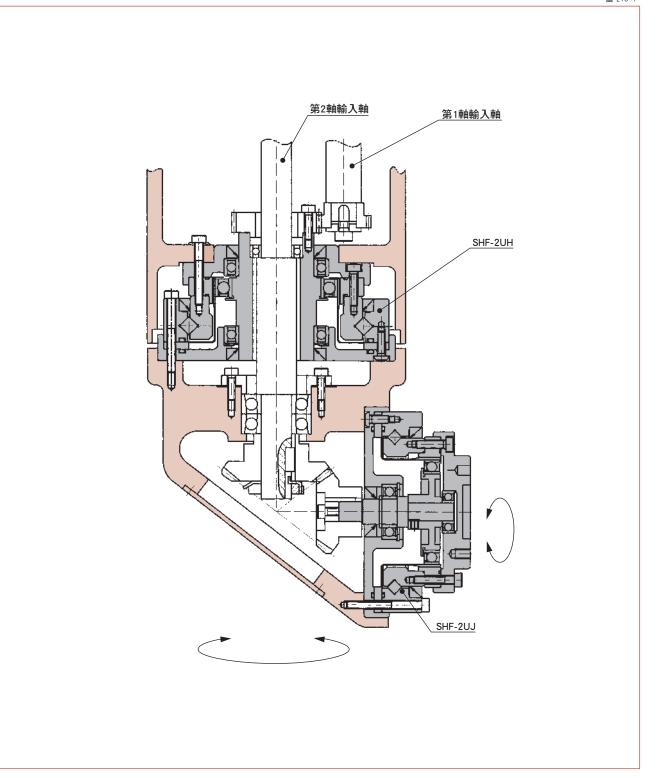
模組型表面並無防鏽處理。


如需防鏽,應塗佈防鏽劑。

另外,如需本公司進行防鏽表面處理,請洽詢本公司。

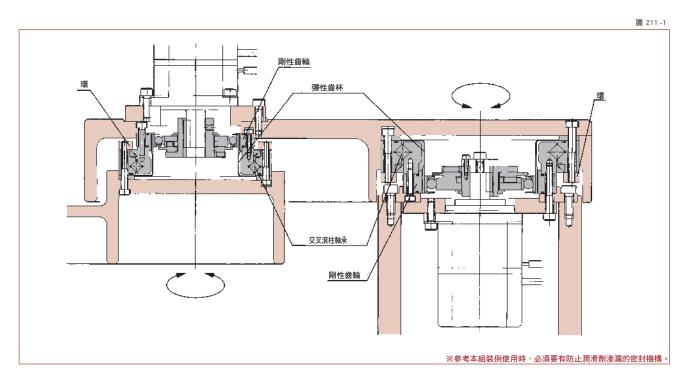
應用案例■

在 SCARA 型機械手臂基本 2 軸上,組裝中空型(2UH)與附輸入軸型(2UJ)的例子


利用第 1 軸 SHF-2UH 的中空孔,將第 2 軸 SHF-2UJ 的馬達放在基座內,藉此減輕第 1 軸的慣性負載,同時臂部設計也愈加智慧。組合模組型的設計可以減低組裝工時,也容易保證組裝精度。

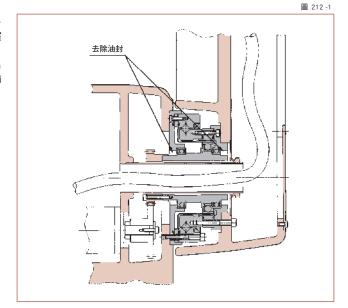
在直角坐標機器人的手腕軸上,組裝中空型(2UH)與附輸入軸型(2UJ)的例子

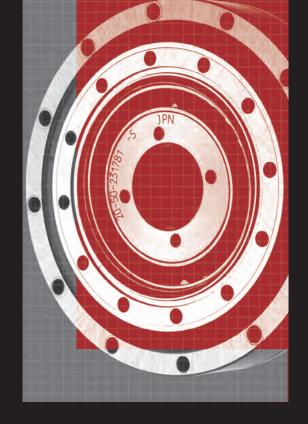
為實現直角坐標機器人的動態動作,需要減少直行軸上的重量。因此,手腕軸必須要輕量、小型。 在此使用例中,藉由將驅動馬達安置在手腕軸的外側,減輕了手腕軸整體的重量。


圖 210 -1

在 SCARA 型機械手臂基本 2 軸上,組裝簡易模組型(2SO)(沒有輸出輸入凸緣的類型)的例子-

本類型是取消模組型的輸入、輸出凸緣,以降低總成本的簡易模組型產品。


※ 關於此種剛性齒輪、彈性齒杯、交叉滾柱軸承組裝狀態下的交貨,請洽詢本公司。 交叉滾柱軸承的外輪沒有進行螺孔加工,因此本公司準備了如圖中的環。請在螺栓的安裝方向受限時使用。

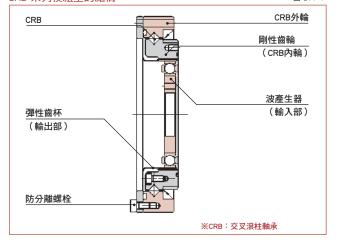


■中空型(2UH)的省略油封的使用例

中空型 2UH 在輸入軸(高速旋轉側)上使用油封而成為密封的模組。 而且,為確保中空結構使用了大直徑的油封。因此,可能因為摩擦 損耗而導致溫度上升。

在這種情形下,若可能容許些許的潤滑脂滲漏到輸入軸側,在輸出 軸及外殼側(低速旋轉側)以潤滑脂密封,則也可採取省略模組輸 出入兩端油封的使用方法。檢討時請洽詢本公司。

SHD系列


Unit Type SHD		
ち 徴	21	Δ
	21	
	21	
汉则 兵 行	額定表	
	SHD-2SH (簡易模組型) 外觀圖 ········ 21	
	SHD-2SH (簡易模組型) 尺寸表 ········· 21	
	SHD-2UH (模組型) 外觀圖 ············· 21	
	SHD-2UH (模組型) 尺寸表 ·············· 21	
	角傳動精度······· 21	
	遅滞損失····································	
	剛性 (彈簧常數)	
	簡易模組型 (2SH) 起動轉矩············ 22	
	模組型 (2UH) 起動轉矩 ··············· 22	
	簡易模組型 (2SH) 加速起動轉矩 22	
	模組型 (2UH) 加速起動轉矩 ············· 22	
	聚脫轉矩····································	
	屈曲轉矩 ····································	
	無負載運轉轉矩 22	
	無貝載建特特及 ***************** 22 SHD-2SH (簡易模組型) 效率特性 ***** 22	
	SHD-2UH (模組型) 效率特性 22	
	主軸承規格 22	
統目#4931/2011/ 5		
間易候租空(25円)言	x計指用22 組装精度22	
±≒∜□∓Ⅱ / ⊃↓ Ⅱ⊔ 〉 ≅∿≅±÷	档表有反 ········22 指南 ·······23	
侯祖空 (20N) 設計:	· 輸出部與固定部 ······· 23	
	安裝及傳動轉矩	
	 	
	サース	
	安装接口離	
	波库主品的推力 ······· 23 潤 滑 ······ 23	
	組裝注意事項 23	۲4

特徵

SHD 系列模組型的結構

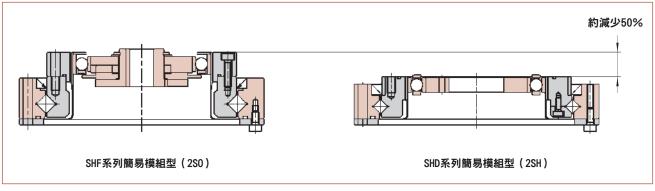
圖 214 -1

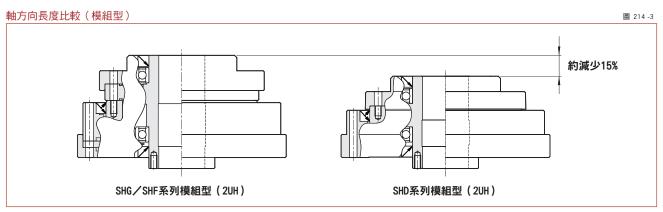
■SHD 系列模組型

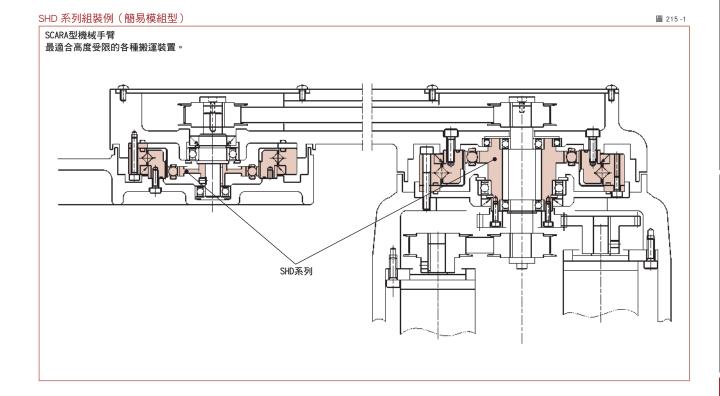
SHD 系列模組型追求極致薄型。

簡易模組型(2SH)與 SHG / SHF 系列相比,軸方向的長度大約縮短 50%。

模組型(2UH)除了薄型外,還藉由採用鋁合金而大幅地實現輕量化。


輕量、超薄型、大口徑中空孔,成功地發揮了 Harmonic Drive® 所具有的形狀優點的極限。


SHD 系列的特徵


- ■超薄型形狀、中空結構
- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸
- ■簡易模組型與模組型的2機種種類

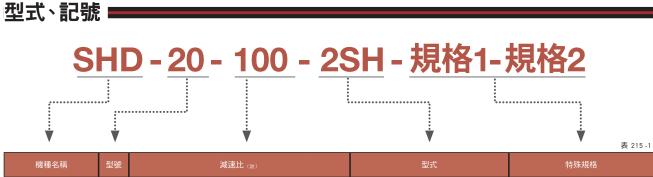

軸方向長度比較(簡易模組型)

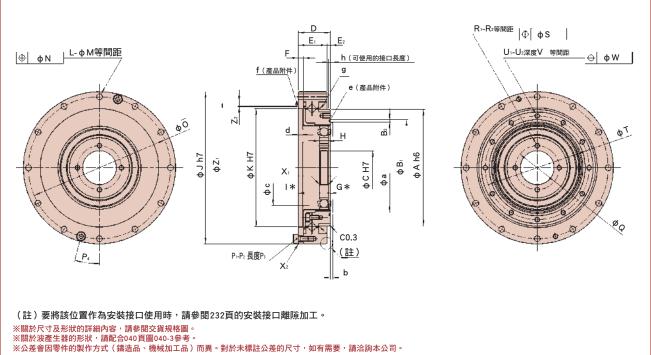
圖 214 -2

機種名稱	型號			減速比 (註)			型式	特殊規格		
	14	50	80	100	_	_	2SH=簡易模組型 2UH=模組型			
	17	50	80	100	120	_		LW=輕量型 SP=形狀或性能等特殊規格		
CLID	20	50	80	100	120	160				
SHD	25	50	80	100	120	160		5P-形放以性能等待然规格 無記載=標準品		
	32	50	80	100	120	160		**************************************		
	40	50	80	100	120	160				

技術資料 ===

額定表

表 216 -1


型號	減速比	輸入 2000r/min 時的額定轉矩		起動、停止時的 容許峰值轉矩		平均負載轉矩的 容許最大值		瞬間容許最大轉矩		容許最高輸入 轉速 r/min	容許平均輸入 轉速 r/min	慣性力矩 (2SH/ 簡易模組型)		慣性力矩 (2UH/ 模組型)	
			kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	潤滑脂	潤滑脂	l X10⁴kg·m²	J X10 ^{.5} kgf⋅m²	l X10⁴kg·m²	J X10 ⁻⁵ kgf⋅ms²
	50	3.7	0.38	12	1.2	4.8	0.49	23	2.3	8500	3500	0.021	0.021	0.064	0.065
14	80	5.4	0.55	16	1.6	7.7	0.79	35	3.6						
	100	5.4	0.55	19	1.9	7.7	0.79	35	3.6						
	50	11	1.1	23	2.3	18	1.8	48	4.9	- - 7300 -	3500	0.054	0.055	0.141	0.144
17	80	15	1.5	29	3.0	19	1.9	61	6.2						
	100	16	1.6	37	3.8	27	2.8	71	7.2						
	120	16	1.6	37	3.8	27	2.8	71	7.2						
	50	17	1.7	39	4.0	24	2.4	69	7.0	6500	3500	0.090	0.092	0.271	0.276
	80	24	2.4	51	5.2	33	3.4	89	9.1						
20	100	28	2.9	57	5.8	34	3.5	95	9.7						
	120	28	2.9	60	6.1	34	3.5	95	9.7						
	160	28	2.9	64	6.5	34	3.5	95	9.7						
	50	27	2.8	69	7.0	38	3.9	127	13	5600	3500	0.282	0.288	0.793	0.809
	80	44	4.5	96	9.8	60	6.1	179	18						
25	100	47	4.8	110	11	75	7.6	184	19						
	120	47	4.8	117	12	75	7.6	204	21						
	160	47	4.8	123	13	75 75	7.6 7.6	204	21 27						
	50 80	53 83	5.4 8.5	151 213	15 22	117	1.6	268 398		4800	3500	1.09	1.11	2.900	2.957
32	100	96	9.8	233	24	151	15	420	41						
32	120	96	9.8	247	25	151	15	445	45						
	160	96	9.8	261	27	151	15	445	45						
	50	96	9.8	281	29	137	14	480	49						
	80	144	15	364	37	198	20	686	70	4000	3000	2.85	2.91	7.432	7.578
40	100	185	19	398	41	260	27	700	71						
40	120	205	21	432	44	315	32	765	78						
	160	206	21	453	46	316	32	765	78						
	100		'		.0	510	UL	. 50	.0						

SHD-2SH(簡易模組型)外觀圖

本產品的 CAD 數據(DXF)可由本公司官網下載。

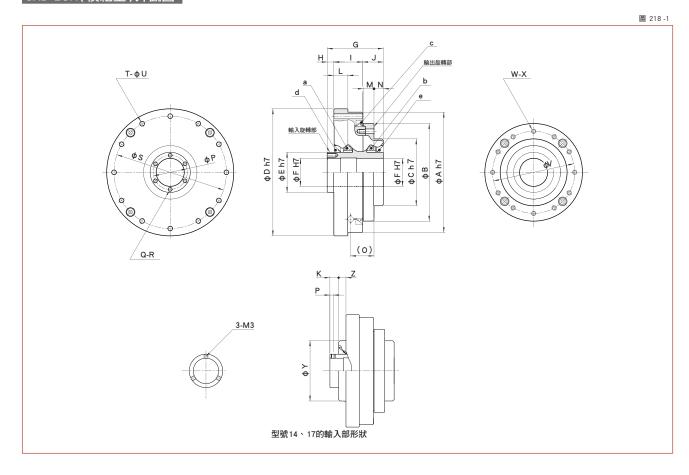
URL: https://www.hds.co.jp/

圖 216 -1

⁻(註)1. 慣性力矩 I= ½ GD² 2. 相關用語詳情[,]請參閱 012 頁「技術資料」內容。

SHD-2SH(簡易模組型)尺寸表

表 217-1 單位:mm


							単1☑・r
記號	型號		17	20	25	32	40
	φA h6	49 -0.016	59 _{-0.019}	69 _{-0.019}	84 0.022	110 .0.022	132 -0.025
	φВι	39.1 ^{+0.1}	48 +0.1	56.8 ^{+0.1}	70.5 +0.1	92 +0.1	112.4 +0.1
	B ₂	0.8 +0.15	1.1 +0.25	1.4 ^{+0.25}	1.7 +0.25	2 +0.25	2.2 +0.25
	фС Н7	11 ^{+0.018}	15 ^{+0.018}	20 +0.021	24 +0.021	32 ^{+0.025}	40 +0.025
	D	17.5±0.1	18.5±0.1	19±0.1	22±0.1	27.9±0.1	33±0.1
	E ₁	15.5	16.5	17	20	23.6	28
	E ₂	2	2	2	2	4.3	5
	F	2.4	3	3	3.3	3.6	4
	G *	1.8	1.6	1.2	0.4	0.6	0.8
	Н	4 0-0.1	5 0 -0.1	5.2 0 -0.1	6.3 0	8.6 _{-0.1}	10.3 0
	*	15.7 0	16.9 0.2	17.8 0	21.6 0	27.3 0.0.2	32.2 0
	фJ h7	70 0.030	80 0 -0.030	90 0	110 0	142 -0.040	170 0
	φК Н7	50 ^{+0.025}	61 ^{+0.030}	71 +0.030	88 ^{+0.035}	114 +0.035	140 +0.040
	L	8	12	12	12	12	12
	фМ	3.5	3.5	3.5	4.5	5.5	6.6
	ΦN	0.25	0.25	0.25	0.25	0.25	0.3
	фО	64	74	84	102	132	158
	Ψ0 P1	2	2	2	4	4	4
	P ₂	M3	M3	M3	M3	M4	M4
	P ₃	6	6	8	8	8	10
	P ₄	22.5°	15°	15°	15°	15°	15°
	φQ	17	21	26	30	40	50
	Rı	4	4	4	4	4	4
	R ₂	M3	M3	M3	M3	M4	M5
	фЅ	0.25	0.25	0.25	0.25	0.25	0.25
	φТ	43	52	61.4	76	99	120
	U ₁	8	12	12	12	12	12
	U ₂	M3	M3	M3	M4	M5	M6
	V	4.5	4.5	4.5	6	8	9
	φW	0.25	0.25	0.25	0.25	0.25	0.3
	X ₁	C0.4	C0.4	C0.5	C0.5	C0.5	C0.5
	X ₂	C0.4	C0.4	C0.5	C0.5	C0.5	C0.5
	Z 1	57 ^{+0.1}	68.1 ^{+0.1}	78 ^{+0.1}	94.8 +0.1	123 +0.1	148 +0.1
	Z ₂	2 +0.25	2 +0.25	2.7 +0.25	2.4 +0.25	2.7 +0.25	2.7 +0.25
	фа	36.5	45	53	66	86	106
(±11 P∴	b	1	1	1.5	1.5	2	2.5
殼內壁	фс	31	38	45	56	73	90
	d	1.4	1.8	1.7	1.8	1.8	1.8
	е	d37.1d0.6	d45.4d0.8	d53.28d0.99	d66.5d1.3	d87.5d1.5	d107.5d1.6
	f	d54.38d1.19	d64.0d1.5	d72.0d2.0	d88.62d1.78	d117.0d2.0	d142d2.0
	g	D49585	D59685	D69785	D84945	D1101226	D1321467
	h	1.5	1.5	1.5	1.5	3.3	4
	質量(kg)	0.33	0.42	0.52	0.91	1.87	3.09

●下述尺寸可變更或追加加工。

波產生器:尺寸C 彈性齒杯:尺寸O、P 剛性齒輪:Xı•X₂尺寸

- ◆*記號的尺寸 G、I 為構成 Harmonic Drive®三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。◆由於彈性齒杯會彈性變形,為了避免與機殼接觸,內壁的尺寸請保持在 фа、b、фс以上,
- 且勿超過尺寸d。
- ●產品交貨時,波產生器為已拆卸狀態。

SHD-2UH(模組型) 外觀圖

SHD-2UH(模組型)尺寸表

表 218 -1

						單位:mn
型號 記號	14	17	20	25	32	40
φA h7	70	80	90	110	142	170
φВ	52	62	73	87	114	137
φC h7	36	45	50	60	75	100
φD h7	74	84	95	115	147	175
φE h7	20	25	30	38	54	64
φF H7	14	19	21	29	41	51
G	45.5	48	42	46.5	55	65
Н	12	12	5	6	7	8
I	19.5	20.5	21.5	24	28.6	33
J	14	15.5	15.5	16.5	19.4	24
K	6.5	6.5	_	_	_	_
L	9	10	10.5	10.5	12	14
М	7	8	8	10	11	14
N	6.5	7	7	6	7.5	9
0	16.6	18	17.5	20.6	24.9	29.5
фР (Р)	(2.5)	(2.5)	25.5	33.5	48	57
Q	3	3	6	6	6	6
R	M3	M3	M3×6	M3×6	M3×6	M4×8
фЅ	64	74	84	102	132	158
T	8	12	12	12	12	12
φИ	3.5	3.5	3.5	4.5	5.5	6.6
φ۷	43	52	61.4	76	99	120
W	8	12	12	12	12	12
	M3×4.5	M3×4.5	M3×4.5	M4×6	M5×8	M6×9
X	ф3.5×5.5	ф3.5×6.5	ф3.5×6.5	φ4.5×8.5	φ5.5×7.6	φ6.6×10
φΥ	36	45	_	_	_	_
Z	5.5	5.5	_	_	_	-
a	6804ZZ	6805ZZ	6806ZZ	6808ZZ	6811ZZ	6813ZZ
b	6804ZZ	6805ZZ	6806ZZ	6808ZZ	6810ZZ	6813ZZ
С	D49585	D59685	D69785	D84945	D1101226	D1321467
d	S20304.5	S25356	S30405	S38475	S54645	S64745
e	S20304.5	S25356	S30405	S38475	S50605	S64745
質量 (kg)	0.49	0.66	0.84	1.4	2.7	4.6

角傳動精度 (相關用語說明・請參閱「技術資料」內容。)

表 219 -1 單位:×10⁻⁴rad(arc-min)

	型號	14	17	20	25	32	40
会/ 亩≤4≤□⇒	×10⁴rad	4.4	4.4	2.9	2.9	2.9	2.9
角傳動誤差	arc-min	1.5	1.5	1.0	1.0	1.0	1.0

遲滯損失 (相關用語說明・請參閱「技術資料」內容。)

表 219 -2

減速比	型號		17	20	25	32	40
50	×10⁴rad	7.3	5.8	5.8	5.8	5.8	5.8
50	arc-min	2.5	2.0	2.0	2.0	2.0	2.0
80 以上	×10⁴rad	5.8	2.9	2.9	2.9	2.9	2.9
00 以上	arc-min	2.0	1.0	1.0	1.0	1.0	1.0

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

表 219 -3

		型號						
記號				17	20	25		40
T ₁ N·		N·m	2.0	3.9	7.0	14	29	54
	11	kgf⋅m	0.2	0.4	0.7	1.4	3.0	5.5
	T ₂	N·m	6.9	12	25	48	108	196
	12	kgf⋅m	0.7	1.2	2.5	4.9	11	20
減速比 50	K ₁	×10⁴N·m/rad	0.29	0.67	1.1	2.0	4.7	8.8
	K ₁	kgf·m/arc-min	0.085	0.2	0.32	0.6	1.4	2.6
	K ₂	×10⁴N·m/rad	0.37	0.88	1.3	2.7	6.1	11
	K ₂	kgf·m/arc-min	0.11	0.26	0.4	0.8	1.8	3.4
	14	×10⁴N·m/rad	0.47	1.2	2.0	3.7	8.4	15
	Кз	kgf·m/arc-min	0.14	0.34	0.6	1.1	2.5	4.5
		×10⁴rad	6.9	5.8	6.4	7.0	6.2	6.1
	θ1	arc-min	2.4	2.0	2.2	2.3	2.1	2.1
	θ2	×10⁴rad	19	14	19	18	18	18
	02	arc-min	6.4	4.6	6.3	6.1	6.1	5.9
	1/	×10⁴N·m/rad	0.4	0.84	1.3	2.7	6.1	11
	K ₁	kgf·m/arc-min	0.12	0.25	0.4	0.8	1.8	3.2
	1/	×10⁴N·m/rad	0.44	0.94	1.7	3.7	7.8	14
	K ₂	kgf·m/arc-min	0.13	0.28	0.5	1.1	2.3	4.2
減速比	1/	×10⁴N·m/rad	0.61	1.3	2.5	4.7	11	20
80 以上	K ₃	kgf·m/arc-min	0.18	0.39	0.75	1.4	3.3	5.8
		×10⁴rad	5.0	4.6	5.4	5.2	4.8	4.9
	θ1	arc-min	1.7	1.6	1.8	1.8	1.7	1.7
		×10⁴rad	16	13	15	13	14	14
	θ2	arc-min	5.4	4.3	5.0	4.5	4.8	4.8

[※] 本表數值為參考值。加減值約為標示數值的 80%

簡易模組型(2SH)起動轉矩	
	(相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 220 -1 單位:cN·m

型號 減速比	14		20	25	32	40
50	6.2	19	25	39	60	95
80	5.0	16	23	36	55	83
100	4.8	17	22	34	50	78
120	_	13	22	34	48	77
160	_	_	22	33	47	74

模組型(2UH)起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 220 -2 單位:cN·m

型號 減速比	14	17	20		32	40
50	11	39	53	79	114	177
80	9.0	34	44	66	108	175
100	8.7	37	49	73	101	157
120	_	34	49	73	99	155
160	_	_	48	72	97	151

簡易模組型(2SH)加速起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 220 -3 單位:N·m

型號減速比	14	17	20	25	32	40
50	3.7	11	15	24	36	57
80	4.3	15	21	32	46	72
100	5.8	21	27	41	60	94
120	_	28	33	51	68	113
160	_	_	42	64	91	143

模組型(2UH)加速起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異·僅作參考值之用。

表 220 -4 單位:N·m

型號減速比	14		20		32	40
50	6	21	29	44	63	98
80	7.1	28	41	60	84	130
100	9.7	41	54	80	111	173
120	-	51	65	99	126	208
160	_	_	84	126	171	266

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 220 -5 單位:N·m

型號減速比	14	17	20	25	32	40
50	88	150	220	450	980	1800
80	110	200	350	680	1400	2800
100	84	160	260	500	1000	2100
120	-	120	240	470	980	1900
160	_	_	220	450	980	1800

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 220 -6 單位:N·m

型號	14	17	20	25	32	40
全減速比	130	260	470	850	1800	3600

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的 測量條件 輸入端(高速軸端)的轉矩。

表 221 -1

脂名	稲 ┣	Harmonic 潤滑脂 ® SK-1A(型號 20 以上)					
3	"' H	Harmonic 潤滑脂 ® SK-2(型號 14、17)					
塗併	適當塗佈量(229 頁)						
間滑條件 潤滑 Harmonic 潤滑脂® SK-2 (型號 14、17) 塗佈量 適當塗佈量 (229 頁)							

■速度比別修正量

Harmonic Drive $^{ ext{@}}$ 的無負載運轉轉矩會因減速比而不同 $^{\circ}$ 圖表 222-1 $^{\sim}$ 223-4 為減速比 100 時的數值。

關於其他減速比,請加上表 221-2、3 所示修正量後計算。

無負載運轉轉矩修正量

SHD-2SH

表 221 -2 單位:cN·m

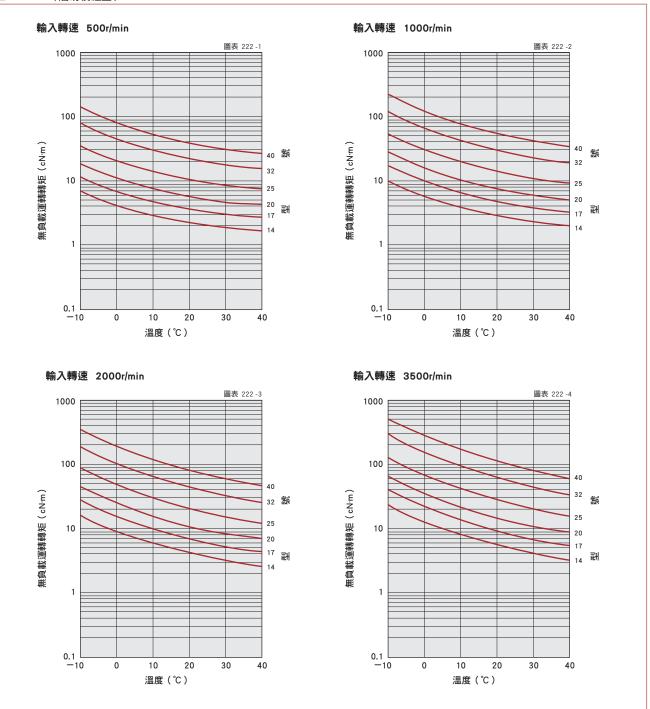
減速比 型號	50	80	120	160
14	+1.0	+0.2	_	_
17	+1.6	+0.3	-0.2	_
20	+2.4	+0.5	-0.3	-0.7
25	+4.0	+0.8	-0.5	-1.2
32	+7.0	+1.4	-1.0	-2.4
40	+13	+2.4	-1.7	-3.9

■SHD-2UH

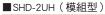
表 221 -3 單位:cN·m

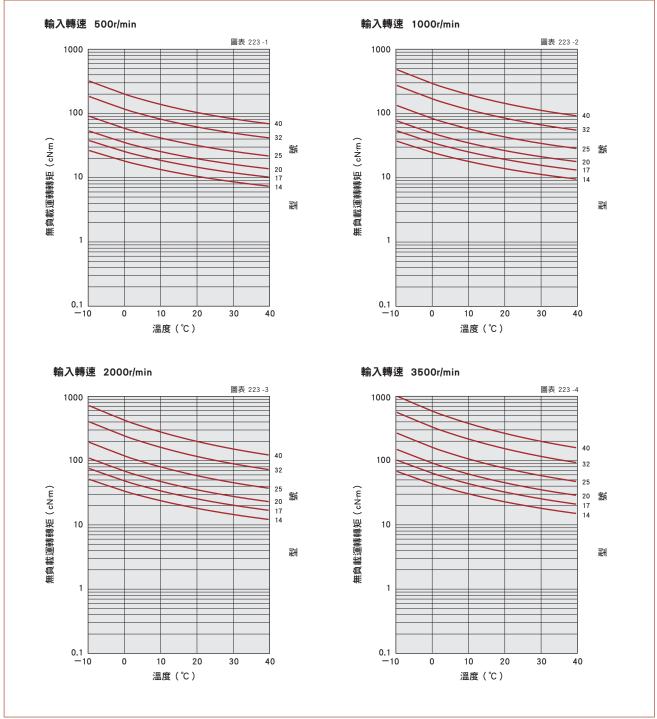
減速比 型號	50	80	120	160			
14	+1.0	+0.2	_	_			
17	+1.6	+0.3	-0.2	_			
20	+2.4	+0.5	-0.3	-0.7			
25	+4.0	+0.8	-0.5	-1.2			
32	+7.0	+1.4	-1.0	-2.4			
40	+13	+2.4	-1.7	-3.9			

■使用環境溫度範圍


表 221 -4

測温比	SK-1A	0°C∼+40°C
潤滑脂	SK-2	0°C∼+40°C


(註)高溫側請於環境溫度溫升 40℃以內使用。


■減速比 100 的無負載運轉轉矩

■SHD-2SH(簡易模組型)

※ 本圖表數值為平均值 X。

※ 本圖表數值為平均值 X。

SHD-2SH(簡易模組型)效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

■效率修正係數與效率修正量

■效率修正公式

請由公式 224-1 的公式計算出「負載轉矩的效率修正係數」與「型 號的效率修正量」產生的效率。

公式

公式 224 -1

效率= Ke× (η R + η e)

■依據負載轉矩的效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 224-1 計算 修正係數 Ke,參考效率修正公式計算效率。

■測量條件

表 224 -1

組裝	以建議組裝精度組裝後測量					
負載轉矩	額定表所示的額定轉矩					
潤滑條件 潤滑脂	383.80	名稱	Harmonic 潤滑脂® SK-1A(型號 20 以上)			
	周 / 周 / 月 / 月 / 月 / 月 / 月 / 月 / 月 / 月 /	1 右件	Harmonic 潤滑脂® SK-2(型號 14、17)			
塗佈量 適當塗佈量						

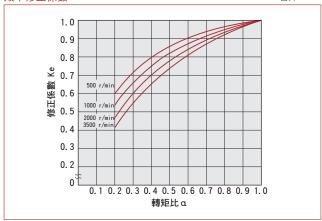

公式的記號

表 224 -2

η	效率	_
Ke	效率修正係數	圖表 224-1
ηR	額定轉矩時的效率	圖表 225-1 ~ 225-5
ηе	效率修正量	表 224-3

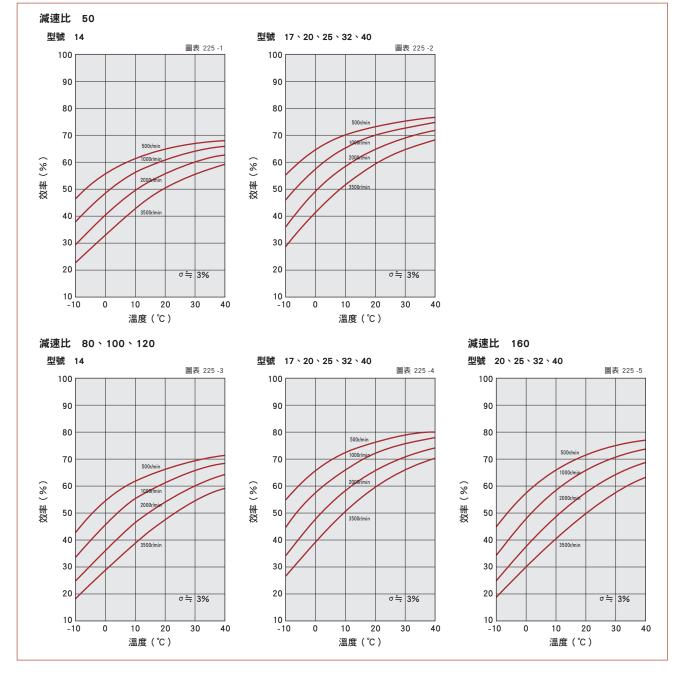
效率修正係數

圖表 224 -1

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

■不同型號的效率修正量

SHD-2SH 的輸入端裝有支撐軸承、油封。這些的影響程度會因型號而異。


各型號對額定轉矩時的效率修正量 ηe 以表 224-3 計算。

各型號的效率修正量單位

表 224-3

日主3017以中心正重丰位 单位: 8								
減速比型號	50	80	100	120	160			
14	0.0	3.1	0.0	1	_			
17	2.4	1.9	0.0	-2.6	-			
20	2.1	2.1	1.6	-0.9	1.3			
25	-0.7	1.6	-0.3	-2.9	-0.8			
32	-1.9	2.0	-1.1	-3.7	-1.6			
40	-1.9	-1.2	-0.2	-1.1	0.9			

■額定轉矩時的效率

SHD-2UH(模組型)效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

■效率修正係數與效率修正量

■效率修正公式

請由公式 226-1 的公式計算出「負載轉矩的效率修正係數」與「型 號的效率修正量」產生的效率。

公式

公式 226 -1

效率= Ke× (η R + η e)

■依據負載轉矩的效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 226-1 計算 修正係數 Ke,參考效率修正公式計算效率。

■測量條件

表 226 -1

組裝	以建議組裝料	以建議組裝精度組裝後測量					
負載轉矩	額定表所示的額定轉矩						
288.264	细细胞	181 M UK	Harmonic 潤滑脂® SK-1A(型號 20 以上)				
潤滑條件 潤滑脂		名稱	Harmonic 潤滑脂® SK-2(型號 14、17)				
塗佈量 適當塗佈量							


公式的記號

表 226 -2

η	效率	_
Ke	效率修正係數	圖表 226-1
ηR	額定轉矩時的效率	圖表 227-1 ~ 227-5
ηе	效率修正量	表 226-3

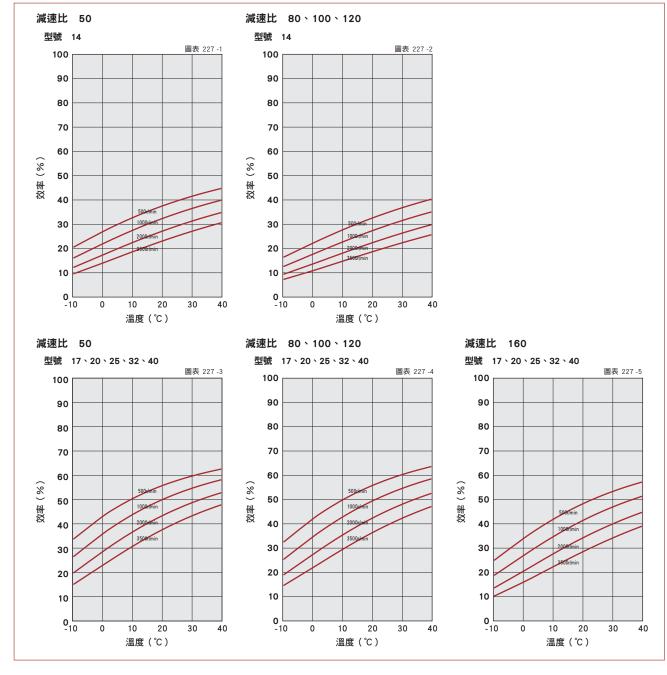
效率修正係數

圖表 226 -1

※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

■不同型號的效率修正量

SHD-2UH 的輸入端裝有支撐軸承、油封。這些的影響程度會因型號而異。


各型號對額定轉矩時的效率修正量 ηe 以表 226-3 計算。

各型號的效率修正量單位

表 226 -3 單位:%

減速比型號	50	80	100	120	160			
14	0.0	3.1	0.0	1	_			
17	-1.0	-1.5	-3.9	-6.8	-			
20	1.2	1.4	0.4	-2.5	-1.2			
25	-0.2	2.7	0.1	-2.9	-1.3			
32	-0.1	2.0	0.9	-2.0	-0.4			
40	0.3	1.7	2.4	1.4	2.8			

■額定轉矩時的效率

主軸承規格

模組型在外部負載的直接支撐組裝了精密交叉滾柱軸承(輸出凸緣 部)。

為充分發揮模組型的性能,請檢查最大負載力矩負重、交叉滾柱軸 承壽命以及靜態安全係數。

各數值的公式請參閱 030 ~ 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重(M max)

②確認壽命

③確認靜態安全係數

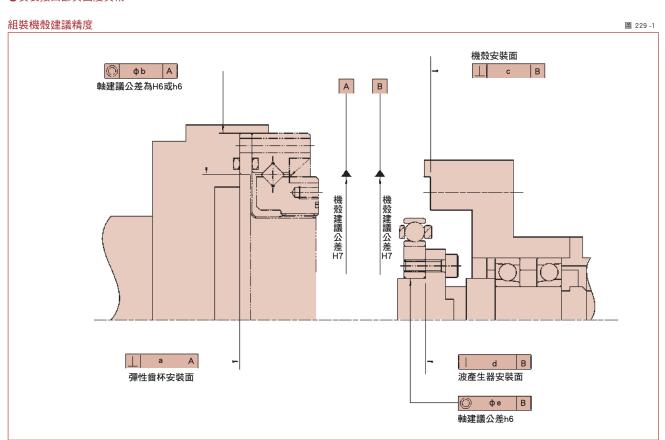
■主軸承規格

交叉滾柱軸承的規格,如表 228-1 所示。

規格 表 228 -1

	轉子節圓直徑	偏移量		基本額	定負載		容許力矩負重 Mc		力矩剛性 Km			
型號	dp	R	基本動額	定負載 C	基本靜額	定負載 Co	谷計刀矩貝里 Mc		谷計刀起貝里 MC		×10⁴ N·m/rad	kgf·m/arc-min
	m	m	×10 ² N	kgf	×10 ² N	kgf	N·m	kgf·m	ATO INTIVIAU	kgi-iii/aic-iiiii		
14	0.0503	0.0111	29	296	43	438	37	3.8	7.08	2.1		
17	0.061	0.0115	52	530	81	826	62	6.3	12.7	3.8		
20	0.070	0.011	73	744	110	1122	93	9.5	21	6.2		
25	0.086	0.0121	109	1111	179	1825	129	13.2	31	9.2		
32	0.112	0.0173	191	1948	327	3334	290	29.6	82.1	24.4		
40	0.133	0.0195	216	2203	408	4160	424	43.2	145	43.0		

- (註)※基本動額定負載是指軸承的基本動額定壽命可達 100 萬次旋轉的固定靜止徑向負載。
 - ※ 基本靜額定負載是指在承受最大負載的轉動體與軌道的接觸部中央上,給予一定水準的接觸應力(4kN/mm²)之靜態負載。
 - ※ 容許力矩負重是指輸出軸承上可施加的最大力矩負重,此範圍內的數值可以確保基本性能並可動作。
 - ※ 力矩剛性的值為參考值。下限值約為標示數值的 80%。
 - ※ 容許徑向負載、容許軸向負載,係指主軸承受單純徑向負載或軸向負載其中之一時,可滿足減速機壽命的數值。 (徑向負載為 Lr+R=0mm、軸向負載為 La=0mm 時)


簡易模組型(2SH)設計指南!

組裝精度

關於組裝設計,若為導致安裝面變形等異常組裝,則可能造成性能

為充分發揮 Harmonic Drive® 的優異性能,請注意以下事項,保持圖 224-1 及表 224-1 所示組裝機殼建議精度,並採用不會漏油的設

- ●安裝面彎曲、變形
- ●咬入異物
- ●安裝孔螺孔部週邊的毛邊、隆起、位置度異常
- ●安裝接口部倒角不足
- ●安裝接口部真圓度異常

組裝機殼建議精度

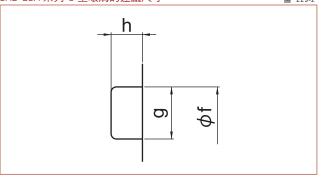

表 229 -1 單位:mm

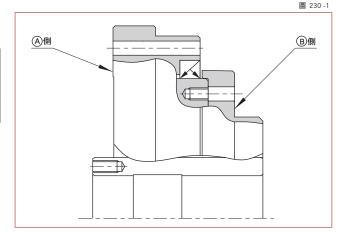
表 229-2 Unit: mm

但我从处理的行义								
型號記號	14	17	20	25	32	40		
a	0.016	0.021	0.027	0.035	0.042	0.048		
фЬ	0.015	0.018	0.019	0.022	0.022	0.024		
С	0.011	0.012	0.013	0.014	0.016	0.016		
d	0.008	0.010	0.012	0.012	0.012	0.012		
фе	0.016	0.018	0.019	0.022	0.022	0.024		

SHD-2SH 系列 O 型環溝的建議尺寸

0 型環溝的建議尺寸	
------------	--

型號	¢		!		h		○ 型環 (產品隨附)
14	57	+0.1/0	2	+0.25/0	1.1	0/-0.1	54.38 × 1.19
17	68.1	+0.1/0	2	+0.25/0	1.1	0/-0.1	64.0 × 1.5
20	78	+0.1/0	2.7	+0.25/0	1.5	0/-0.1	72.0 × 2.0
25	94.8	+0.1/0	2.4	+0.25/0	1.35	0/-0.1	88.62 × 1.78
32	123	+0.1/0	2.7	+0.25/0	1.5	0/-0.1	117.0 × 2.0
40	148	+0.1/0	2.7	+0.25/0	1.5	0/-0.1	142.0 × 2.0


模組型(2UH)設計指南

輸出部與固定部

SHD 系列的輸出部會依固定位置而變化。

此外,減速比與旋轉方向也會隨之變化,其關係如下所示。

		表 230 -1
固定部	輸出部	旋轉方向與減速比
④ 側	® 側	011 頁的②
® 側	(A) 側	011 頁的①

安裝及傳動轉矩

A側的安裝及傳動轉矩

表 230 -2

項目	型號	14	17	20	25	32	40
螺栓支數		8	12	12	12	12	12
螺栓尺寸		M3	M3	M3	M4	M5	M6
螺栓鎖固 P.C.D.	mm	64	74	84	102	132	158
螺栓鎖緊轉矩	N⋅m	2.0	2.0	2.0	4.5	9.0	15.3
5条作 3 条 半 5 7 2	kgf∙m	0.20	0.20	0.20	0.46	0.92	1.56
+m+7 /==+++-	N⋅m	108	186	210	431	892	1509
螺栓傳動轉矩	kgf∙m	11	19	21	44	91	154

- (註)1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
 - 2. 建議螺栓 螺栓名稱: JIS B 1176 內六角螺栓
 - 強度區分: JIS B 1051 12.9 以上
 - 3. 轉矩係數:K=0.2

- 4. 鎖緊係數:A=1.4
- 5. 接合面摩擦係數 μ=0.15

®側的安裝及傳動轉矩

表 230 -3

項目	型號	14	17	20	25	32	40
螺栓支數		8	12	12	12	12	12
螺栓尺寸		M3	M3	M3	M4	M5	M6
螺栓鎖固 P.C.D.	mm	43	52	61.4	76	99	120
有效螺紋部深度	mm	4.5	4.5	4.5	6	8	9
螺栓鎖緊轉矩	N·m	2.0	2.0	2.0	4.5	9.0	15.3
紫性與紫鸭和	kgf⋅m	0.20	0.20	0.20	0.46	0.92	1.56
螺栓傳動轉矩	N·m	72	130	154	321	668	1148
\$\$\famile 1\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	kaf·m	7.3	13.3	15.7	32.7	68.2	117

- (註)1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。
 - 2. 建議螺栓 螺栓名稱:JIS B 1176 內六角螺栓
 - 強度區分: JIS B 1051 12.9 以上
 - 3. 轉矩係數:K=0.2
- ※ 機殼端的凸緣材質為 AL(鋁合金),因此請遵守上述螺栓鎖緊轉矩數值。
- 若鎖緊轉矩超過上述數值,恐將無法獲得應有傳動轉矩或造成鬆脫現象。
- 從②側用螺絲緊固時,敬請使用墊圈,不要讓螺絲座面直接接觸鋁合金。
- 4. 鎖緊係數:A=1.4 5. 接合面摩擦係數 μ=0.15

中空型(2UH)輸入部的容許負載

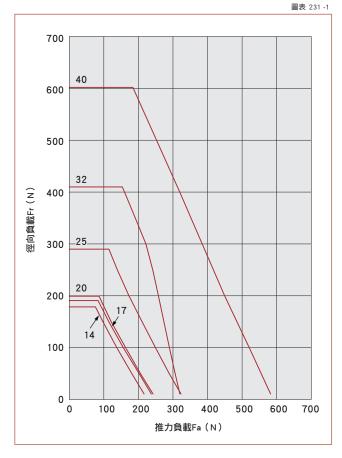
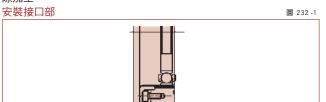
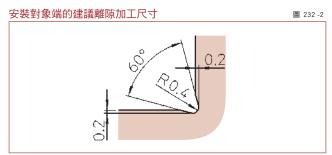

中空型的中空輸入部是由2個單列深溝軸承所支撐。為充分發揮模 組型的性能,請確認施加在輸入部上的負重。

圖 231-1 為軸承的支撐點。『a』『b』尺寸請參閱表 231-1。此外, 下方圖表 231-1 則顯示不同型號的最大容許徑向負載與推力負載的

圖表 231-1 的值是在平均輸入轉速 2000r/min、基本額定壽命 L10=7000h 時的值。


輸入部的軸承規格 表 231-1									
	軸承A				軸承B				日上勿古名井
型號	型號	基本動額定負載	基本靜額定負載	型號	基本動額定負載	基本靜額定負載	а	D	最大徑向負載
	至弧	Cr (N)	Cor (N)	至抓	Cr (N)	Cor (N)	(mm)	(mm)	Fr (N)
14	6804ZZ	4000	2470	6804ZZ	4000	2470	16.5	20.0	179
17	6805ZZ	4500	3150	6805ZZ	4500	3150	18.0	19.5	191
20	6806ZZ	4700	3650	6806ZZ	4700	3650	15.5	17.5	199
25	6808ZZ	6350	5550	6808ZZ	6350	5550	16.5	21.0	290
32	6911ZZ	8800	8500	6810ZZ	6400	6200	19.5	26.0	410
40	691377	11900	12100	681377	11900	12100	20.5	33.5	602


圖 231 -1 軸承A 軸承B Fr TO) Fa:推力負載(N) Fr:徑向負載(N)

安裝接口離隙加工

模組型若將下圖 A 部作為安裝接口使用時,請在安裝對象端進行離 隙加工。

波產生器的推力

Harmonic Drive $^{\otimes}$ 因為彈性齒杯彈性變形,運轉中會對波產生器施加推力。

作為減速機(011 頁①、②、③)使用時,推力將對彈性齒杯隔板 方向作用。(圖 232-3)

此外,作為加速機(011 頁④、⑤、⑥)使用時,其推力作用方向 與減速機時的方向相反。(圖 232-3)

波產生器的推力(最大值)可由下列公式求出。此外,推力會隨運轉條件而改變。高轉矩時、極低速時、固定連續旋轉時有增大的傾向,幾乎如同公式求出的值。無論任何情況,設計時務必採用阻止 波產生器推力的結構。

(註)若希望於波產生器轂加裝固定螺絲以固定輸入軸時,請務必洽詢本公司。

波產生器的推力方向 ■ 232-3 減速時的 推力方向 加速時的 推力方向

推力計算公式 表 232 -1 減速比 公式 i =1/50 F=2× T D×0.07×tan 30° + 2μPF

F=2X

 $\frac{T}{D}$ × 0.07×tan 20° + 2 μ PF

軸承斥力導致的推力

i =1/100 以上

表 232 -2

機種	型號	2μPF (N)
	14	1.2
	17	3.3
SHD	20	5.6
SUD	25	9.3
	32	16
	40	24

公式的記號

公式的温	CS烷		表 232 -3
F	推力	N	參閱圖 232-3
D	(型號)×0.00254	m	
Т	輸出轉矩	N·m	
211 DE	軸承氏力道砌的推力	N	

計算例 公式 232 -1

機種名稱:SHD系列型號:32減速比:i=1/50輸出轉矩:200N·m

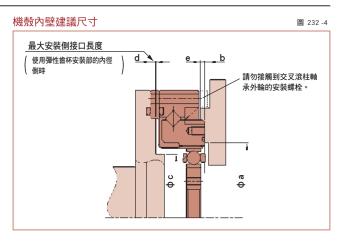
 $F=2 \times \frac{200}{(32 \times 0.00254)} \times 0.07 \times \tan 30^{\circ} + 16$

F=215N

潤滑

SHD 系列的標準潤滑方式為潤滑脂潤滑。潤滑劑的詳情,請參閱 016 頁「技術資料」內容。

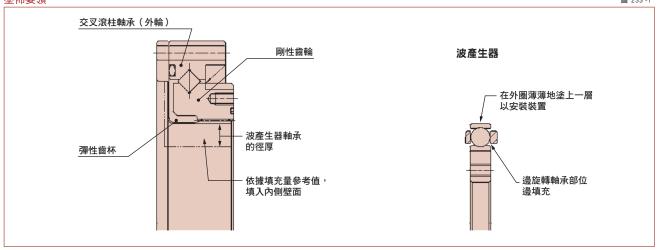
機殼內壁建議尺寸 -


以潤滑脂潤滑時,為了讓運轉中潤滑脂不致四下飛濺而殘留於 Harmonic Drive®內部,Harmonic Drive®與機殼內壁之間應盡可能符 合建議尺寸。如果無法確保建議尺寸,請洽詢本公司。

機殼內壁建議尺寸

表 232 -4 單位:mm

「放放」「主と対象」へ「							
型號記號	14	17	20	25	32	40	
фа	36.5	45	53	66	86	106	
b	1 (3)	1 (3)	1.5 (4.5)	1.5 (4.5)	2 (6)	2.5 (7.5)	
фс	31	38	45	56	73	90	
d	1.4	1.8	1.7	1.8	1.8	1.8	
е	1.5	1.5	1.5	1.5	3.3	4	


(註)()內為波產生器朝上時的數值。

塗佈要領

SHD 系列是將交叉滾柱軸承的外輪與彈性齒杯暫時固定後出貨,因此彈性齒杯的齒槽及外圈、剛性齒輪的齒槽上有塗佈潤滑脂。

塗佈要領 ■ 233-1

塗佈量 -

表 233-1 單位:g

型號	14	17	20	25	32	40
塗佈量	5	9	13	24	51	99

潤滑脂更換時期

潤滑脂的性能會大幅影響 Harmonic Drive® 各個滑動部的磨耗。

潤滑脂性能會隨溫度而變化,越高溫越容易劣化,需要儘早更換。 右方圖表是根據平均負載轉矩低於額定轉矩時,潤滑脂溫度與波產 生器總旋轉數關連性所表示的更換時期基準。

當平均負載轉矩超過額定轉矩,可依下列公式計算更換時期。

平均負載轉矩超過額定轉矩時的公式

公式 233 -1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav}\right)^3$$

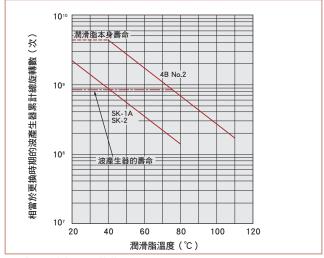

公式的記號

表 233 -2

Lgt	超過額定轉矩的更換時期	轉數	
Lgtn	未超過額定轉矩的更換時期	轉數	參閱左圖
Tr	額定轉矩	N·m, kgf·m	參閱 216 頁額定表
Tav	輸出端的平均負載轉矩		公式:參閱 014 頁

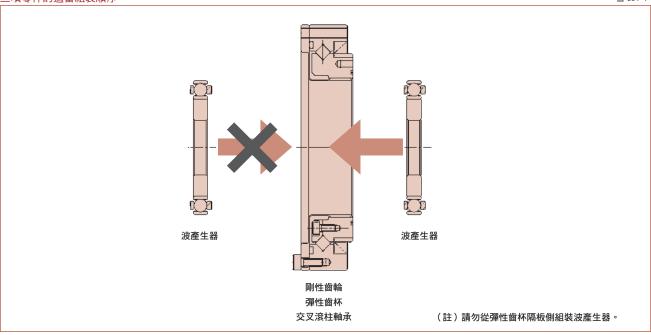
潤滑脂更換時期:Lgtn(平均負載轉矩低於額定轉矩時)

圖 233 -2

※ 波產生器的壽命,係指受損機率 10%

■其他注意事項

- 1. 切忌與其他潤滑脂混用。此外,Harmonic Drive®應先安裝至單獨機殼後再組裝至裝置。
- 2. Harmonic Drive® 在波產生器朝上(參閱 050 頁圖 050-2)的狀態,且一定負載往單一方向低速旋轉(輸入轉速:1000r/min 以下)使用時,可能造成潤滑不良,若於此使用情形時,請洽詢本公司營業據點。
- 3. 波產生器朝上或朝下(參閱 094 頁、圖 094-2)使用時,請在波 產生器與輸入蓋(馬達凸緣)的間隙上充分加滿潤滑脂。


組裝注意事項

■組裝順序

將剛性齒輪及彈性齒杯安裝至裝置後,組裝波產生器。 若用其他方法組裝,可能造成齒輪嚙合空轉狀態(參閱 029 頁), 齒面損傷。務請注意。

三項零件的適當組裝順序

圖 234 -1

■組裝注意事項

Harmonic Drive®可能因組裝時的不良,產生震動或異音。組裝時,應避免對波產生器軸承過度施力。

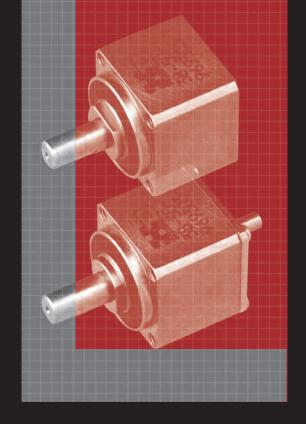
波產生器注意事項 -

- 組裝時,應避免對波產生器軸承過度施力。旋轉波產生器,即可順利插入。
- 2. 沒有 Oldham 機構的波產生器,尤應注意讓偏心、垂直的影響保持 在建議值範圍內(參閱 224 頁「組裝精度」)。

剛性齒輪注意事項·

- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 檢查外殼組裝部是否針對剛性齒輪彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查剛性齒輪組裝進外殼後是否可旋轉,有無干涉卡住。
- 5. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與剛性齒輪干涉,導致螺栓旋轉困難。
- 6. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 7. 盡量避免釘扎剛性齒輪,以免降低旋轉精度。

彈性齒杯注意事項


- 1. 檢查安裝面平整度是否不佳、有否歪斜。
- 2. 檢查螺孔有無隆起、殘留毛邊、咬入異物。
- 3. 檢查外殼組裝部是否針對彈性齒杯彎角部進行倒角或離隙加工, 以避免干涉。
- 4. 檢查螺栓插入安裝用螺栓孔時,是否因螺栓孔位不準、螺栓孔倒 著加工等原因造成螺栓與彈性齒杯干涉,導致螺栓旋轉困難。
- 5. 切勿以規定轉矩將螺栓一次鎖緊。請先以規定轉矩一半的力量暫時鎖緊,再用規定轉矩鎖緊。此外,請務必按照對角線的順序將螺栓鎖緊。
- 6. 檢查彈性齒杯與剛性齒輪組合時,有無極度偏往單側、嚙合不良的情形。如果偏往單側,應為該兩個零件出現偏心或垂直。

防鏽對策 -

模組型表面並無防鏽處理。

如需防鏽,應塗佈防鏽劑。

另外,如需本公司進行防鏽表面處理,請洽詢本公司。

CSF supermini系列

Unit Type CSF su	permini
	236
型式、記號	237
技術資料	237
	額定表
	角傳動精度 238
	遲滯損失 238
	起動轉矩 238
	加速起動轉矩238
	鬆脫轉矩238
	屈曲轉矩 238
	主軸承規格239
	潤滑239
技術資料 輸入軸型	240
	雙軸型1U外觀圖 240
	減速機型 1U-CC 外觀圖 ······· 240
	剛性 (彈簧常數) 241
	機械精度 241
	效率特性 242
	無負載運轉轉矩 244
	輸入部容許負載 245
	安裝及傳動轉矩 ······ 246
技術資料 馬達安裝	型247
	安装例247
	組裝精度 248

※ 照片為實際尺寸。

■CSF supermini 系列模組型

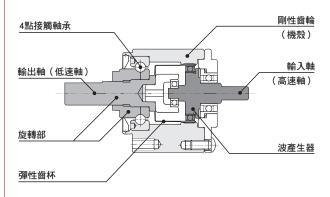
CSF supermini 系列是將 Harmonic Drive® 的最小型號加工為容易使用 的模組化產品。

採用本公司獨自開發的「小型 4 點接觸滾珠軸承」作為主軸承,可 直接支撐外部負載。

CSF supermini 系列

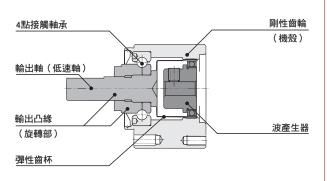
有 2 種類型,一為直接安裝在伺服馬達的減速機型(1U-CC),一為 具有輸入軸與輸出軸的雙軸模組型(1U),請配合機械、裝置的設 計需求,選擇最適合的機型。

CSF supermini 系列的特徵


- ■小型、輕量
- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

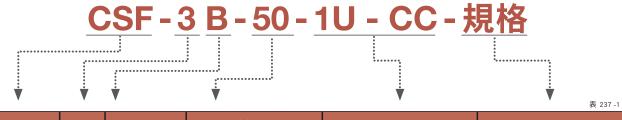
CSF supermini 系列模組型的結構

圖 236 -1


雙軸模組型(1U)

擁有輸入軸與輸出軸的完整型雙軸模組。即使是不習慣操作Harmonic Drive® 的使用者也能輕鬆操作,進行高精度定位。

減速機型(1U-CC)


以搭配高性能小型伺服馬達為概念的減速機。在同尺寸的齒輪中,擁有 最高輸出。

※當固定住剛性齒輪(機殼)時,輸出軸的旋轉方向會和 輸入軸(波產生器)的旋轉方向相反。

型式、記號■

Harmonic Drive®CSF supermini 系列的型號有 3 種。有 2 種型式,種類豐富。請參考下列標示記號訂購。

機種名稱	型號	版本記號		減速比 (註)		型式	特殊規格
CSF 系列	3	В	30	50	100		SP= 形狀或性能等特殊規格 無記載 = 標準品

(註)減速比表示為輸入:波產生器(輸入軸)、固定:剛性齒輪(機殼)、輸出:輸出軸。

技術資料 ■

額定表

表 237 -2

	型號	減速比		00r/min 定轉矩	起動、係 容許峰	亭止時的 值轉矩		战轉矩的 是大值	瞬間容許	最大轉矩	容許最高輸入 轉速	容許平均輸入 轉速	慣性力矩 (1/4GD²)* ¹
ĺ			N·m	kgf·m		kgf⋅m	N·m	kgf⋅m	N⋅m	kgf⋅m	r/min	r/min	kg·cm²
		30	0.06	0.006	0.13	0.013	0.10	0.010	0.22	0.022			4115.03/407
	3	50	0.11	0.011	0.21	0.021	0.13	0.013	0.41	0.040	10000	6500	1U:5.3×10 ⁻⁷ 1U-CC:7.0×10 ⁻⁷
		100	0.15	0.015	0.30	0.029	0.23	0.023	0.57	0.056			10-00.1.07.10

※1 慣性力矩的上段為 1U 型、下段為 1U-CC 型的值。

	請參閱「技術資料」	
角傳動精度		

表 238 -1

減速比	型號單位	3
全減速比	×10 ⁻³ rad	2.9
土水还儿	arc-min	10

遲滯損失 (相關用語說明,請參閱「技術資料」內容。)

表 238 -2

減速比	型號	3
30	×10⁴rad	13
30	arc-min	4.5
50	×10 ⁻⁴ rad	12
50	arc-min	4
100	×10⁴rad	12
100	arc-min	4

起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。 表 238-3 單位:cN·m

		±17 ⋅ 014111
型號	;	3
減速比	1U	1U-CC
30	0.34	0.32
50	0.30	0.28
100	0.26	0.24

加速起動轉矩 (相關用語說明·請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。 表 238-4 單位: N·m

型號		
減速比	1U	1U-CC
30	0.14	0.12
50	0.14	0.11
100	0.16	0.13

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 238 -5 單位:N·m

型號減速比	3
30	0.88
50	0.83
100	0.74

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 238 -6 單位:N·m

型號	3
全減速比	3.7

主軸承規格

CSF supermini 系列在外部負載(輸出部)的直接支撐組裝了精密 4

點接觸滾珠軸承。

為充分發揮 CSF supermini 系列的性能,請檢查最大負載力矩負重、

4點接觸滾珠軸承壽命及靜態安全係數。

各數值的公式請參閱 030 \sim 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重 (M max)

求出最大負載力矩負重(M max) 最大負載力矩負重(M max)≦容許力矩(Mc)

②確認壽命

求出平均徑向負載(Frav)、平均軸向負載(Faav)

求出徑向負載係數 (X)、軸向負載係數 (Y)

計算並確認壽命

表 239 -1

表 239 -2

③確認靜態安全係數

求出靜態等價徑向負載(Po) 確認靜態安全係數(fs)

■主軸承規格

規格

	轉子節圓直徑	偏移量	基本額	定負載	容許	+	容許徑向	容許推力
型號	dp	R	基本動額定負載	基本靜額定負載	力矩負重	力矩剛性	負載 ※	負載
	mm	mm	×10 ² N	×10 ² N	N⋅m	N·m/rad	N	N
3	7.7	4.1	6.65	4.24	0.27	0.9×10 ²	36	130

[※] 容許徑向負載是雙軸型(1U)的輸出軸端及減速機軸輸出型(1U-CC)軸中央的值。

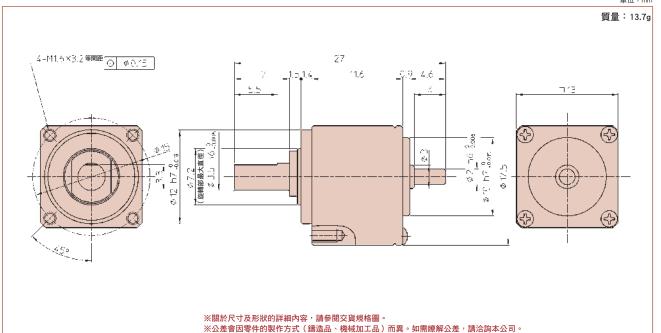
潤滑

CSF supermini 系列的標準潤滑方式為潤滑脂潤滑。

出貨前已封入潤滑脂,組裝時無需另行注入、塗佈。此外,請使用 以下潤滑劑。

潤滑部	減速機部
使用潤滑劑名稱	Harmonic 潤滑脂 ® SK-2
製造商	Harmonic Drive Systems
基礎油	精煉礦物油
增稠劑	鋰皂
混合稠度(25℃)	265 ~ 295
油點	198℃
外觀	綠色

[※] 力矩剛性的值為平均值。

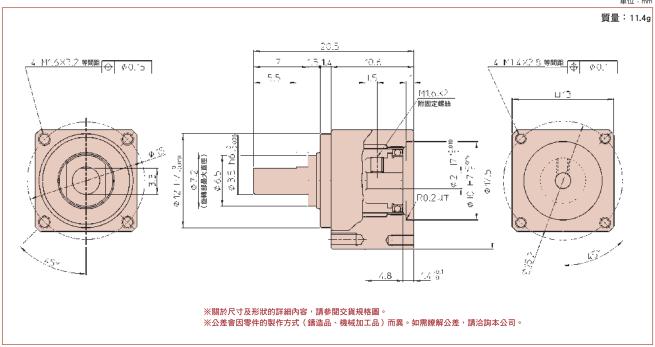

技術資料 輸入軸型 !

雙軸型 1U 外觀圖

擁有輸入軸與輸出軸的完整型雙軸模組。 本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

圖 240 -1 單位:mm



減速機型 1U-CC 外觀圖

以搭配高性能小型伺服馬達為概念的減速機。 本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

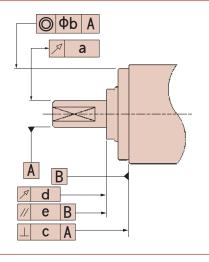
圖 240 -2 單位:mm

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

表 241 -1

		型號	
記號		土狐	
		N·m	0.016
T ₁ kgf·m		kgf⋅m	0.0016
	_	N·m	0.05
	T ₂	kgf·m	0.005
K ₁		N·m/rad	27
		×10 ⁻⁴ kgf·m/arc-min	8
K ₂	N·m/rad	40	
	K ₂	×10-4kgf·m/arc-min	12
減速比		N·m/rad	51
30	K ₃	×10-4kgf·m/arc-min	15
		×10⁴rad	5.9
	θ1	arc-min	2.0
	θ2	×10⁴rad	12.5
	H2	arc-min	4.2
ν.	N·m/rad	30	
K ₁	K ₁	×10-⁴kgf·m/arc-min	9
	1/	N·m/rad	47
	K ₂	×10-⁴kgf·m/arc-min	14
減速比		N·m/rad	57
50	K ₃	×10-⁴kgf·m/arc-min	17
		×10⁴rad	5.3
	θ1	arc-min	1.8
		×10⁴rad	10.6
	θ2	arc-min	3.6
		N·m/rad	34
	K ₁	X10 ⁻⁴ kgf·m/arc-min	10
		N·m/rad	54
	K ₂	×10 ⁻⁴ kgf·m/arc-min	16
減速比		N·m/rad	67
100	K ₃	X10 ⁻⁴ kgf·m/arc-min	20
		X10⁴rad	4.7
	θ1	arc-min	1.6
		X10⁴rad	9.3
	θ2	arc-min	3.1

機械精度


CSF supermini 系列的主軸承採用高精度 4 點接觸滾珠軸承,使輸出 部達到高度機械精度。輸出軸的機械精度如下。

輸入軸型的輸出軸

圖 241 -1

※T.I.R.:表示測量部旋轉 1 圈時的針盤量規讀值的全量。

效率特性

效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑劑種類與使用量)

測量條件 表 242 -1 負載轉矩 額定表所示的額定轉矩(參閱 237 頁) Harmonic 潤滑脂® SK-2 名稱 潤滑脂 潤滑條件

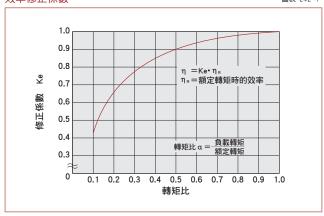
塗佈量

適當塗佈量

■效率修正係數

當負載轉矩小於額定轉矩,效率值將下降。

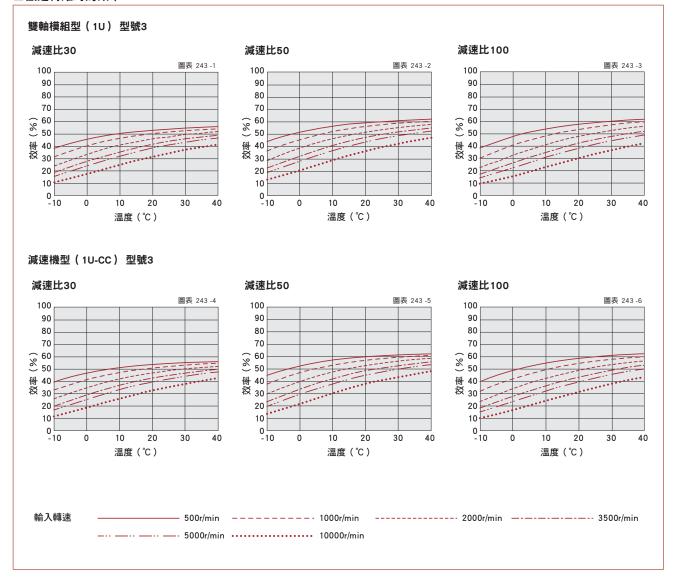
請依據圖表 242-1 求出修正係數 Ke, 並參考下列計算範例計算效


例:以 CSF-8-100-1U 為例,計算下列條件下的效率 η(%)。 輸入轉速:1000 r/min 潤滑方式:潤滑脂潤滑 負載轉矩 2.0N·m 潤滑劑溫度:20℃

型號 8、減速比 100 的額定轉矩為 2.4N·m (額定表: 237 頁),轉 矩比 α 為 0.83。 ($\alpha\!=\!2.0$ / 2.4 $\!\doteq\!0.83$)

- ■依據圖表 242-1,得知效率修正係數 Ke=0.99
- ■負載轉矩 2.0N·m 時的效率 η 為 $\eta{=}Ke^{\centerdot}\eta_{R}=0.99{\times}77\%=76\% \; \circ$

效率修正係數



※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。

潤滑

■額定轉矩時的效率

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive $^{\circ}$ 所必要的輸入端(高速軸端)的轉矩。

※ 詳細數值請洽詢本公司營業據點。

測量條件			表 244 -					
CSF-3-100-1U-CC(減速機型)								
		減速」	t 100					
潤滑條件	潤滑脂	名稱	Harmonic 潤滑脂® SK-2					
輔拓/方海岭入 2000/min 經 2 小時以上麻今運輸後的數/方								

■速度比別修正量

Harmonic Drive® 的無負載運轉轉矩會因速度比而變化。圖表 244-1 是減速機型 (1U-CC) 減速比 100 時的數值。關於其他減速比,請加上表 244-2 所示修正量後計算。

無負載運轉轉矩修正量

表 244 -2 單位:cN·m

減速比 型式	30	50	100
雙軸型(1U)	0.026	0.023	0.006
減速機型(1U-CC)	0.020	0.017	1

■減速機型(1-U-CC、減速比 100)的無負載運轉轉矩

圖表 244 -1

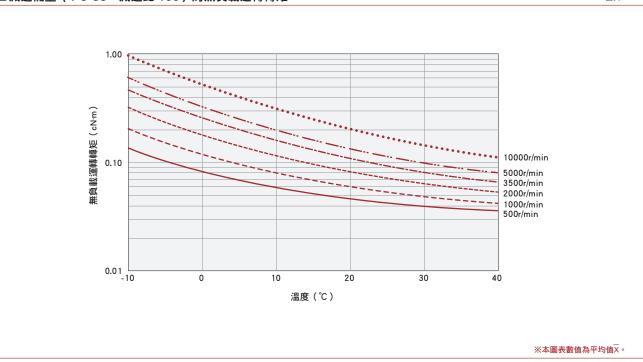


表 245 -1

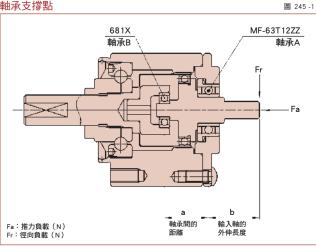
輸入部容許負載

■雙軸模組型(1U)輸入軸的容許負載

雙軸模組型的輸入部是由2個單列深溝軸承所支撐。為充分發揮雙 軸模組型的性能,請確認施加在輸入部上的負重。

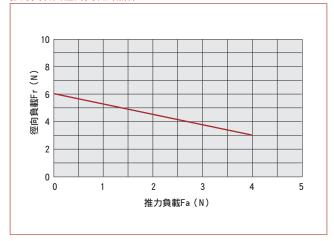
下圖表示軸承的支撐點。『a』『b』尺寸請參閱下表。此外,下方 圖表表示型號 3 的容許最大徑向負載與推力負載的關係。

下方圖表的值是在平均輸入轉數 2000r/min、基本額定壽命 L10=7000h 時的值。


例:在輸入軸上施加 3N 的推力負載 (Fa) 時,容許最大徑向負載 (Fr) 的值為 3.75N。

※ 在結構上,當輸入軸上施加外力時則朝軸向方向動,這並非異常。

輸入部的軸承規格


		軸承 A			軸承B		軸承間的	輸入軸的	最大徑向負載
型號	型號	基本動額定負載	基本靜額定負載	型號	基本動額定負載	基本靜額定負載	距離 a	外伸長度 b	取人徑问貝製
		Cr (N)	Cor (N)		Cr (N)	Cor (N)	a (mm)	b (mm)	Fr (N)
3	MF-63T12ZZ	242	94	681X	102	29	5.05	5.85	6

軸承支撐點

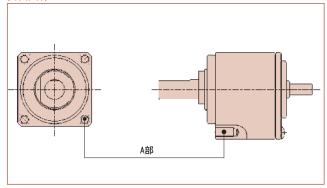
推力負載與徑向負載的關係

安裝及傳動轉矩

■安裝至裝置

將 CSF supermini 系列安裝在裝置上時,請確認安裝面平坦度或螺孔部是否沒有毛邊後,用螺栓鎖緊安裝凸緣(圖 246-1 的 A 部)。

安裝凸緣(圖 246-1 的 A 部)螺栓 * 的鎖緊轉矩

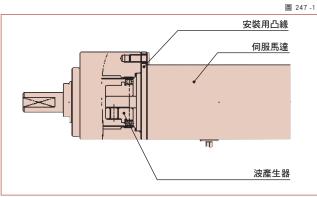

表 246

安装凸稼(圖 246-1 的 A 部)縣栓 ^ 的鋇緊轉矩 表 246-					
項目	型號	3			
螺栓支數		4			
螺栓尺寸		M1.6			
安裝 P.C.D.	mm	15			
鎖緊轉矩	N⋅m	0.26			
東条門	kgf⋅m	0.03			
螺絲部嵌合最小長度	mm	1.9			
傳動轉矩	N·m	3.0			
日子当川十守入亡	kgf·m	0.3			

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

安裝凸緣

圖 246 -1


■安裝輸出軸

安裝滑輪、小齒輪等時,請勿對輸出軸施加衝擊。將導致減速機精 度劣化或故障。

技術資料 馬達安裝型

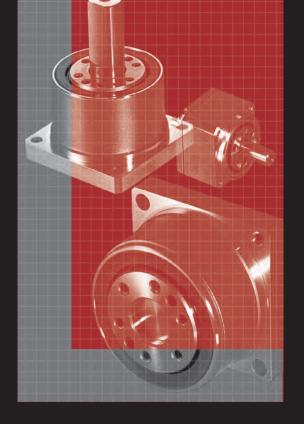
安裝例

減速機型(1U-CC)的典型安裝例如下所示。

(註)安裝馬達時,請參閱「CSF-3 系列技術資料」。

組裝精度

在安裝設計方面,為充分發揮 CSF supermini 系列擁有的優異性能, 應確保圖 248-1、表 248-1 所示之建議精度。


b A

安裝機殼建議精度

表 248 -1

Øc

女装機原	女装機殼建議精度						
記號	型號精度項目	3					
а	機殼安裝面直角度	0.006					
b	波產生器安裝面	0.004					
С	輸入軸同軸度	0.004					

CSF-mini系列

	* ' '			
Unit Type CSF-m	ini ————			
特 徵	250	技術資料 馬達安裝	型	····26
型式、記號	251		軸輸出:1U-CC外觀圖 ·······	···· 26
技術資料	251		尺寸表	···· 26
	額定表251		凸緣輸出:1U-CC-F外觀圖·········	···· 26
	角傳動精度252		尺寸表	···· 26
	遲滯損失252		凸緣輸出:2XH-F 外觀圖·············	···· 26
	最大背隙量252		尺寸表	···· 26
	起動轉矩252		軸輸出:2XH-J外觀圖	···· 26
	加速起動轉矩252		尺寸表	···· 26
	鬆脫轉矩252		馬達安裝型的波產生器孔徑尺寸 …	···· 26
	屈曲轉矩252		剛性 (彈簧常數)	26
	主軸承規格 253		機械精度	···· 26
	潤 滑 253		效率特性 ······	···· 26
技術資料 輸入軸型	254		無負載運轉轉矩	···· 26
	軸輸出:1U外觀圖······· 254		安裝例	27
	尺寸表254		組裝精度	···· 27
	凸緣輸出:1U-F外觀圖······· 255		安裝及傳動轉矩 ······	···· 27
	尺寸表255		密封機構	27
	剛性 (彈簧常數) 256			
	機械精度 256			
	效率特性 257			
	無負載運轉轉矩 259			
	輸入部容許負載 260			
	安裝及傳動轉矩260			

特徵

■CSF-mini 系列模組型

CSF-mini 系列是將 Harmonic Drive® 的最小型號加工為容易使用的模組化產品。

採用本公司獨自開發的「小型 4 點接觸滾珠軸承」作為主軸承,可直接支撐外部負載。

在 CSF-mini 系列中有可以對應馬達安裝型(2XH)與皮帶、齒輪、聯接器等輸入形態的輸入軸型(1U),請配合機械、裝置的設計需求,選擇最合適的機型。

CSF-mini 系列的特徵·

- ■小型、輕量
- ■設計輕巧、簡單
- ■高轉矩容量
- ■高剛性
- ■無背隙
- ■優異的定位精度及旋轉精度
- ■輸出輸入軸位於同軸

CSF-mini 系列的結構與種類

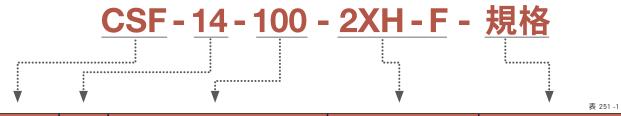
圖 250 -1

輸入軸型

擁有輸入軸的完整型模組。可支援皮帶、齒輪、聯接器等輸入類型。

馬達安裝型

以搭配高性能小型伺服馬達為概念的減速機。在同尺寸的齒輪中,擁有最高輸出。



※當固定住剛性齒輪(機殼)時,輸出軸的旋轉方向會和輸入軸(波產生器)的旋轉方向相反。

型式、記號■

Harmonic Drive®CSF-mini 系列的型號有 4 種。有 6 種型式,種類豐富。 請參考下列標示記號訂購。

機種名稱	型號		减速比 (註)		型 式	特殊規格	
	5	30	50	_	100	1U=輸入軸型、軸輸出(雙軸型) 1U-F= 輸入軸型、凸線輸出 1U-CC=1U 形狀的馬達安裝型、軸輸出 1U-CC-F=1U 形狀的馬達安裝型、凸線輸出 2XH-J=馬達安裝型、軸輸出	
COL & MI	8	30	50	-	100		SP=形狀或性能等特殊規格
CSF 系列	11	30	50	-			無記載=標準品
	14	30	50	80	100	2XH-F=馬達安裝型、凸線輸出	

⁽註)減速比表示為輸入:波產生器(輸入軸)、固定:剛性齒輪(機殼)、輸出:輸出軸、輸出凸緣。

技術資料

額定表

表 251 -2

型號	減速比	輸入 2000r/min 時的額定轉矩	起動、停止時的 容許峰值轉矩	平均負載轉矩的 容許最大值	瞬間容許最大轉矩	容許最高輸入 轉速	容許平均輸入 轉速	慣性力矩 (1/4GD²) ^{※1}	
		N·m	N·m	N·m	N·m	r/min	r/min	kg·cm²	
	30	0.25	0.5	0.38	0.9			0.57/404	
5	50	0.4	0.9	0.53	1.8	10000	6500	2.5×10 ⁻⁴ 2.5×10 ⁻⁴	
	100	0.6	1.4	0.94	2.7			2.5×10	
	30	0.9	1.8	1.4	3.3	8500 350		0.00/4.00	
8	50	1.8	3.3	2.3	6.6		8500 3500	3.2×10 ⁻³ 3.0×10 ⁻³	
	100	2.4	4.8	3.3	9.0			3.0710	
	30	2.2	4.5	3.4	8.5	8500	8500 3500		4 43/400
11	50	3.5	8.3	5.5	17			1.4×10 ⁻² 1.2×10 ⁻²	
	100	5.0	11	8.9	25			1.2/10	
	30	4.0	9.0	6.8	17				
14	50	5.4	18	6.9	35	8500	3500	3.4×10 ⁻²	
14	80	7.8	23	11	47	6500	3500	3.3×10 ⁻²	
	100	7.8	28	11	54				

※1 慣性力矩的上段為 1U 型、下段為 2XH 型的值。

角傳動精度 (相關用語說明,請參閱「技術資料」內容。)

表 252 -1

	減速比	型號 單位			11	14
Γ	30	×10 ⁻³ rad	1.20	0.58	0.58	0.58
		arc-min	4.00	2.00	2.00	2.00
	50 以上	×10 ⁻³ rad	0.87	0.58	0.58	0.44
	50 以上	arc-min	3.00	2.00	2.00	1.50

※ 型號 11 的減速比 100 為角傳動精度 4.4×10⁻⁴rad/1.5arc-min。

遲滯損失 (相關用語說明,請參閱「技術資料」內容。)

表 252

減速比	型號		8	11	
30	×10⁴rad	8.7	8.7	8.7	8.7
30	arc-min	3.0	3.0	3.0	3.0
50	×10⁴rad	8.7	5.8	5.8	5.8
50	arc-min	3.0	2.0	2.0	2.0
80 以上	×10⁴rad	8.7	5.8	5.8	2.9
00 以上	arc-min	3.0	2.0	2.0	1.0

最大背隙量 (相關用語說明,請參閱「技術資料」內容。)

表 252 -3

減速比	型號	8	11	14
30	×10⁻⁵rad	28.6	23.8	29.1
30	arc-sec	59	49	60
FO	×10 ⁻⁵ rad	17	14.1	17.5
50	arc-sec	35	24	36
80	×10⁻⁵rad	_	_	11.2
00	arc-sec	_	_	23
100	×10 ⁻⁵ rad	8.7	7.3	8.7
100	arc-sec	18	15	18

起動轉矩(相關用語説明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 252 -4 單位:cN·m

型號減速比	5	8	11	14
30	0.53	1.3	3.4	6.4
50	0.40	0.80	2.0	4.1
80	_	_	_	2.8
100	0.30	0.59	1.5	2.5

加速起動轉矩 (相關用語說明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 252 -5 單位:N·m

$\pm \alpha$					
型號減速比	5	8	11	14	
30	0.29	0.70	1.7	2.4	
50	0.21	0.55	1.2	1.6	
80	_	_	_	1.6	
100	0.27	0.75	1.5	1.8	

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 252-6 單位:N·m

型號減速比	5	8	11	14
30	2.7	11	29	59
50	3.2	12	34	88
80	_	_	_	110
100	3.5	14	43	84

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 252 -7 單位: Num

	±□·18:1						
型號	5	8	11	14			
全減速比	9.8	35	90	190			

主軸承規格

CSF-mini 系列在外部負載(輸出部)的直接支撐組裝了精密 4 點接觸滾珠軸承。

為充分發揮 CSF-mini 系列的性能,請檢查最大負載力矩負重、4 點接觸滾珠軸承壽命及靜態安全係數。

各數值的公式請參閱 030 ~ 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重 (M max)

求出最大負載力矩負重(M max) 最大負載力矩負重(M max)≦容許力矩(Mc)

②確認壽命

求出平均徑向負載(Frav)、平均軸向負載(Faav)

求出徑向負載係數(X)、軸向負載係數(Y)

計算並確認壽命

表 253 -1

表 253 -2

③確認靜態安全係數

求出靜態等價徑向負載(Po) 確認靜態安全係數(fs)

■主軸承規格

扫权

	轉子節圓直徑	偏移量	基本額定負載		容許	力矩剛性	容許徑向	容許推力
型號	dp	R	基本動額定負載	基本靜額定負載	力矩負重	力が削り生	負載 ※	負載
	mm	mm	×10 ² N	×10 ² N	N·m	N·m/rad	N	N
5	13.5	4.85	9.14	7.63	0.89	7.41×10 ²	90	270
8	20.5	7.3	21.6	19.0	3.46	2.76×10³	200	630
11	27.5	9	38.9	35.4	6.6	7.41×10³	300	1150
14	35	11.4	61.2	58.5	13.2	1.34×10 ⁴	550	1800

[※] 容許徑向負載是雙軸型(1U)的輸出軸端及減速機軸輸出型(2XH-J)軸中央的值。

潤滑

CSF-mini 系列的標準潤滑方式為潤滑脂潤滑。

出貨前已封入潤滑脂,組裝時無需另行注入、塗佈。此外,請使用以下潤滑劑。

潤滑部	減速機部	主軸承部	
使用潤滑劑名稱	Harmonic 潤滑脂 ® SK-2	Multemp HL-D	
製造商	Harmonic Drive Systems	協同油脂	
基礎油	精煉礦物油	合成烴油	
增稠劑	鋰皂	鋰皂	
混合稠度(25℃)	295	280	
油點	198°C	210°C	
外觀	綠色黏稠狀	白色黏稠狀	

[※] 力矩剛性的值為參考值。下限值約為標示數值的 80%。

技術資料 輸入軸型 !

軸輸出:1U 外觀圖

擁有輸入軸與輸出軸的完整型雙軸模組。 本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

(註) 和輸出軸(低速軸)的D開孔及V-W螺絲攻沒有位置關係。 ※図於では及形状的詳細内容・講参閱交貨規格圏。 ※公差會因零件的製作方式(鋳造品、機械加工品)而異。 對於未確註及差的尺寸、如有需要・請給物本公司。

尺寸表

表 254 -1 單位:mm

				事位・川川
型號記號	5	8	11	14
ΦА	26.5	40	54	68
В	37	65.5	82.5	95.4
С	13	23	29.5	29.5
D	16	29.5	37	49.9
E	8	13	16	16
F	0.5	0.5	0.5	1.5
G	2.5	2.5	3	3
Н	0.8	2.6	3.9	8.4
I	9	18	21.5	23
J	7	11	14	14
К	4.85	7.3	9	11.4
L	9.85	17.3	22	23.9
фМ h7	19.5	29	39	48
φΝ	13	20	26.5	33.5
фО h6	5	9	12	15
φР	9	16	24	32
φQ h6	3	5	6	8
□R	20.4±0.42	30.7±0.46	40.9±0.50	51.1±0.50
S	4.6	8	10.5	14
φТ	9.8	15.5	20.5	25.5
φU	23	35	46	58
V	3	4	6	6
W	M2×3	M3×4	M3×5	M4×6
X	4	4	4	4
Y	M2×3	M3×6	M4×8	M5×10
□z	20±0.42	30±0.46	40±0.50	50±0.50
а	2.6	4.5	5.5	7.5
質量(g)	35	130	240	440

凸緣輸出:1U-F 外觀圖

附輸入軸的凸緣輸出的完整型模組。

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

※關於尺寸及形狀的詳細內容,講參閱交資現格圖。
※公差會因零件的製作方式(鑄造品、機械加工品)而異。
對於未樣社公差的尺寸、如有需要,請給的本公司。

尺寸表

表 255 -1 單位:mm

				申IU·mm
型號記號	5	8	11	14
φА	26.5	40	54	68
В	27	45.5	56.5	70.4
С	3	3	3.5	4.5
D	16	29.5	37	49.9
E	8	13	16	16
F	0.5	0.5	0.5	1.5
G	2.5	2.5	3	3
Н	0.8	2.6	3.9	8.4
I	1.7	2.2	2.5	3.5
J	7	11	14	14
К	4.85	7.3	9	11.4
фМ h7	19.5	29	39	48
φΝ	13	20	26.5	33.5
фО Н7	5	9	12	15
φР	9	16	24	32
φQ h6	3	5	6	8
□R	20.4±0.42	30.7±0.46	40.9±0.5	51.1±0.5
φТ	9.8	15.5	20.5	25.5
φU	23	35	46	58
V	3	4	6	6
W	M2×3	M3×4	M3×5	M4×6
Х	4	4	4	4
Y	M2×3	M3×6	M4×8	M5×10
□ Z	20±0.42	30±0.46	40±0.5	50±0.5
a	2.6	4.5	5.5	7.5
質量 (g)	34	120	220	405

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

	型號		:	5	8	3	11		14		
記號				1U-F	1U	1U-F	1U	1U-F	1U		
	Т,	N·m	0.0	75	0.:	29	0.	80	2	.0	
	''	kgf·m	0.0077		0.0	0.030		0.082		0.20	
	T ₂	N·m	0.	22	0.75		2	.0	6	.9	
	12	kgf·m	0.0)22	0.0)77	0.	20	0.	70	
	_{K1}	×10⁴N·m/rad	0.009	0.010	0.031	0.034	0.077	0.084	0.172	0.188	
	IXI	kgf·m/arc-min	0.003	0.003	0.009	0.010	0.023	0.025	0.051	0.056	
	K ₂	×10⁴N·m/rad	0.011	0.013	0.039	0.044	0.109	0.124	0.210	0.235	
	IN2	kgf·m/arc-min	0.003	0.004	0.012	0.013	0.032	0.037	0.063	0.070	
減速比	K ₃	×10⁴N·m/rad	0.012	0.016	0.046	0.054	0.134	0.158	0.286	0.335	
30	1//3	kgf·m/arc-min	0.004	0.005	0.014	0.016	0.040	0.047	0.085	0.100	
	θι	×10⁴rad	8.7	7.5	9.5	8.6	10	9.5	12	11	
	01	arc-min	3.0	2.6	3.2	3.0	3.6	3.3	4.0	3.6	
	θ2	×10⁴rad	22	19	21	19	21	19	35	31	
	02	arc-min	7.5	6.4	7.3	6.6	7.4	6.6	12	11	
	K ₁	×10⁴N·m/rad	0.011	0.013	0.039	0.044	0.177	0.221	0.286	0.335	
	KI	kgf·m/arc-min	0.003	0.004	0.012	0.013	0.053	0.066	0.085	0.100	
	K ₂	×10⁴N·m/rad	0.014	0.018	0.056	0.067	0.225	0.300	0.378	0.468	
	11/2	kgf·m/arc-min	0.004	0.005	0.017	0.020	0.067	0.089	0.113	0.140	
減速比	K3	×10⁴N·m/rad	0.017	0.025	0.067	0.084	0.236	0.320	0.440	0.568	
50	173	kgf·m/arc-min	0.005	0.007	0.020	0.025	0.070	0.095	0.131	0.170	
	θ1	×10⁴rad	6.9	5.6	7.5	6.6	4.5	3.6	7.0	6.0	
	01	arc-min	2.4	2.0	2.6	2.3	1.6	1.2	2.4	2.0	
	θ2	×10⁴rad	18	14	16	14	9.9	7.6	20	16	
	02	arc-min	6.0	4.8	5.4	4.7	3.4	2.6	6.8	5.6	
	K ₁	×10⁴N·m/rad	0.015	0.020	0.072	0.090	0.206	0.267	0.378	0.468	
	KI	kgf·m/arc-min	0.004	0.006	0.021	0.027	0.061	0.079	0.113	0.140	
	K ₂	×10⁴N·m/rad	0.018	0.027	0.080	0.104	0.243	0.333	0.460	0.601	
	IN2	kgf·m/arc-min	0.005	0.008	0.024	0.031	0.072	0.099	0.137	0.179	
減速比	K ₃	×10⁴N·m/rad	0.020	0.030	0.089	0.120	0.291	0.432	0.516	0.700	
80 以上	IN3	kgf·m/arc-min	0.006	0.009	0.027	0.036	0.086	0.128	0.154	0.209	
	θι	×10⁴rad	5.0	3.7	4.1	3.2	3.9	3.0	5.3	4.3	
	01	arc-min	1.7	1.3	1.4	1.1	1.3	1.0	1.8	1.5	
	θ2	×10⁴rad	13	9.2	9.8	7.7	8.8	6.6	16	12	
	02	arc-min	4.4	3.1	3.4	2.6	3.0	2.3	5.4	4.2	

※ 本表數值為參考值。下限值約為標示數值的 80%。

機械精度

CSF-mini 系列的主軸承採用高精度 4 點接觸滾珠軸承,使輸出部達 到高度機械精度。輸出軸的機械精度如下。

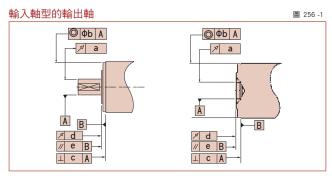


表 256 -1

 麦装機殼建議精度
 表 256 - 2

 ※T.I.R. 單位 : mm
 **T.I.R. 單位 : mm

記號	型號	į.	5		8		11		14	
aC 50%	精度項目	1U	1U-F	1U	1U-F	1U	1U-F	1U		
	1U 輸出軸前端的振幅	0.030	_	0.030	_	0.030	_	0.030	_	
а	1U-F 輸出軸內徑面的振幅	_	0.005	_	0.005	_	0.005	_	0.005	
b	安裝接口同軸度	0.0	140	0.0)40	0.0	55	0.0	55	
С	安裝面直角度	0.0	120	0.020		0.025		0.025		
d	輸出凸緣面的振幅	0.0	005	0.0	005	0.0	005	0.0	05	
е	安裝面與輸出凸緣面的平行度	0.0	115	0.0)20	0.0	130	0.0	30	

※T.I.R.:表示測量部旋轉 1 圈時的針盤量規讀值的全量。

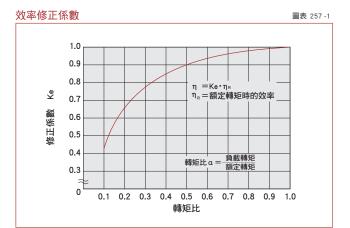
效率特性

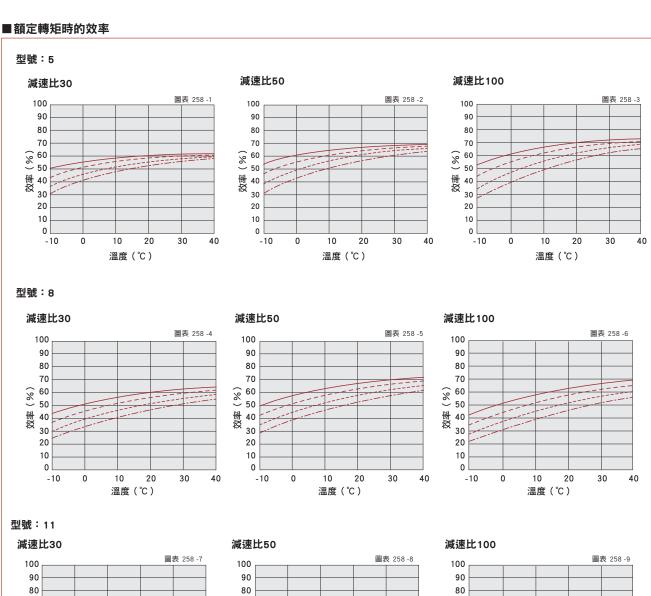
效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑劑種類與使用量)

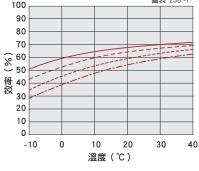
測量條件 表 257-1 負載轉矩 額定表所示的額定轉矩(參閱 251 頁) 潤滑脂潤滑 名稱 Harmonic 潤滑脂® SK-2 連衛量 適當塗佈量

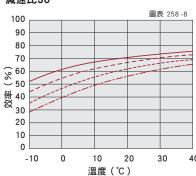
■效率修正係數

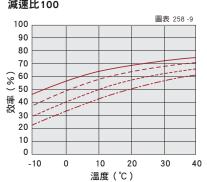

當負載轉矩小於額定轉矩,效率值將下降。

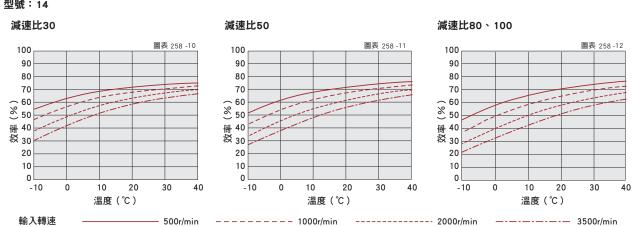

請依據圖表 257-1 求出修正係數 Ke,並參考下列計算範例計算效 率。

例:以 CSF-8-100-1U 為例,計算下列條件下的效率 η (%)。 輸入轉速: 1000 r/min 潤滑方式:潤滑脂潤滑 負載轉矩 2.0N·m 潤滑劑溫度: 20℃


型號 8、減速比 100 的額定轉矩為 2.4N·m(額定表:251 頁),轉矩比 a 為 0.83。(a =2.0 / 2.4≒0.83)


- ■依據圖表 257-1, 得知效率修正係數 Ke=0.99
- ■負載轉矩 2.0N·m 時的效率 η 為 η=Ke•ηR = 0.99×77% = 76%。
- ※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。





型號:14

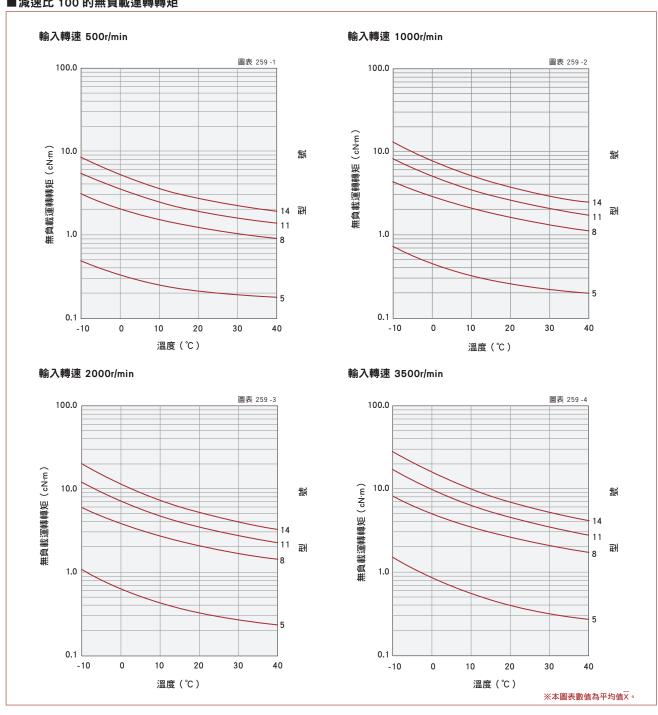
無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的 輸入端(高速軸端)的轉矩。

※ 詳細數值請洽詢本公司營業據點。

測量條件 表 259 -1 潤滑條件 潤滑脂 名稱 Harmonic 潤滑脂® SK-2 轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值

■速度比別修正量


Harmonic Drive $^{\$}$ 的無負載運轉轉矩會因速度比而變化 $^{\circ}$ 圖表 259-1 $^{\sim}$ 259-4 為減速比 100 時的數值。關於其他減速比,請加上表 259-2 所示修正量後計算。

無負載運轉轉矩修正量

表 259 -2 單位: cN·m

減速比 型號	30	50	80
5	0.26	0.11	-
8	0.44	0.19	-
11	0.81	0.36	-
14	1.33	0.58	0.1

■減速比 100 的無負載運轉轉矩

輸入部容許負載

■輸入軸容許負載

輸入軸型的輸入部是由2個單列深溝軸承所支撐。為充分發揮輸入

軸型的性能,請確認施加在輸入部上的負重。

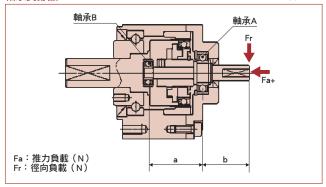
圖 260-1 表示軸承的支撐點。『a』『b』尺寸請參閱表 260-1。此外,

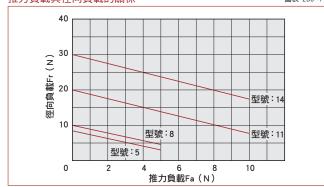
圖表 260-1 表示不同型號的容許最大徑向負載與推力負載的關係。

圖表 260-1 的值是在平均輸入轉速 2000r/min、基本額定壽命 L_{10} =7000h 時的值。

例:在型號 14 的輸入軸上施加 8N 的推力負載(Fa)時,容許最大徑向負載(Fr)的值為 20N。 ※ 在結構上,當輸入軸上施加外力時則朝軸向方向動,這並非異常。

輸入部的軸承規格


表 260 -1


		軸承 A		軸承B			軸承間的	輸入軸的	最大徑向負載
型號	型號	基本動額定負載	基本靜額定負載	型號	基本動額定負載	基本靜額定負載	距離a	外伸長度 b	取入1空門貝戰
	空弧	Cr (N)	Cor (N)	空弧	Cr (N)	Cor (N)	a (mm)	b (mm)	Fr (N)
5	SSLF-630DD	196	59	L-520WO2	176	54	10.8	9.25	8
8	MR126	715	292	MR83	560	170	16.65	18	10
11	689	1330	665	624	1300	485	20.6	21.9	20
14	6900ZZ	2700	1270	605ZZ	1330	505	28.25	24.25	30

軸承支撐點

■ 260-1 推力負載與徑向負載的關係

圖表 260 -1

安裝及傳動轉矩

■安裝至裝置

將 CSF-mini 系列安裝在裝置上時,請確認安裝面平坦度或螺孔部是 否沒有毛邊後,用螺栓鎖緊安裝凸緣(圖 261-1 的 A 部)。

安裝凸緣(圖 261-1 的 A 部)螺栓 ※ 的鎖緊轉矩

表 260 -2

	型號	-	0	11	14	
項目		5	0	''	14	
螺栓支數		4	4	4	4	
螺栓尺寸		M2	M3	M4	M5	
安裝 P.C.D.	mm	23	35	46	58	
鎖緊轉矩	N⋅m	0.25	0.85	2.0	3.96	
政条 特 化	kgf-m	0.03	0.09	0.20	0.40	
螺絲部嵌合最小長度	mm	2.4	3.6	4.8	6.0	
傳動轉矩	N⋅m	3.5	12	29	57	
14-3/14-4-VC	kgf·m	0.4	1.3	2.9	5.9	

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

安裝凸緣 圖 261 -1

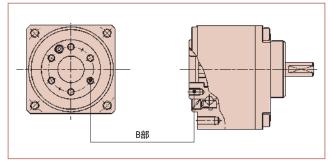
A部

•==

■將負載安裝至輸出部

將負載安裝在輸出部時,請考慮主軸承的規格(參閱 253 頁)並安 裝。

安裝凸緣(圖 261-2 的 B 部)的螺栓 ※ 的鎖緊轉矩


表 261 -1

項目	型號	5	8	11	14
螺栓支數		3	4	6	6
螺栓尺寸		M2	M3	M3	M4
安裝 P.C.D.	mm	9.8	15.5	20.5	25.5
鎖緊轉矩	N·m	0.54	2.0	2.0	4.6
與彩鸭社	kgf⋅m	0.06	0.20	0.20	0.47
傳動轉矩	N·m	2	13	26	55
守里川半寺万亡	kgf⋅m	0.3	1.3	2.6	5.6

輪出凸緣已進行漏油對策,因此無需塗佈密封劑。 ※ 建讓螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

安裝凸緣(1U-F)

圖 261 -2

在軸輸出中,安裝滑輪、小齒輪等時,請勿對輸出軸施加衝擊。將 導致減速機精度劣化或故障。

技術資料 馬達安裝型 =

軸輸出:1U-CC 外觀圖

外觀為 1U 形狀、輸出部為軸輸出的馬達安裝型。 本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

尺寸表

表 262 -1 單位:mm

型號記號	5	8	11	14
φА	26.5	40	54	68
B *	30.5	51	64.3	70
С	13	23	29.5	29.5
D	12.7	21.5	26.5	33
E *	4.8 0.2	6.5 _{-0.3}	8.3 0	7.5 _{-0.8}
F	0.5	0.5	0.5	1.5
G	2.5	2.5	3	3
Н	1.3	1.5	2	2.5
I	9	18	21.5	23
J	2	2	3	2.5
К	2	2	2	2
L	M2×3	M2×3	M3×4	M3×4
М	6	12	16	17.6
N	4.85	7.3	9	11.4
0	9.85	17.3	22	23.9
фР h7	19.5	29	39	48
фQ	13	20	26.5	33.5
φR h6	5	9	12	15
φS h6	17	26	35	43
фТ Н7	3	3	5	6
□∪	20.4±0.42	30.7±0.46	40.9±0.5	51.1±0.5
φ٧	9.8	15.5	20.5	25.5
φW	23	35	46	58
X	4.6	8	10.5	14
φΥ	22.5	34	46	58
а	3	4	6	6
b	M2×3	M3×4	M3×5	M4×6
С	4	4	4	4
d	M2×3	M3×6	M4×8	M5×10
е	4	4	4	4
f	M2×3	M2.5×5	M3×6	M4×8
g *	27	48.7	62.1	70.4
h *	_	4.2 _0.3	6.1 _{-0.7}	7.9 0 -0.8
質量 (g)	27	111	176	335

● * 記號的尺寸 B、E、g、h 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性 ●產品交貨時,波產生器為已拆卸狀態。齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。

凸緣輸出:1U-CC-F 外觀圖

外觀為 1U 形狀、輸出部為凸緣輸出的馬達安裝型。 本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

B* \Box U 型號5的波產生器 安裝方向及安裝尺寸 F. G a-b 等間距 K-L φW ◆ (旋轉部最大直徑) 4P h7 **♦T H7 ♦S h6** ¢R HH **∜** c-d 等間距 M 0.4 0.2 М

※關於尺寸及形狀的詳細內容,請參閱交貨規格圖。 ※關於波產生器的形狀,請配合040頁圖040-3參考。 ※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,如有需要,請洽詢本公司。

尺寸表

表 263 -1 單位:mm

圖 263 -1

W. 1. 1.				4-12
型號記號	5	8	11	14
фА	26.5	40	54	68
B *	20.5	31	38.3	45
С	3	3	3.5	4.5
D	12.7	21.5	26.5	33
E *	4.8 0 -0.2	6.5 _{-0.3}	8.3 0	7.5 0 -0.8
F	0.5	0.5	0.5	1.5
G	2.5	2.5	3	3
Н	1.3	1.5	2	2.5
I.	1.7	2.2	2.5	3.5
J	2	2	3	2.5
К	2	2	2	2
L	M2×3	M2×3	M3×4	M3×4
М	6	12	16	17.6
N	4.85	7.3	9	11.4
φP h7	19.5	29	39	48
φQ	13	20	26.5	33.5
φR H7	5	9	12	15
φS h6	17	26	35	43
фТ Н7	3	3	5	6
□U	20.4±0.42	30.7±0.46	40.9±0.5	51.1±0.5
ФΛ	9.8	15.5	20.5	25.5
φW	23	35	46	58
ФΥ	22.5	34	46	58
а	3	4	6	6
b	M2×3	M3×4	M3×5	M4×6
С	4	4	4	4
d	M2×3	M3×6	M4×8	M5×10
е	4	4	4	4
f	M2×3	M2.5×5	M3×6	M4×8
g *	17	28.7	36.1	45.4
h *	_	4.2 _0.3	6.1 -0.7	7.9 _{-0.8}
質量(g)	25	100	150	295

^{● *} 記號的尺寸 B、E、g、h 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性 ●產品交貨時,波產生器為已拆卸狀態。齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。

凸緣輸出:2XH-F 外觀圖

輸出部為凸緣輸出的馬達安裝型。

本產品的 CAD 數據 (DXF) 可由本公司官網下載。

URL: https://www.hds.co.jp/

尺寸表

表 264 -1 單位:mm

圖 264 -1

型號	5	8	11	14
記號				
φА	29	43.5	58	73
B *	20.5	31	38.3	45
С	15.7	24.5	30	37.5
D *	4.8 0 -0.2	6.5 ₋₀₃	8.3 _{-0.7}	7.5 _{-0.8}
E	12.7	19	23.5	28
F	3	5.5	6.5	9.5
G	1.3	1.5	2	2.5
Н	2	3	3	5
I	0.5	0.5	0.5	1.5
J	2	2	3	2.5
К	2	2	2	2
L	M2×3	M2×3	M3×4	M3×4
М	1.7	2.2	2.5	3.5
N	6	12	16	17.6
0	4.85	7.3	9	11.4
φP h7	20.5	31	40.5	51
φQ	13	20	26.5	33.5
φR H7	5	9	12	15
φS h6	17	26	35	43
фТ Н7	3	3	5	6
□U	22±0.42	32±0.46	43±0.50	53±0.50
ΦV	9.8	15.5	20.5	25.5
фW	25	37.5	50	62
X	3	4	6	6
Y	M2×3	M3X4	M3×5	M4×6
а	2	2	2	2
b	M2	M3	M4	M5
С	2	2	2	2
фd	2.3	3.4	4.5	5.5
e *	17	28.7	36.1	45.4
f *	_	4.2_03	6.1 _{-0.7}	7.9 -0.8
g (附件)	18.9×0.7	28.2×1.0	38.0×1.5	48.0×1.0
質量(g)	25	100	150	295

^{● *} 記號的尺寸 B、D、e、f 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性 ●產品交貨時,波產生器為已拆卸狀態。齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。

軸輸出:2XH-J 外觀圖

輸出部為軸輸出的馬達安裝型。

本產品的 CAD 數據(DXF)可由本公司官網下載。

URL: https://www.hds.co.jp/

圖 265 -1 В* 型號5的波產生器 安裝方向及安裝尺寸 (註) _G_ (註) i(Oring:附件) __h* a-b 等間距 <u>K</u> 노 0.4 0 0.2 0 c-d 等間距 波產生器 e-φf 等間距 反向安裝時的安裝尺寸 Q (輸出軸中央) (註)和輸出軸(低速軸)的D開孔及a-b螺絲攻沒有位置關係。使用時敬請留意。 ※關於尺寸及形狀的詳細內容,請參閱交貨規格圖。 ※關於波產生器的形狀,請配合040頁圖040-3參考。 ※公差會因零件的製作方式(鑄造品、機械加工品)而異。對於未標註公差的尺寸,如有需要,請洽詢本公司。

尺寸表

表 265 -1 單位:mm

型號記號	5	8	11	14
φА	29	43.5	58	73
B *	30.5	51	64.3	70
С	10	20	26	25
D	15.7	24.5	30	37.5
E *	4.8 _0_	6.5 ⁰ _{-0.3}	8.3 0 -0.7	7.5 0.8
F	12.7	19	23.5	28
G	3	5.5	6.5	9.5
Н	1.3	1.5	2	2.5
I	0.5	0.5	0.5	1.5
J	2	3	3	5
К	2	2	3	2.5
L	2	2	2	2
М	M2×3	M2×3	M3×4	M3×4
N	9	18	21.5	23
0	6	12	16	17.6
Р	4.85	7.3	9	11.4
Q	9.85	17.3	22	23.9
φR h7	20.5	31	40.5	51
φЅ	13	20	26.5	33.5
φT h6	5	9	12	15
φU h6	17	26	35	43
φV H7	3	3	5	6
□W	22±0.42	32±0.46	43±0.50	53±0.50
φХ	9.8	15.5	20.5	25.5
ФΥ	25	37.5	50	62
Z	4.6	8	10.5	14
а	3	4	6	6
b	M2×3	M3×4	M3×5	M4×6
С	2	2	2	2
d	M2	M3	M4	M5
е	2	2	2	2
φf	2.3	3.4	4.5	5.5
g *	27	48.7	62.1	70.4
h *	_	4.2 0.3	6.1 -0.7	7.9 _0.8
i (附件)	18.9×0.7	28.2×1.0	38.0×1.5	48.0×1.0
質量 (g)	27	111	176	335

● * 記號的尺寸 B、E、g、h 為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性 ●產品交貨時,波產生器為已拆卸狀態。齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。

馬達安裝型的波產生器孔徑尺寸

馬達安裝型的波產生器孔徑尺寸,可配合安裝馬達的軸徑在下表的 範圍內變更。

型號記號	5	8	11	14
2XH-F:\phi T H7 2XH-J:\phi VH7 1U-CC-F:\phi T H7 1U-CC:\phi T H7	1.5 ~ 6	2 ~ 4 (2 ~ 8)	$3 \sim 7$ $(3 \sim 8)$	4~8 (4~10)

- (註)1. ()內為波產生器為剛性型(一體型、特殊規格)的數值。標準品的波產生器附Oldham(自動校準機構)。但型號 5 的標準品為剛性型。

 2. 因孔徑不同,固定螺絲的尺寸也有可能變更。

 - 3. 因孔徑不同,也可實施鍵槽加工
 - 4. 變更孔徑尺寸時,全部都是特殊規格。尺寸的詳細內容,請洽詢本公司營業據點。

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

										表 266 -2
	_	型號		5		3		1	1	
記號			2XH-J/1U-CC	2XH-F/1U-CC-F	2XH-J/1U-CC	2XH-F/1U-CC-F	2XH-J/1U-CC	2XH-F/1U-CC-F	2XH-J/1U-CC	2XH-F/1U-CC-F
	T ₁	N·m)75	0.			80	2.	
		kgf⋅m	0.0)30)82	0.5	
	T ₂	N·m		22		75		.0	6.	
	_	kgf·m)22)77		20	0.	
	K ₁	×10⁴N·m/rad	0.009	0.010	0.031	0.034	0.077	0.084	0.172	0.188
	_ `	kgf·m/arc-min	0.003	0.003	0.009	0.010	0.023	0.025	0.051	0.056
	K ₂	×10⁴N·m/rad	0.011	0.013	0.039	0.044	0.109	0.124	0.210	0.235
		kgf·m/arc-min	0.003	0.004	0.012	0.013	0.032	0.037	0.063	0.070
減速比	Кз	×10⁴N·m/rad	0.012	0.016	0.046	0.054	0.134	0.158	0.286	0.335
30		kgf·m/arc-min	0.004	0.005	0.014	0.016	0.040	0.047	0.085	0.100
	θ1	×10⁴rad	8.7	7.5	9.5	8.6	10	9.5	12	11
		arc-min	3.0	2.6	3.2	3.0	3.6	3.3	4.0	3.6
	θ2	×10⁴rad	22	19	21	19	21	19	35	31
	02	arc-min	7.5	6.4	7.3	6.6	7.4	6.6	12	11
	K ₁	×10⁴N·m/rad	0.011	0.013	0.039	0.044	0.177	0.221	0.286	0.335
	IN1	kgf·m/arc-min	0.003	0.004	0.012	0.013	0.053	0.066	0.085	0.100
	K ₂	×10⁴N·m/rad	0.014	0.018	0.056	0.067	0.225	0.300	0.378	0.468
	11/2	kgf·m/arc-min	0.004	0.005	0.017	0.020	0.067	0.089	0.113	0.140
減速比	K ₃	×10⁴N·m/rad	0.017	0.025	0.067	0.084	0.236	0.320	0.440	0.568
50	1//3	kgf·m/arc-min	0.005	0.007	0.020	0.025	0.070	0.095	0.131	0.170
	θι	×10⁴rad	6.9	5.6	7.5	6.6	4.5	3.6	7.0	6.0
	01	arc-min	2.4	2.0	2.6	2.3	1.6	1.2	2.4	2.0
	θ2	×10⁴rad	18	14	16	14	9.9	7.6	20	16
	02	arc-min	6.0	4.8	5.4	4.7	3.4	2.6	6.8	5.6
	K ₁	×10⁴N·m/rad	0.015	0.020	0.072	0.090	0.206	0.267	0.378	0.468
	Kı	kgf·m/arc-min	0.004	0.006	0.021	0.027	0.061	0.079	0.113	0.140
	K ₂	×10⁴N·m/rad	0.018	0.027	0.080	0.104	0.243	0.333	0.460	0.601
	N2	kgf·m/arc-min	0.005	0.008	0.024	0.031	0.072	0.099	0.137	0.179
減速比	K ₃	×10⁴N·m/rad	0.020	0.030	0.089	0.120	0.291	0.432	0.516	0.700
80 以上	N3	kgf·m/arc-min	0.006	0.009	0.027	0.036	0.086	0.128	0.154	0.209
	θι	×10⁴rad	5.0	3.7	4.1	3.2	3.9	3.0	5.3	4.3
	01	arc-min	1.7	1.3	1.4	1.1	1.3	1.0	1.8	1.5
	θ2	×10⁴rad	13	9.2	9.8	7.7	8.8	6.6	16	12
	D2	arc-min	4.4	3.1	3.4	2.6	3.0	2.3	5.4	4.2

機械精度

CSF-mini 系列的主軸承採用高精度 4 點接觸滾珠軸承,使輸出部達 到高度機械精度。

輸出軸及輸出凸緣的機械精度如下所示。

軸輸出 圖 267 -1 2XH-J 1U-CC Яa Α A В

> В е

__ c A

凸緣輸出 圖 267 -2 2XH-F 1U-CC-F ⊚ фb A ⊚ фb A A Яa Α В В В В \Box Α

表 267 -1 ※T.I.R. 單位:mm

表 267-2

1750 1770 1	WINITIA TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO						71(1111 a = 12 11111		
記號	型號	5		8		11		14	
古C 50%	精度項目	2XH-J/1U-CC	2XH-F/1U-CC-F	2XH-J/1U-CC	2XH-F/1U-CC-F	2XH-J/1U-CC	2XH-F/1U-CC-F	2XH-J/1U-CC	2XH-F/1U-CC-F
	輸出軸前端的振幅	0.030	-	0.030	_	0.030	_	0.030	_
a	輸出軸內徑面的振幅	_	0.005	_	0.005	_	0.005	_	0.005
b	安裝接口同軸度	0.0	0.040		040	0.055		0.055	
С	安裝面直角度	0.0	0.020		20	0.025		0.025	
d	輸出凸緣面的振幅	0.005		0.0	005	0.005		0.005	
е	安裝面與輸出凸緣面的平行度	0.0	115	0.0)20	0.0	30	0.0	30

В

В

С A

機械精度

效率特性

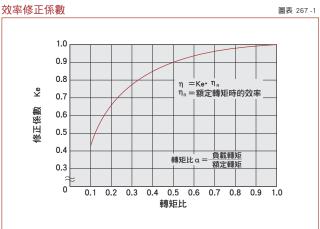
效率因下列條件而異。

- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑劑種類與使用量)

測量條件

負載轉矩 額定表所示的額定轉矩(參閱 251 頁) Harmonic 潤滑脂® SK-2 名稱 潤滑脂 潤滑條件 潤滑 塗佈量 適當塗佈量

■效率修正係數

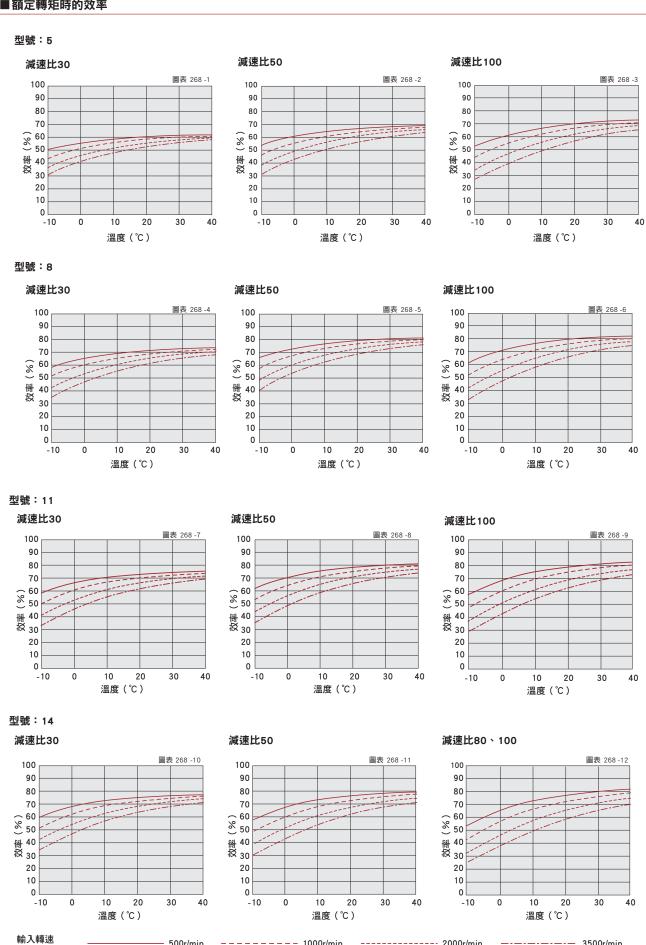

當負載轉矩小於額定轉矩,效率值將下降。

請依據圖表 267-1 求出修正係數 Ke, 並參考下列計算範例計算效 率。

例:以 CSF-8-100-2XH 為例,計算下列條件下的效率 η (%) 。 輸入轉速: 1000 r/min 潤滑方式:潤滑脂潤滑 負載轉矩 2.0N·m 潤滑劑溫度:20℃

型號 8、減速比 100 的額定轉矩為 2.4N·m (額定表: 251 頁),轉 矩比 α 為 0.83。 (α=2.0 / 2.4≒0.83)

- ■依據圖表 267-1,得知效率修正係數 Ke=0.99
- ■負 載 轉 矩 2.0N·m 時 的 效 率 η 為 η=Ke・η R = 0.99×77% = 76%。
- ※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。


- 500r/min

----- 1000r/min

----- 2000r/min

----- 3500r/min

■額定轉矩時的效率

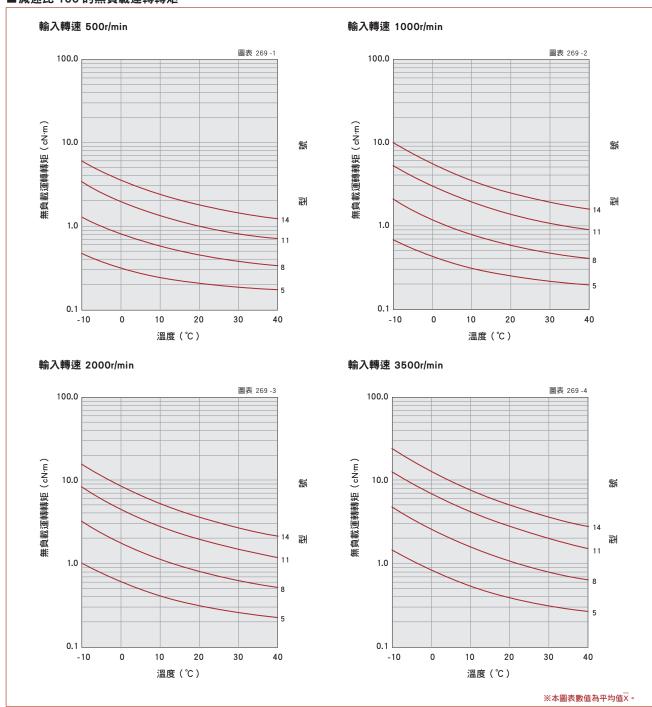
無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸入端(高速軸端)的轉矩。

※ 詳細數值請洽詢本公司營業據點。

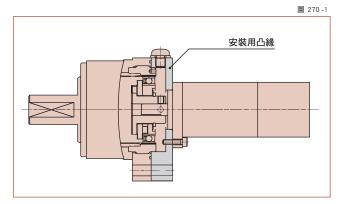
測量條件 表 269 -1 減速比 100 潤滑條件 潤滑脂 名稱 Harmonic 潤滑脂 ® SK-2 轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值

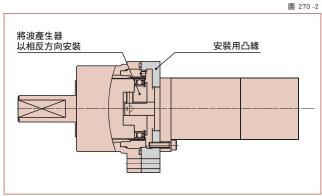
■速度比別修正量


Harmonic Drive® 的無負載運轉轉矩會因減速比而不同。圖表 269-1 \sim 269-4 為減速比 100 時的數值。關於其他減速比,請加上表 269-2 所示修正量後計算。

無負載運轉轉矩修正量

表 269 -2 單位:cN·m


減速比 型號	30		80
5	0.26	0.11	_
8	0.44	0.19	-
11	0.81	0.36	_
14	1.33	0.58	0.1


■減速比 100 的無負載運轉轉矩

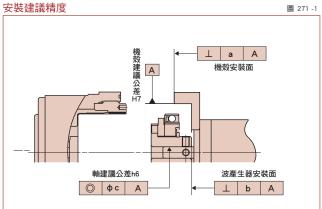
安裝例

馬達安裝型的典型安裝例如下所示。

■馬達匹配表

馬達安裝型與小型伺服馬達的組合,請參考下表。 詳細選擇型號,請參閱 014 ~ 015 頁「技術資料」。

表 270 -1


製造商系列名稱		安川電機製 Σmini 系列				菱電機製 HC-AQ 系	列	松下電器製 MINAS S 系列
馬達容型 號	量 3W·5W	10W	20W	30W	10W		30W	30W
5	0							
8		0			0			
11			0	0		0	0	O
14				0			0	0

(註)由於馬達的軸徑不同,有可能不符合標準品波產生器的孔徑。此時需要變更孔徑(孔徑尺寸:參閱 266 頁)以進行對應。 此外,孔徑的變更全部為特殊規格。

270

組裝精度

在安裝設計方面,為充分發揮 CSF-mini 系列擁有的優異性能,應確 保圖 271-1、表 271-1 所示之建議精度。

安裝機殼建議精度

表 271 -1 單位:mm

記號	型號 精度項目	5	8	11	14
а	機殼安裝面直角度	0.008	0.010	0.011	0.011
_	b 波產生器安裝面	0.005	0.012	0.012	0.017
b	//////////////////////////////////////	0.005	(0.006)	(0.007)	(800.0)
	c 輸入軸同軸度	0.005	0.015	0.015	0.030
С		0.005	(0.006)	(0.007)	(0.016)

※()內為波產生器為剛性型(一體型、特殊規格)的數值。 此外,標準規格的波產生器附Oldham(自動校準機構)。 但型號5的標準規格為剛性型。

安裝及傳動轉矩

■安裝至裝置

將 CSF-mini 系列安裝在裝置上時,請確認安裝面平坦度或螺孔部是 否沒有毛邊後,用螺栓鎖緊安裝凸緣。

安裝凸緣(圖 273-1 的 A 部)螺栓 ※ 的鎖緊轉矩 /2XH 型

表 272 -1

項目	型號	5	8	11	14
螺栓支數		2	2	2	2
螺栓尺寸		M2	M3	M4	M5
安裝 P.C.D.	mm	25	37.5	50	62
鎖緊轉矩	N⋅m	0.25	0.85	2.0	4.0
與案 釋起	kgf·m	0.03	0.09	0.20	0.41
螺絲部嵌合最小長度	mm	2.4	3.6	4.8	6.0
傳動轉矩	N·m	2	7	16	31
1 守里川半守万世	kgf⋅m	0.2	0.7	1.6	3.1

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上 ※ 敬請使用墊圈,不要讓螺栓座面直接接觸鉛合金。

安裝凸緣(圖 273-2 的 A 部 /C 部)螺栓 ※ 的鎖緊轉矩 /1U-CC 型

表 272 -2

型號		!	5	·	3	1		1	4
項目		A 部	C 部	A 部	C 部	A 部	C 部	A 部	C 部
螺栓支數		4	4	4	4	4	4	4	4
螺栓尺寸		M2	M2	M3	M2.5	M4	M3	M5	M4
安裝 P.C.D.	mm	23	22.5	35	34	46	46	58	58
鎖緊轉矩	N·m	0.25	0.25	0.85	0.55	2.0	0.85	4.0	2.0
¥只 术 等/C	kgf·m	0.03	0.03	0.09	0.06	0.20	0.09	0.41	0.20
螺絲部嵌合長度	N⋅m	3	3	6	5	8	6	10	8
傳動轉矩	N·m	3.5	_	12	_	29	_	57	_
分割/ 千守/	kgf·m	0.4	-	1.3	_	2.9	_	5.9	_

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

■將負載安裝至輸出部

將負載安裝在 CSF-mini 系列的輸出部時,請考慮主軸承的規格(參 閱 253 頁) 並安裝。

安裝凸緣(圖 273-1、圖 273-2 的 B 部)螺栓 \times 的鎖緊轉矩(凸緣輸出型)

表 273 -1

圖 273 -2

項目	型號		8		14
螺栓支數		3	4	6	6
螺栓尺寸		M2	M3	M3	M4
安裝 P.C.D.	mm	9.8	15.5	20.5	25.5
鎖緊轉矩	N·m	0.54	2.0	2.0	4.6
與 案等是	kgf⋅m	0.06	0.20	0.20	0.47
傳動轉矩	N·m	2	13	26	55
守里川半寺大	kgf⋅m	0.3	1.3	2.6	5.6

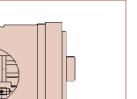

安裝凸緣 (1U-CC-F)

圖 273 -1

— A部

輪出凸緣已進行漏油對策,因此無需塗佈密封劑。 ※ 建讓螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

安裝凸緣 (2XH-F)

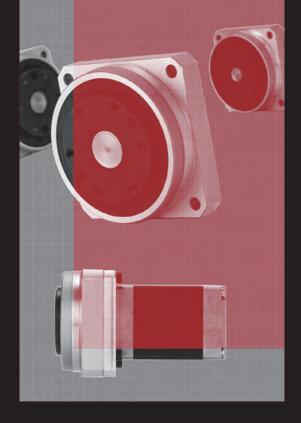
B部 A部 C部

在軸輸出中,安裝滑輪、小齒輪等時,請勿對輸出軸施加衝擊。將 導致減速機精度劣化或故障。

B部

密封機構

在馬達安裝型中,為防止潤滑脂滲漏並維護 Harmonic Drive® 的高度耐久性,需要下列密封機構。


· 凸緣重合面、………… O 型環、密封劑。此時請注意平面不均 嵌合處 整、O 型環遭咬入等情形。

·螺孔部······ 具封止效果的螺絲固定劑(建議使用 LOCTITE 242)或密封膠帶。

密封處與建議密封方式

表 274 -1

需要智	密封處	建議密封方式
	凸緣重合面	使用 O 型環(本公司產品隨附)
輸入端	馬達輸出軸	請選擇附油封的型號。 無油封時,必須採用馬達安裝凸緣可安裝油 封的結構。

CSF-mini 系列 超薄、高剛性型

	_	*****	- /11/	7 /	-111		J I -
Unit	Type	CSF-m	ini ———				
特 徴							276
打 对则是	₹₹₩						
			額定表	•••••	•••••	••••••	277
			角傳動精度				278
			遲滯損失 …				278
			起動轉矩…				278
			加速起動轉	矩			278
			鬆脫轉矩…				278
			屈曲轉矩…				278
			主軸承規格				279
			潤滑				279
			波產生器孔	徑尺寸			281
			剛性 (彈簧	常數) …			281
			機械精度…				282
			效率特性…				283
			無負載運轉	轉矩 …			284
			安裝例				285
			組裝精度…				286
			安裝及傳動	轉矩 …			286
			馬達安裝用	凸緣 …			288

特徵!

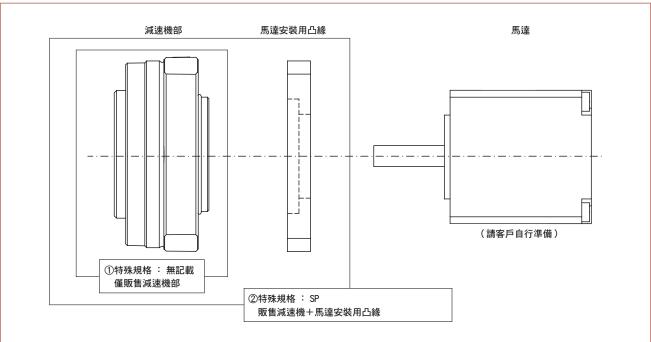
CSF-mini 系列的特徵 -

皆可考慮使用此產品。

- ■由於超薄型結構,因而機械及裝置可實現輕巧的設計。
- ■由於採用高剛性交叉滾柱軸承,可以直接支撐外部負載。

Harmonic Drive® 小型型號模組化的 CSF-mini 系列開發了輕量、高剛 性型。相較於舊有產品 CSF-mini 系列更加輕薄,且輸出部的主軸承

小型、輕量可搬運機械手臂的用途及各種小型機械裝置的各機構部,


■配合客戶使用馬達,準備安裝凸緣。

■CSF-mini 系列 超薄、高剛性型


採用交叉滾柱軸承而達到高剛性。

■特殊規格 圖 276 -1

- ※ 作為選購品,亦設計、販售馬達安裝用凸緣。如需設計凸緣,請告知 P288 圖 288-1 的所需尺寸。 ※ 馬達安裝用凸緣及馬達請客戶自行組裝。組裝時請參考 P285 ~ P287。
- ※ 特殊規格: SP 亦包含其他特殊規格。

機種名稱	型號		減速比		型式	特殊規格	
1及住口悟	主加				主八	-	
CSF 系列	8	30	50	100		無記載:標準品	
	11	30	50	100	2UP (高剛性型)	SP =形狀及性能等特殊規格	
	14	30	50	100		(凸緣選購品等)	

技術資料

額定表

表 277 -2

表 277 -1

型號	減速比	輸入 2000r/min 時的額定轉矩	起動、停止時的 容許峰值轉矩	平均負載轉矩的 容許最大值	瞬間容許最大 轉矩	容許最高輸入 轉速	容許平均輸入 轉速	慣性力矩 (1 / 4GD²)
		N·m	N·m	N·m	N·m	r/min	r/min	kg·cm²
	30	0.9	1.8	1.4	3.3			
8	50	1.8	3.3	2.3	6.6	8500	3500	4.0×10 ⁻³
	100	2.4	4.8	3.3	9.0			_
	30	2.2	4.5	3.4	8.5			
11	50	3.5	8.3	5.5	17	8500	3500	1.5×10 ⁻²
	100	5.0	11	8.9	25			
	30	4.0	9.0	6.8	17			
14	50	5.4	18	6.9	35	8500	3500	4.0×10 ⁻²
	100	7.8	28	11	54			

[※] 相關用語詳情,請參閱 012 頁「技術資料」內容。

	動精度(相關用語說明	,請參閱「技術資料	,內容。
--	------	--------	-----------	------

表 278 -1

減速比	型號 單位	8	11	
30	×10 ⁻³ rad	0.58	0.58	0.58
30	arc-min	2.00	2.00	2.00
50 以上	×10 ⁻³ rad	0.58	0.44	0.44
30 以工	arc-min	2.00	1.50	1.50

遲滯損失 (相關用語說明‧請參閱「技術資料」內容。)

表 278 -2

減速比	型號	8	11	14
30	×10 ⁻⁴ rad	8.7	8.7	8.7
30	arc-min	3.0	3.0	3.0
50	×10 ⁻⁴ rad	5.8	5.8	5.8
50	arc-min	2.0	2.0	2.0
100	×10 ⁻⁴ rad	5.8	5.8	2.9
100	arc-min	2.0	2.0	1.0

起動轉矩 (相關用語説明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異・僅作參考值之用。

表 278 -3 單位:cN·m

型號減速比	8	11	14
30	1.5	3.4	4.6
50	0.92	2.0	3.5
100	0.65	1.5	2.2

加速起動轉矩 (相關用語說明・請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 278 -4 單位:N·m

型號減速比	8	11	14
30	0.70	1.7	2.4
50	0.55	1.2	1.6
100	0.75	1.5	1.8

鬆脫轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 278 -5 單位:N·m

型號減速比	8	11	14
30	11	29	59
50	12	34	88
100	14	43	84

屈曲轉矩 (相關用語說明,請參閱「技術資料」內容。)

表 278 -6 單位:N·m

			事[五・14.11
型號	8	11	14
全減速比	35	90	190

主軸承規格

CSF-mini 系列 2UP 型在外部負載(輸出凸緣部)的直接支撐內,組裝了精密交叉滾柱軸承。 為充分發揮模組型的性能,請檢查最大負載力矩負重、交叉滾柱軸承壽命以及靜態安全係數。 各數值的公式請參閱 030 ~ 034 頁「技術資料」內容。

■確認步驟

①確認最大負載力矩負重(M max)

②確認壽命

求出平均徑向負載 (Frav)、平均軸向負載 (Faav) 求出徑向負載係數(X)、軸向負載係數(Y) 計算並確認壽命

③確認靜態安全係數

■主軸承規格

表 279 -1

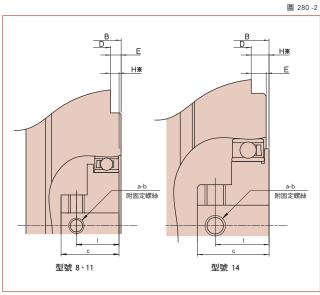
	轉子節圓直徑	偏移量	基本額	定負載	容許力矩負載 Mc	크셔드메네 V
型號	dp	R	基本動額定負載 C	基本靜額定負載 Co	谷計刀起貝載 MC	力矩剛性 Km
	mm	mm	×10²N	×10²N	N·m	N·m ∕ rad
8	35	12.9	58	80	15	2.0×10 ⁴
11	42.5	14	65	99	40	4.0×10 ⁴
14	54	14	74	128	75	8.0×10 ⁴

- ※ 容許力矩負載是指輸出軸承上可施加的最大力矩負重,此範圍內的數值可以確保基本性能並可動作。
- ※ 力矩剛性的值為參考值。下限值約為標示數值的 80%。

潤滑

CSF-mini 系列 2UP 型的標準潤滑方法為潤滑脂潤滑。 出貨前已封入潤滑脂,組裝時無需另行注入、塗佈。此外,請使用 以下潤滑劑。

潤滑部減速機部	主軸承部			
使用潤滑劑名稱 Harmonic 潤滑脂®	SK-2			
製造商 Harmonic Drive Sys	stems			
基礎油 精煉礦物油	精煉礦物油			
增稠劑 鋰皂基				
混合稠度(25℃) 265~295				
滴點 198℃				
外觀	綠色			


■外觀尺寸圖

D G S-T等間距 ØK h7 8 Z Ø Ø0 H7 U-**∅** V 等間距 Y-Z 等間距 450 * 2- φ 4.1為本公司組裝時使用之尺寸,因此會有變形、損傷。恕不保證位置度等精度。

■尺寸表

■尺寸表			表 280 -1 單位:mm
型號記號	8	11	14
ФА	66	80	100
В	24.8	27	34
С	13	13.5	18.5
D	9	11.5	12
E	2.8	2	3
F	3	3.5	3.5
G	5	5	8
нж	1.1 0	1.6 0	3.5 0
I	7.2	8.3	10.5
J	12.9	14	14
ФК	49	59	74
ΦL	48	58	73
ФМ	33.5	41	52.5
ФИ	30	44	52
ФО	5	5	8
□P	50±1	60±1	75±1
ΦQ	25.5	33	44
ΦR	58	70	88
S	6	6	6
Т	M3×6	M4×5	M5×7
U	4	4	4
ФV	3.5	4.5	5.5
ФW	52	63	70.71
Х	35°	33.5°	55°
Y	4	4	4
Z	M3×5	M3×6	M4×8
質量(g)	200	330	620

■波產生器安裝尺寸放大圖

※H尺寸為構成 Harmonic Drive® 三項零件(波產生器、彈性齒杯、剛性齒輪)軸方向的配合位置及容許公差。請務必遵守上述尺寸,以免影響性能、強度。

圖 280 -1

型號記號	8	11	14
а	2	2	2
b	M3×4	M3×4	M4×4
С	10.2	11.3	14
d	ф29.8×0.8	φ54.0×1.2	ф58.4×1.3

波產生器孔徑尺寸

波產生器孔徑尺寸(P280表 280-1 φO), 可配合安裝馬達的軸徑在下表的範圍內變更。

表 281 -1 單位:mm

			→ □ · · · · · · · · · · · · · · · · · ·	
型號記號	8	11	14	
ф0 Н7	2~8	3 ∼ 8	4~10	

※ 變更孔徑尺寸後,全部都是特殊規格。 關於尺寸的詳情請洽詢營業據點。 ※ 標準品的波產生器為剛性型(一體型)。

Oldham(自動校準機構)為特殊規格。

剛性(彈簧常數) (相關用語說明,請參閱「技術資料」內容。)

表 281 -2

T1 - T2 - K1 - K2 - Xi速比 30	N-m kgf-m N-m kgf-m ×10°N-m/rad kgf-m/arc-min ×10°N-m/rad kgf-m/arc-min ×10°N-m/rad kgf-m/arc-min ×10°Tad arc-min	0.29 0.030 0.75 0.077 0.034 0.010 0.044 0.013 0.054 0.016	0.80 0.082 2.0 0.20 0.084 0.025 0.124 0.037 0.158	2.0 0.20 6.9 0.70 0.188 0.056 0.235 0.070
T2	N·m kgf·m ×10°N·m/rad kgf·m/arc-min ×10°N·m/rad kgf·m/arc-min ×10°N·m/rad kgf·m/arc-min ×10°N·m/rad	0.75 0.077 0.034 0.010 0.044 0.013 0.054 0.016	2.0 0.20 0.084 0.025 0.124 0.037 0.158	6.9 0.70 0.188 0.056 0.235 0.070
K ₁	N·m kgf·m ×10°N·m/rad kgf·m/arc-min ×10°N·m/rad kgf·m/arc-min ×10°N·m/rad kgf·m/arc-min ×10°N·m/rad	0.75 0.077 0.034 0.010 0.044 0.013 0.054 0.016	2.0 0.20 0.084 0.025 0.124 0.037 0.158	6.9 0.70 0.188 0.056 0.235 0.070
K ₁	X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ rad	0.034 0.010 0.044 0.013 0.054 0.016	0.084 0.025 0.124 0.037 0.158	0.188 0.056 0.235 0.070
K ₂	X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ rad	0.010 0.044 0.013 0.054 0.016	0.025 0.124 0.037 0.158	0.056 0.235 0.070
K ₂	X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁴ N·m/rad kgf·m/arc-min X10 ⁻⁴ rad	0.044 0.013 0.054 0.016	0.124 0.037 0.158	0.235 0.070
減速比 30 K ₃ -	kgf·m/arc-min ×10 ⁴ N·m/rad kgf·m/arc-min ×10 ⁻⁴ rad	0.013 0.054 0.016	0.037 0.158	0.070
減速比 30 K ₃ -	×10⁴N·m/rad kgf·m/arc-min ×10⁻⁴rad	0.054 0.016	0.158	
30 K ₃ Θ ₁	kgf·m/arc-min X10⁴rad	0.016		0.335
θ1	×10⁴rad			0.000
			0.047	0.100
	arc-min	8.6	9.5	11
θ ₂		3.0	3.3	3.6
02	×10⁴rad	19	19	31
1 1	arc-min	6.6	6.6	11
1,	X10⁴N·m/rad	0.044	0.221	0.335
K ₁	kgf·m/arc-min	0.013	0.066	0.100
1/	×10⁴N·m/rad	0.067	0.300	0.468
K ₂	kgf·m/arc-min	0.020	0.089	0.140
減速比	×10⁴N·m/rad	0.084	0.320	0.568
50 K ₃	kgf·m/arc-min	0.025	0.095	0.170
θι	×10⁴rad	6.6	3.6	6.0
01	arc-min	2.3	1.2	2.0
θ_2	×10⁴rad	14	7.6	16
02	arc-min	4.7	2.6	5.6
K ₁	×10⁴N·m/rad	0.090	0.267	0.468
N1	kgf·m/arc-min	0.027	0.079	0.140
K ₂	×10⁴N·m/rad	0.104	0.333	0.601
N2	kgf·m/arc-min	0.031	0.099	0.179
減速比 K3	×10⁴N·m/rad	0.120	0.432	0.700
100	kgf·m/arc-min	0.036	0.128	0.209
θι	×10⁴rad	3.2	3.0	4.3
U1	arc-min	1.1	1.0	1.5
θ_2	×10⁴rad	7.7	6.6	12
U2	arc-min	2.6	2.3	4.2

[※] 本表數值為參考值。下限值約為標示數值的 80%。

機械精度

CSF-mini 系列 2UP 型的主軸承採用高精度、高剛性的交叉滾柱軸承,使輸出部達到高度機械精度。輸出部的機械精度如下。

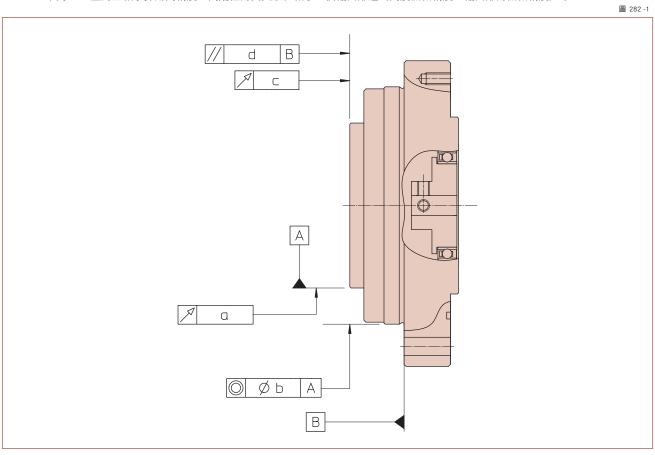


表 282 -1

記號	精度項目		型號		
āC 50€	相反視口	8	11	14	
a	輸出軸軸偏移	0.010			
b	安裝接口同軸度	0.040			
С	輸出凸緣面偏移	0.010			
d	安裝面與輸出凸緣面的平行度	0.040			

※T.I.R (Total Indicator Reading)的數值。

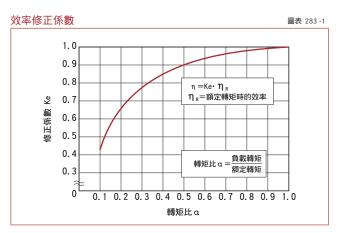
效率特性

效率因下列條件而異。

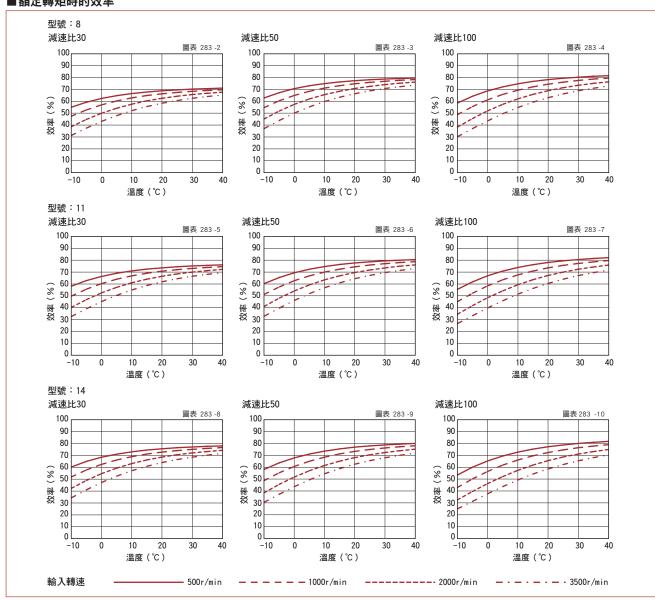
- ■減速比
- ■輸入轉速
- ■負載轉矩
- ■溫度
- ■潤滑條件(潤滑種類與使用量)

測量條件 表 283 -1 負載轉矩 名稱 Harmonic 潤滑脂® SK-2 潤滑條件 潤滑脂潤滑 途佈量 適當塗佈量

■效率修正係數


當負載轉矩小於額定轉矩,效率值將下降。請依據圖表 283-1 求出 修正係數 Ke,並參考下列計算範例計算效率。

例:以 CSF-8-100-2UP 為例,計算下列條件的效率 η(%)。 輸入轉速: 1000 r/min 潤滑方法:潤滑脂潤滑 負載轉矩 2.0N⋅m 潤滑劑溫度:20℃


型號 8、減速比 100 的額定轉矩為 2.4N·m,轉矩比 α 為 0.83。 $(\alpha = 2.0 / 2.4 = 0.83)$

依據圖表 283-1, 得知效率修正係數 Ke = 0.99

負載轉矩 2.0Nm 時的效率 η 為 η = Ke \cdot η_R = 0.99×77% = 76% \circ ※ 當負載轉矩大於額定轉矩,效率修正係數為 Ke = 1。

■額定轉矩時的效率

無負載運轉轉矩

無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸 入端(高速軸端)的轉矩。

※ 詳細數值請洽詢本公司營業據點。

■減速比別修正量

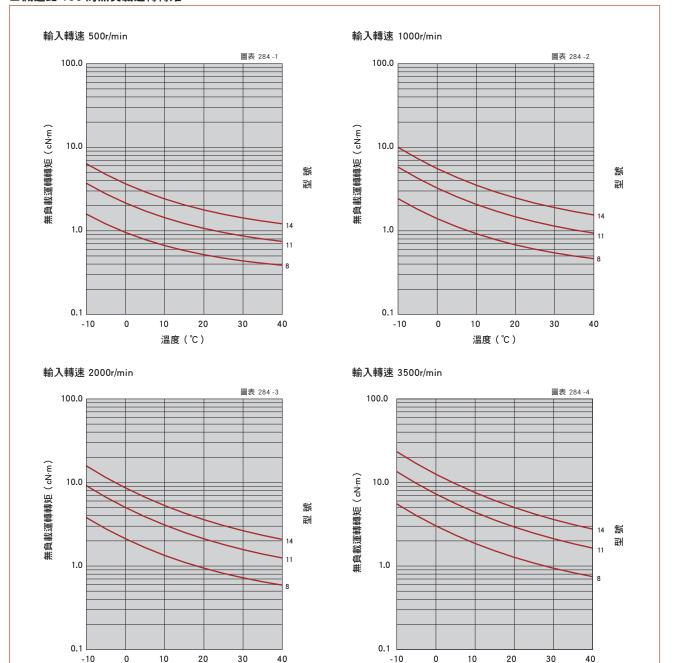
Harmonic Drive® 的無負載運轉轉矩會因減速比而不同。圖表 284-1 \sim 284-4 為減速比 100 時的數值。關於其他減速比,請加上表 284-2所示修正量後計算。

溫度(℃)

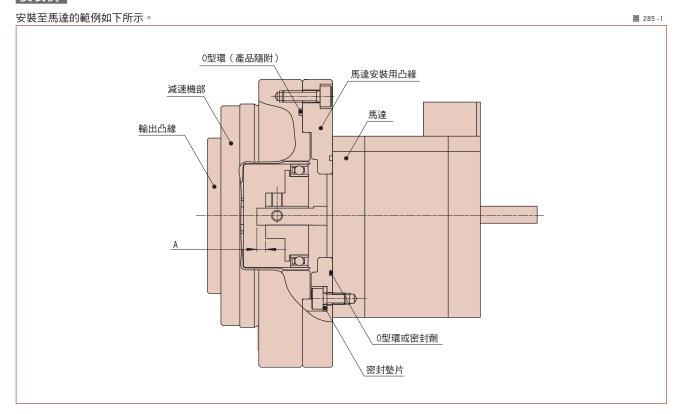
測量條件

表 284 -1 潤滑條件 潤滑脂潤滑 名稱 Harmonic 潤滑脂® SK-2 轉矩值為輸入 2000r/min 經 2 小時以上磨合運轉後的數值

無負載運轉轉矩修正量


表 284 -2 單位:cN·m

減速比 型號	30	50
8	0.49	0.22
11	0.81	0.36
14	1.25	0.55


溫度(℃)

※本圖表數值為平均值 X。

■減速比 100 的無負載運轉轉矩

安裝例

■密封機構

在馬達安裝中,為防止潤滑脂滲漏並維護 Harmonic Drive® 的高度耐久性,需要下列密封機構。

		表 285 -1
需要密封處		建議密封方式
压液力牡果几位	Harmonic Drive® 側 (減速機部側)	使用 O 型環(本公司產品隨附)
馬達安裝用凸緣	馬達側	○型環、密封劑、密封墊片等 (此時請注意平面不均整、○型環咬入等情形)
馬達輸出軸		請選擇附油封的馬達輸出軸。 無油封時,必須採用馬達安裝凸緣 可安裝油封的結構。
마양 의 프K		具密封效果的螺絲固定劑(建議使用 LOCTITE 242) 或密封膠帶。

[※] 輸出凸緣已設油封結構,因此無需塗佈密封劑。

■馬達安裝時的注意事項

請注意圖 285-1 的馬達軸最大突出量 A 必須低於以下數值。

表 285 -2

			単1以·mm
型號 尺寸	8	11	14
А	2.5	4.5	6

組裝精度

在安裝設計方面,為充分發揮 CSF-mini 系列 2UP 型擁有的優異性能,應確保以下所示之建議精度。

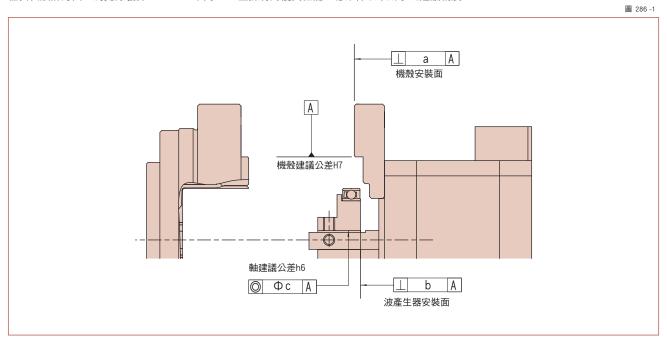
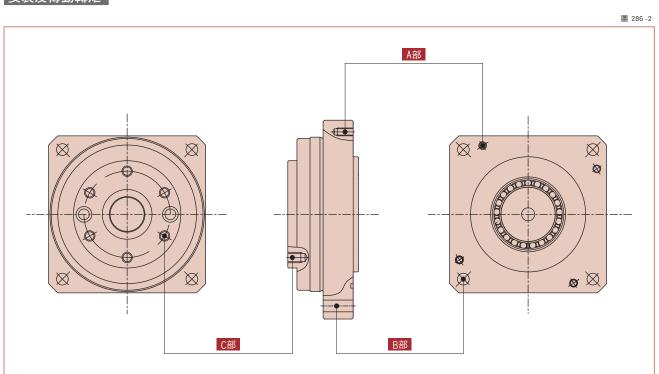



表 286 -1 單位:mm

型號 精度項目		8	11	14
a	機殼安裝面直角度	0.010	0.011	0.011
b	波產生器安裝面	0.006	0.007	0.008
С	輸入軸同軸度	0.006	0.007	0.016

安裝及傳動轉矩

■安裝至凸緣(機殼) A

將 CSF-mini 系列 2UP 型安裝在馬達時,請確認安裝面平坦度或螺孔部沒有毛邊後,用螺栓將減速機部鎖緊在馬達安裝用凸緣(機殼)。

表 287 -1

項目	型號		11	
螺栓支數		4	4	4
螺栓尺寸		M3	M3	M4
安裝 P.C.D	mm	52	63	70.71
鎖緊轉矩 ※	N·m	0.85	0.85	2.0
與系聘起 次	kgf·m	0.09	0.09	0.20
螺絲部嵌合最小長度	mm	3.6	3.6	4.8
/南新市市15、※	N·m	18	22	44
傳動轉矩 ※	kgf⋅m	1.9	2.3	4.5

※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上

■安裝至裝置 B

將 CSF-mini 系列 2UP 型安裝至裝置時,請確認安裝面平坦度或螺孔部沒有毛邊後,用螺栓將減速機部鎖緊在馬達安裝用凸緣。

表 287 -2

				34 201 -2
項目	型號	8	11	14
螺栓支數		4	4	4
螺栓尺寸	螺栓尺寸		M4	M5
安裝 P.C.D	mm	58	70	88
鎖緊轉矩 ※	N·m	1.2	2.7	5.4
·	kgf·m	0.12	0.28	0.55
螺絲部嵌合最小長度	mm	3.6	4.8	6.0
傳動轉矩 ※	N·m	29.0	59.1	119
1守里川半等大仁 次	kgf·m	3.0	6.0	1.2

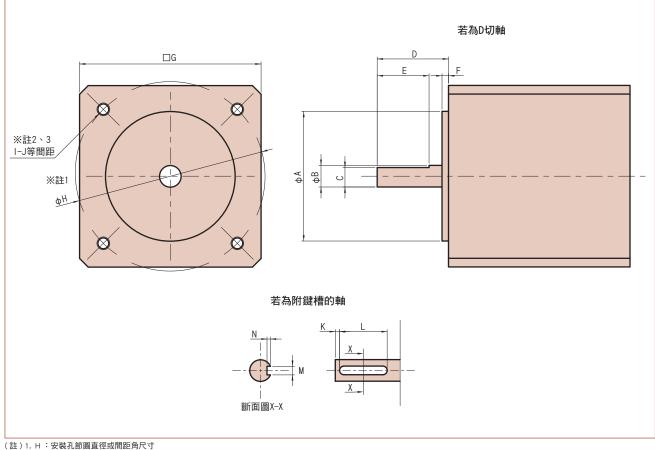
※ 鎖緊部為鋼時

■將負載安裝至輸出部 C

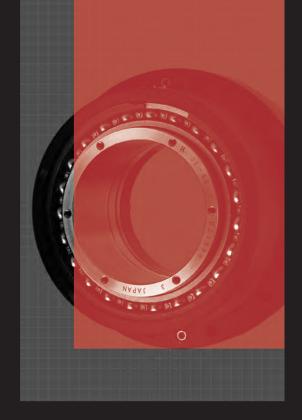
將負載安裝至 CSF-mini 系列 2UP 型的輸出部時,請考慮主軸承的規格再行安裝。

				表 287 -3
項目	型號		11	14
螺栓支數		6	6	6
螺栓尺寸		M3	M4	M5
安裝 P.C.D	mm	25.5	33.0	44.0
鎖緊轉矩 ※	N·m	2.0	4.5	9.0
與案 等 起 次	kgf·m	0.20	0.46	0.92
螺絲部嵌合最小長度	mm	3.6	4.8	6.0
/車新	N⋅m	31.9	69.6	184
傳動轉矩 ※	kgf⋅m	3.3	7.1	15
#AUL D 20 コール・オーナ・ナナサ ロル・何 南 20 -	/ 			

輪出凸緣已設油封結構,因此無需塗佈密封劑。 ※ 建議螺栓名稱:JIS B 1176 內六角螺栓、強度區分:JIS B 1051 12.9 以上


馬達安裝用凸緣

本公司備有馬達安裝用凸緣。


設計時需要馬達尺寸,

訂購時請提供圖 288-1 的 A \sim J (附鍵槽:A \sim N) 的尺寸。

圖 288 -1

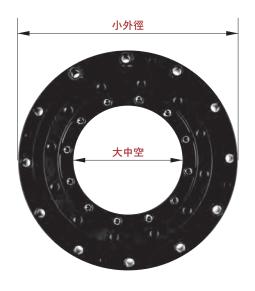
- - 2. 1 :安裝孔總數
 - 3. J : 螺孔的標稱直徑及孔深或貫穿孔直徑
 - 4. 馬達及馬達安裝用凸緣連接部若使用 型環,請告知 型環的尺寸。

FBS-2UH 系列 小外徑、大中空型

UH	
2	9(
2	9(
2	9
額定表	29
角傳動精度	29:
遲滯損失	29:
剛性 (彈簧常數)	292
起動轉矩	293
加速起動轉矩	293
鬆脫轉矩	29:
加速破壞轉矩	293
無負載運轉轉矩	294
効率特性	29!
主軸承規格	296
機械精度	296
輸入部容許負載	297
輸入軸的推力	297
安裝及傳動轉矩	298
潤滑	299
應用案例 ······· 2	299
	額定表 角傳動精度

特徵

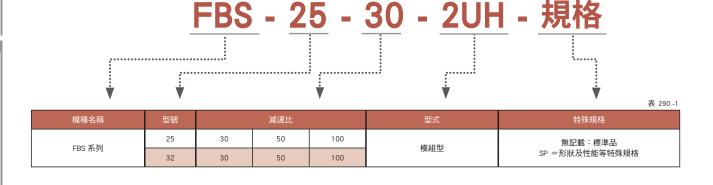
■FBS-2UH 系列 小外徑、大中空型


Harmonic Drive®的新設計產品,特色為大中空孔、小外徑結構。 此次所開發出的新結構模組產品,是讓 Harmonic Drive®特徵之一的 中空孔結構達到極致,並將外徑控制在最小尺寸。

藉由採用新設計的 Harmonic Drive® FBS 型,實現極具特徵的形狀。 對具有電纜處理問題之機械手臂前端軸和各種機械裝置來說,在設 計上更加精巧且節省空間。

FBS-2UH 系列的特徵 ·

- ■中空徑與外徑的比率較以往產品增加 20%
- ■每個型號都實現對最大中空徑、最小外徑的追求
- ■新增2種型號和3種減速比
- ■採用新設計的 Harmonic Drive® FBS 型


圖 290 -1

中空徑-外徑比率

型號	中空徑	外徑	比率
25	41.0mm	93mm	44%
32	55.1mm	113mm	49%

型式、記號

技術資料 ====

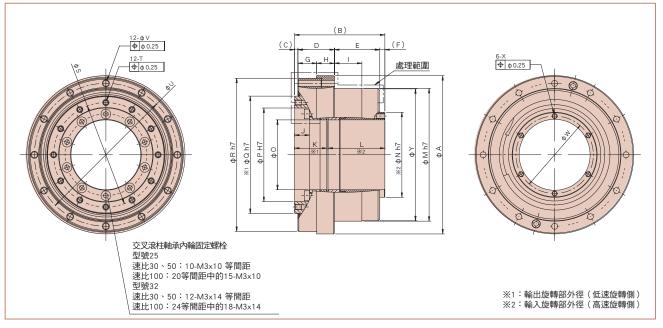

額定表

表 291 -1

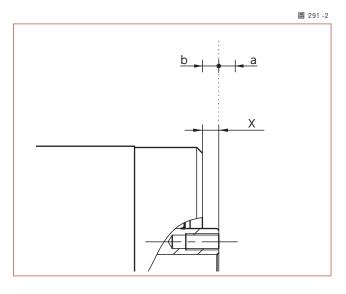
型號	減速比		00r/min 定轉矩		亭止時的 往山轉矩		或轉矩的 最大值	瞬間容許	最大轉矩	容許最高輸入轉速	容許平均輸入轉速	慣性力矩 (1 / 4GD²)	
		N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	N·m	kgf·m	r/min	r/min	kg·cm²	
	30	15	1.5	25	2.5	24	2.4	50	5.1				
25	50	22	2.2	47	4.8	35	3.6	93	9.5		2500	1.0	
	100	37	3.8	70	7.1	59	6.0	100	10.2	2000			
	30	30	3.1	48	4.9	48	4.9	96	9.8	3600			
32	50	43	4.4	92	9.4	67	6.8	151	15.4		2300	3.3	
	100	56	5.7	106	10.8	89	9.1	151	15.4				

■外觀尺寸圖

圖 291 -1

■尺寸表

表 291 -2 單位:mm


記號 型號	ФА	В	С	D	Е	F	G	Н	-	J	К	L	ФМ Һ7	ΦN h7	ФО	ФР Н7	ФQ h7	ΦR h7	ФЅ	Т	ΦИ	ФV	ФW	Х	ФҮ
	93	53.1	2	21.5	26.6	3	11.0	10.5	16.1	8.8	19.0	33.4	78	50	41.0	55	69	90	61.4	M3×4.5	84	3.5	45.5	M3×5	77.5
32	113	62.5	2	25.2	32.3	3	13.7	11.5	20.0	7.5	21.7	39.97	96	65	55.1	69	84	110	77.0	M4×6.0	102	4.5	60.0	мз×6	95.5

■輸入部(波產生器軸向間隙量)

輸入部的內部支撐結構有間隙,會隨著外力或運轉條件而移動。下表為軸向間隙。如需將軸方向定位,請採用可固定的設計。

表 291 -3 單位:mm

和同學	尺寸X	軸向	間隙
型號	1617	а	b
25	3	0.1~0.7	0.0~0.6
32	3	0.2~0.8	0.1~0.7

角傳動精度 (相關用語說明・請參閱「技術資料」內容。)

表 292 -1

減速比	型號	25	32
30	×10 ⁻⁴ rad	8.7	8.7
30	arc-min	3	3
50	×10 ⁻⁴ rad	5.8	5.8
50	arc-min	2	2
100	×10 ⁻⁴ rad	5.8	5.8
100	arc-min	2	2

遲滯損失 (相關用語說明・請參閱「技術資料」內容。)

表 292 -2

減速比	型號	25	32
30	×10⁴rad	8.7	8.7
30	arc-min	3	3
50	×10⁴rad	5.8	5.8
50	arc-min	2	2
100	×10⁴rad	2.9	2.9
100	arc-min	1	1

剛性(彈簧常數) (相關用語說明・請參閱「技術資料」內容。)

表 292 -3

		型號	OF.	
			25	32
-	Г1	N⋅m	7.4	16
'	11	kgf·m	0.75	1.6
-	Г2	N·m	26	55
	12	kgf·m	2.7	5.6
	K ₁	×10⁴N·m/rad	1.3	2.1
	N1	kgf-m/arc-min	0.4	0.64
	K ₂	×10⁴N·m/rad	1.3	2.4
	N2	kgf-m/arc-min	0.4	0.71
減速比	K ₃	×10⁴N·m/rad	1.6	2.9
30	N3	kgf·m/arc-min	0.48	0.87
	θ1	×10 ⁻⁴ rad	5.4	7.4
	01	arc-min	1.9	2.5
θ ₂	۵	×10 ⁻⁴ rad	19	24
	02	arc-min	6.6	8.2
K ₁	17	×10⁴N·m/rad	1.9	3.5
	K1	kgf·m/arc-min	0.56	1.0
	K ₂	×10⁴N·m/rad	2.0	3.7
	N2	kgf·m/arc-min	0.6	1.1
減速比	K ₃	×10⁴N·m/rad	2.3	4.3
50	N3	kgf·m/arc-min	0.69	1.3
	θι	×10⁴rad	3.9	4.5
	01	arc-min	1.4	1.6
	θ2	X10⁴rad	13	15
	02	arc-min	4.5	5.2
	K ₁	×10⁴N·m/rad	3.2	6.5
	N1	kgf·m/arc-min	0.94	1.9
	17	×10⁴N·m/rad	3.2	6.5
	K ₂	kgf·m/arc-min	0.94	1.9
減速比	IV.	×10⁴N·m/rad	3.2	6.6
100	K ₃	kgf·m/arc-min	0.94	2.0
	0	×10⁴rad	2.0	2.2
	θ1	arc-min	0.7	0.8
	0	×10⁴rad	7.8	8.3
	θ2	arc-min	2.7	2.9

[※] 本表數值為參考值。下限值約為標示數值的 70%。

起動轉矩 (相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 293 -1 單位:cN·m

型號減速比	25	32
30	25	54
50	15	31
100	11	20

加速起動轉矩(相關用語說明,請參閱「技術資料」內容。)下表數值會因使用條件不同而異,僅作參考值之用。

表 293 -2 單位:N·m

型號 減速比	25	32
30	11	23
50	9	18
100	13	22

鬆脫轉矩 (相關用語說明·請參閱「技術資料」內容。)

表 293 -3 單位:N·m

		+12
型號減速比	25	32
30	170	270
50	200	410
100	270	510

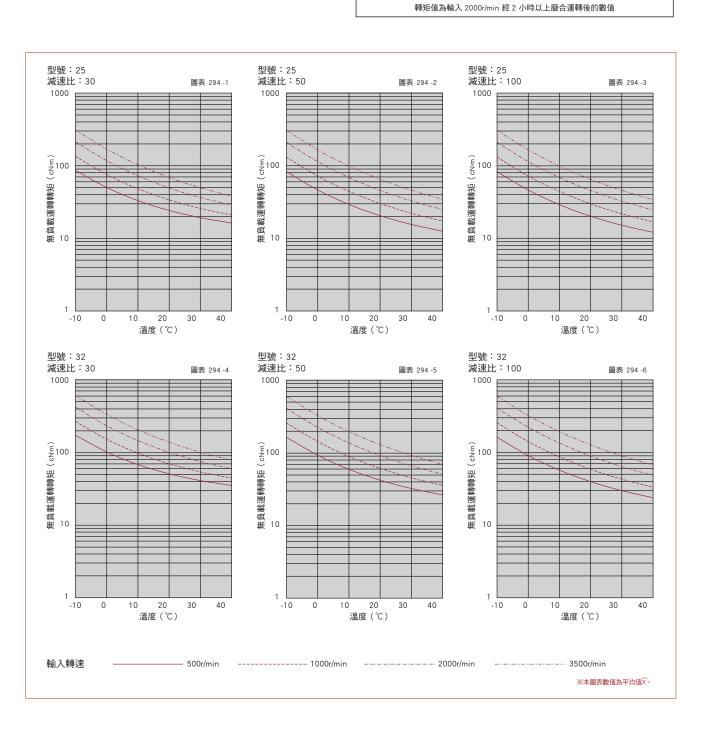
加速破壞轉矩 (相關用語說明,請參閱「技術資料」內容。)

輸入部為固定狀態下,在輸出部施加高於下表的轉矩時,會造成模組的連接部受損,而無法傳動轉矩。

表 293 -4 單位:N·m

型號 減速比	25	32
30		
50	370	730
100		

無負載運轉轉矩


無負載運轉轉矩係指無負載狀態下,驅動 Harmonic Drive® 所必要的輸入端(高速軸端)的轉矩。

※ 詳細數值請洽詢本公司營業據點。

 測量條件
 表 294

 潤滑條件
 減速機部

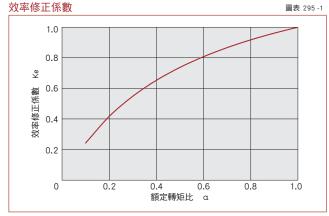
 Harmonic 潤滑脂 ® SK-1A
 Harmonic 潤滑脂 ® 4B No.2

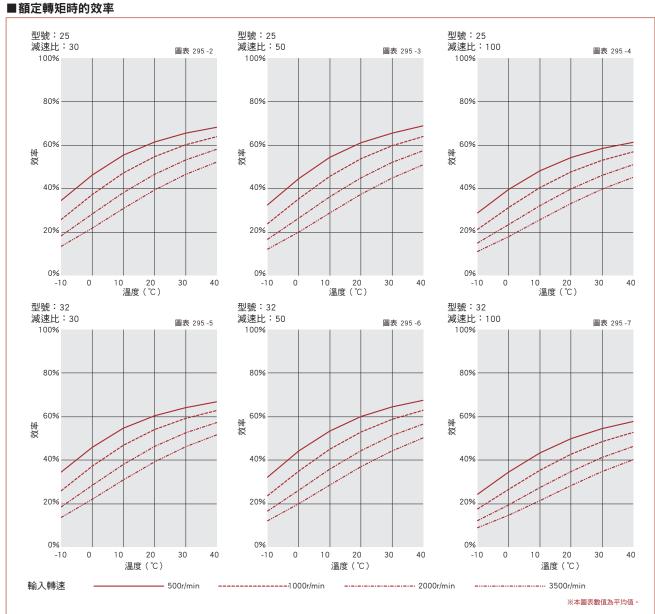
効率特性

效率會隨著負載轉矩而下降。請依據圖表求出修正係數 Ke,並參考 下列計算範例計算效率。

※1 效率修正係數是指潤滑脂的溫度在 30℃左右時的平均值。

%2 當負載轉矩大於額定轉矩,效率修正係數為 Ke=1。


效率修正係數:Ke 額定轉矩時的效率:ηR 隨著負載轉矩變化的效率:η


 $\eta = Ke \times \eta R$

轉矩比 α= 負載轉矩 額定轉矩

測量條件

主軸承規格


模組型在外部負載的直接支撐組裝了精密交叉滾柱軸承(輸出凸緣部)。 為充分發揮模組型的性能,請檢查最大負載力矩負重、交叉滾柱軸承壽命以及靜態安全係數。

■確認手順

①確認最大負載力矩負重 (M max)

②確認壽命

③確認靜態安全係數

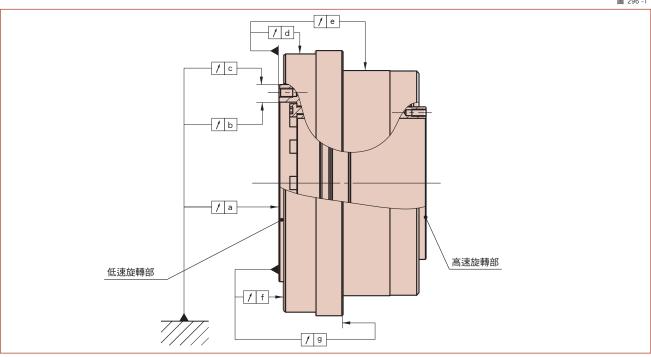
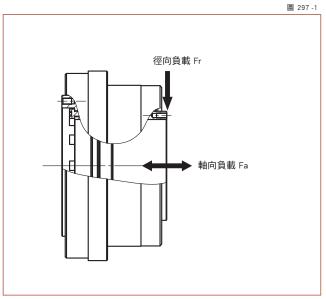
■主軸承規格

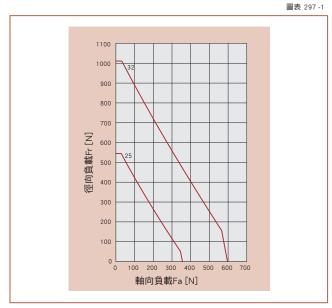
表 296 -1

	轉子節圓直徑	偏移量		基本額	定負載		容許力矩	名 計 M 。	力矩剛性 Km		
型號	dp	R	基本動額定負載 C		基本靜額定負載 Co		日計力な	± g ≢x, t ViC	ノスを呼り主 NII		
	m	m	×10²N	kgf	X10²N	kgf	N·m	kgf·m	×10⁴N·m/rad	kgf·m/arc-min	
25	0.070	0.0110	73	744	110	1122	93	9.5	21	6.2	
32	0.086	0.0121	109	1111	179	1825	129	13.2	31	9.2	

機械精度

圖 296 -1

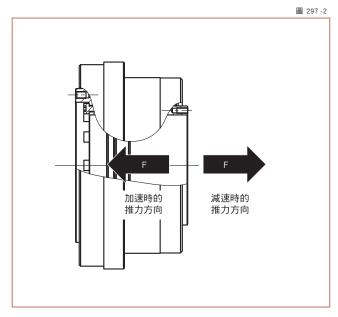

表 296 -2

		單位:mm
型號記號	25	32
a	0.015	0.015
b	0.010	0.010
С	0.010	0.010
d	0.010	0.013
е	0.070	0.073
f	0.010	0.010
g	0.018	0.024

輸入部容許負載

輸入部由 2 個軸承支撐。為充分發揮性能,請確認施加在輸入部上的負重。下方圖表顯示不同型號的容許最大徑向負載與推力負載。圖表的值是在平均輸入轉速 2000r/min、基本額定壽命 $L_{10}=5$,000h 時的值。

輸入軸的推力


Harmonic Drive® 因為彈性齒杯彈性變形,運轉中會對波產生器施加推力。

因為本產品的波產生器的支撐結構有間隙,可能會因此往軸方向移動。

如需抑制往輸入軸的軸方向移動,請採用能承受推力的設計。

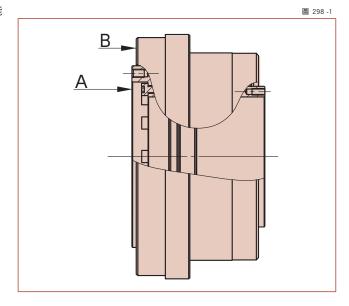
波產生器的推力(最大值)可由下列公式求出。

此外,推力會隨運轉條件而改變。高轉矩時、極低速時、固定連續旋轉時有增大的傾向,幾乎如同公式求出的值。無論任何情況,設計時 務必採用阻止波產生器推力的結構。

	表 297 -1
潤滑條件	公式
30	$F=5.2 \times \frac{T}{D} \times 0.07 \times tan 32^{\circ}$
50 以上	$F=5.2 \times \frac{T}{D} \times 0.07 \times tan 30^{\circ}$

F = 推力(N)

T = 輸出轉矩(N·m)


D=(型號)× 0.00254(m)

安裝及傳動轉矩

■組裝注意事項

關於組裝設計,若為導致安裝面變形等異常組裝,則可能造成性能 降低。為充分發揮模組型所具有的優異性能,敬請注意下列事項。

- ●安裝面彎曲、變形
- ●咬入異物
- ●安裝孔螺孔部週邊的毛邊、隆起、位置度異常
- ●安裝接口部倒角不足
- ●安裝接口部真圓部異常

A 側的安裝及螺栓傳動轉矩

· · [//3/43/2]	323137		
項目	型號	25	32
螺栓支數	Į.	12	12
螺栓尺寸	-	M3	M4
螺栓鎖固 P.C.D.	mm	61.4	77.0
螺栓鎖緊轉矩	N·m	2.0	4.5
型系个王亚只 36.4 H 号 7℃	kgf·m	0.20	0.46
螺栓傳動轉矩	N·m	154	324
写示71王 1守当が半守大は	kgf·m	15.7	33.1

- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提。

- 4. 鎖緊係數:A = 1.4
- 5. 接合面摩擦係數 μ = 0.15

B側的安裝及螺栓傳動轉矩

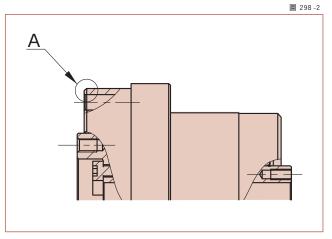
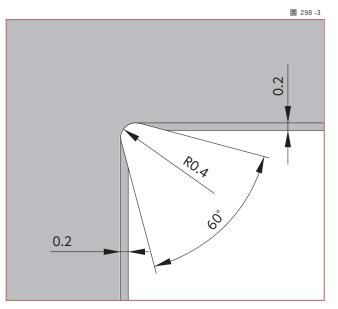

表 298 -1

表 298 -2


項目	型號	25	32
螺栓支數		12	12
螺栓尺寸		M3	M4
螺栓鎖固 P.C.D.	mm	84	102
螺栓鎖緊轉矩	N·m	2.0	4.5
SAY王亚只 36×半呼 7℃	kgf·m	0.20	0.46
螺栓傳動轉矩	N·m	210	431
紫糸作王 守里川半守万世		21	44

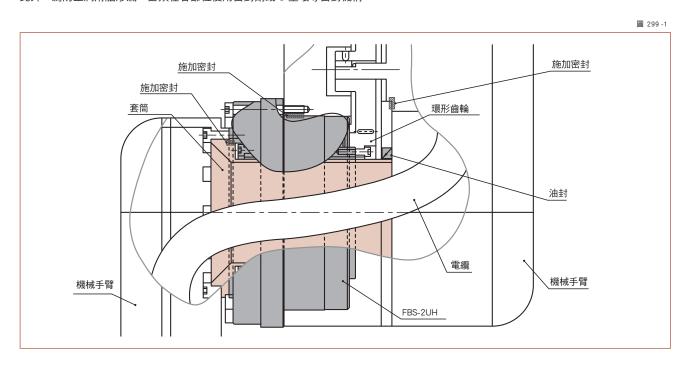
- 1. 螺帽材質以能夠承受螺栓鎖緊轉矩為前提
- : 建議課栓 螺栓名稱: JISB 1176 內六角螺栓 強度區分: JISB 1051 12.9 以上 3. 轉矩係數: K = 0.2
- 4. 鎖緊係數:A = 1.4
- 5. 接合面摩擦係數 $\mu = 0.15$

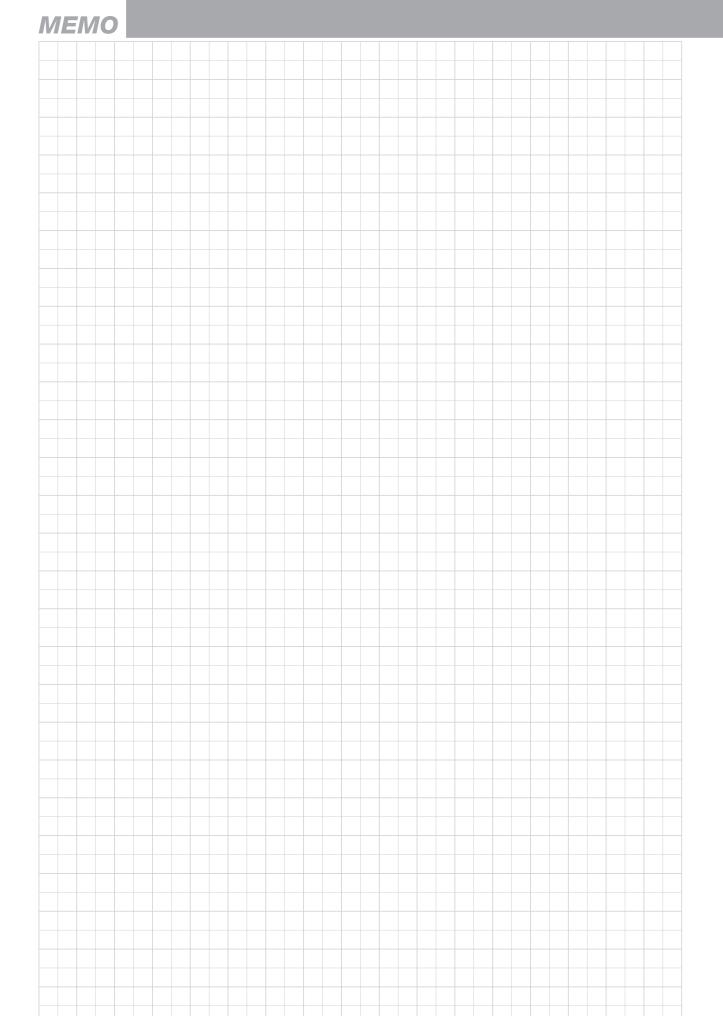
■安裝接口的建議離隙加工

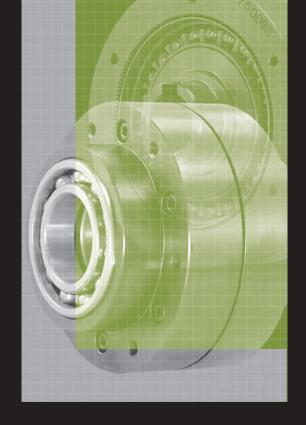
模組型若將 A 部作為安裝接口使用時,請在安裝對象端進行離隙加 ェ。

潤滑

FBS-2UH 的潤滑方法採用潤滑脂。出貨前已封入潤滑脂,組裝時無需另行注入、塗佈。此外,請使用以下潤滑劑。

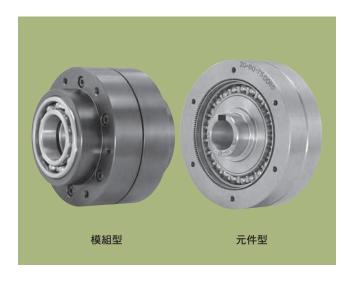

■潤滑脂更換時期


※ 詳細內容請參閱「技術資料」。


		衣 299 -1
潤滑部	減速機部	主軸承部
使用潤滑劑名稱	Harmonic 潤滑脂 ® SK-1A	Harmonic 潤滑脂 ® 4BNo.2
製造商	Harmonic D	rive Systems
基礎油	精煉礦物油	合成烴油
増稠劑	鋰皂基	尿素
混合稠度 (25℃)	265 ~ 295	290 ~ 320
滴點	197°C	247°C
外觀	黃色	淡黃色

應用案例

FBS-2UH 為避免因大直徑的密封機構而產生的摩擦損耗,在輸入側(高速旋轉側)沒有設密封機構。 透過在外殼及輸出側的低速側密封,減少輸入側(高速旋轉側)的損耗,是一個有效善用中空形狀的案例。 此外,為防止潤滑脂滲漏,必須在各部位使用密封劑或 O 型環等密封機構。

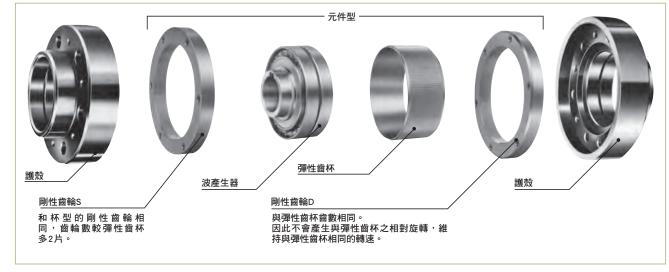


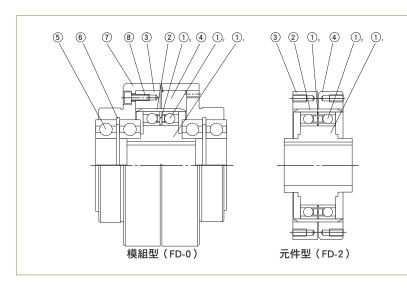
FD系列

Differential Gear	FD —	
2		
特 徵	3	02
旋轉方向與減速比·	3	03
型式、記號	3	04
使用方法	3	0!
	使用例3	0!
	組裝例3	06
	差動齒輪與諧波差動齒輪的相異點3	07
	設計例3	08
	齒輪選擇資料 3	08
	計算例3	09
技術資料	3	1(
	額定表3	1(
	模組型 (FD-0) 外觀圖 ······ 3	1
	模組型 (FD-0) 尺寸表 ······ 3	1
	元件型 (FD-2) 外觀圖 ······ 3	12
	元件型 (FD-2) 尺寸表 ······ 3	12
	效率特性3	1:
	慣性力矩	13
	容許最大轉速3	13
	無效運動與彈簧常數3	14
設計指南	3	1!
	使用注意事項 ······· 3	1!
	組裝注意事項3	1!
	潤滑3	1!

特徵=

■差動齒輪 FD 系列

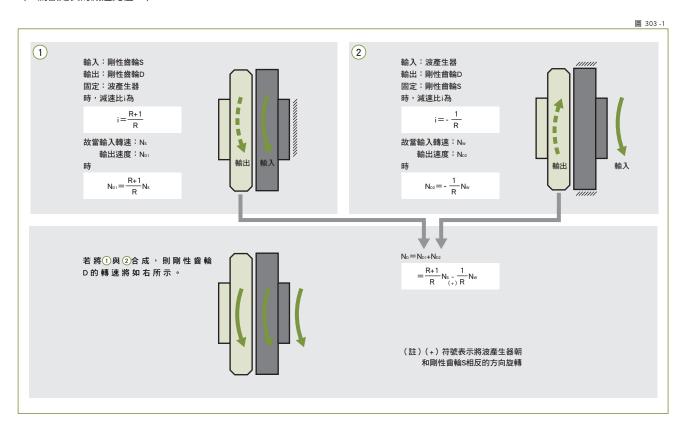

差動齒輪 FD 系列是應用了 Harmonic Drive® 的獨特動作原理,可在運轉中微調相位及時序的極小型差動裝置。

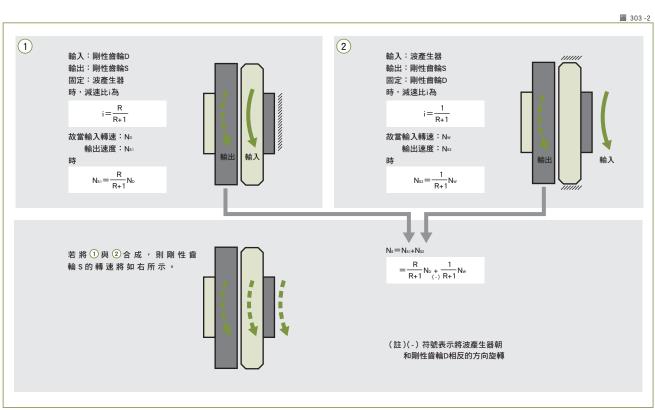

FD 系列的組成零件數量與平板型的元件型產品一樣為 4 個。模組型則是已用護殼包覆,以便直接安裝在傳動用的齒輪、滑輪等部位上。

FD 系列的特徵 -

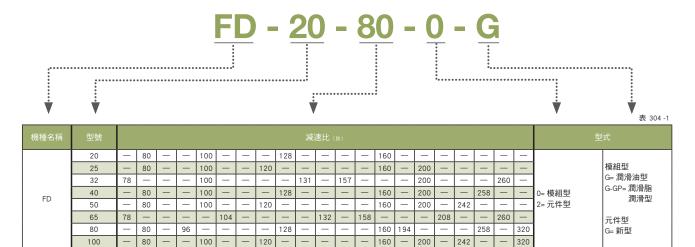
- ■差動機構已直接彙整成為一個模組,可輕鬆組裝至裝置。
- ■零件數量僅 4 個,且能組裝在同軸上。
- ■背隙極小,完全不需進行組裝調整,可大幅降低組裝成本。
- ■調整軸和輸出的減速比較大,除了能輕鬆執行細微且高精度的位 置調整外,亦可降低調整軸所需的轉矩。

FD 系列的結構 圖 302-1


= // // rt	P-T 445
零件編號	品項名稱
1	波產生器
1),	波產生器栓
1)2	波產生器軸承
1),	保持器壓板
2	彈性齒杯
3	剛性齒輪S
4	剛性齒輪D
5	滾珠軸承
6	孔用C型停止環
7	護殼
8	內六角螺栓


圖 302 -2

(註)剛性齒輪S與D的分辨方法 剛性齒輪D的外圈倒角加工度較S型為高。


旋轉方向與減速比 ====

旋轉方向與 FB 系列(105 頁)相同。 此處將特別說明作為差動裝置使用時的使用方法。 (R 為額定表的減速比值。)

型式、記號 =

(註)減速比表示為輸入:波產生器、固定:剛性齒輪 S、輸出:剛性齒輪 D。

使用方法 ==

使用例

■相位調整

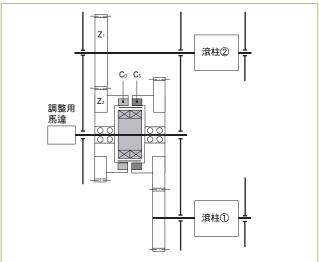
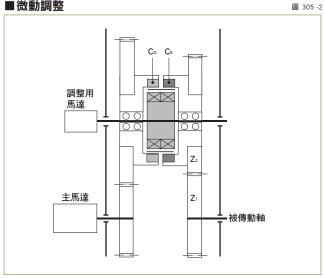


圖 305 -1

本裝置是調整 2 個滾柱的相位的調整裝置,一般會讓調整用馬達進 入煞車狀態,以主驅動循滾柱① $\rightarrow C_s \rightarrow C_D \rightarrow$ 滾柱②的方式使其旋 轉。若在此處須調整滾柱②對於滾柱①的相對相位時,便必須讓調 整用馬達旋轉。調整後須停下調整用馬達,讓滾柱②返回至最初的 旋轉狀態。

〔公式〕


將調整用馬達為固定狀態時滾柱②的轉速設為 N。。 將調整用馬達以 Nw 旋轉時,滾柱②的轉速 N 為

公式 305-1

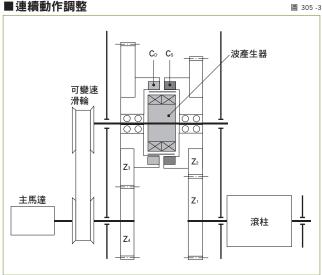
$$N = N_0 \pm \frac{1}{R} \left(\frac{Z_2}{Z_1} \right) N_w$$

當波產生器和剛性齒輪同方向時,符號為(-),反方向時符號為 (+)。

■微動調整

本方法是當必須微調被傳動軸的速度、時序時,不必改變主馬達的 轉速便能以調整用馬達進行調整的方式。

(公式)


調整用馬達為固定狀態時,被傳動軸的轉速為

公式 305-2

$$N=N_0\pm \frac{1}{R+1} \left(\frac{Z_2}{Z_1}\right) N_W$$

當波產生器和剛性齒輪同方向時,符號為(+),反方向時符號為

■連續動作調整

本裝置是能讓滾柱轉速以細微方式連續變化的裝置。主馬達的旋轉 有 2 種傳動路徑

- ①通過 $Z_4 \rightarrow Z_3$ (C_D) $\rightarrow Z_2$ (C_S) $\rightarrow Z_1 \rightarrow$ 滾柱的傳動路徑
- ②通過可變速滑輪→波產生器 \rightarrow C_s $(Z_2) \rightarrow Z_1 \rightarrow$ 滾柱的傳動路徑。 本方法是以②來改變滾柱速度的方法。

[公式]

將可變速滑輪的旋轉為0時被主馬達驅動旋轉的滾柱的轉速設為 No °

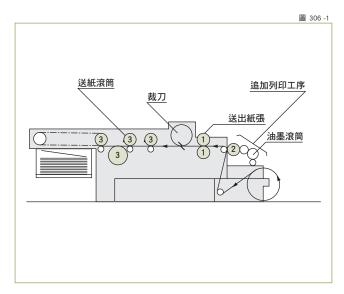
此處若可變速滑輪,亦即波產生器的旋轉从 N₁ 變化為 N₂ 後,則滾 柱的轉速N為

公式 305-3

當波產生器和剛性齒輪同方向時,符號為(+),反方向時符號為

組裝例

■裁紙裝置


右圖為一般的應用範例,使用了下列機構。

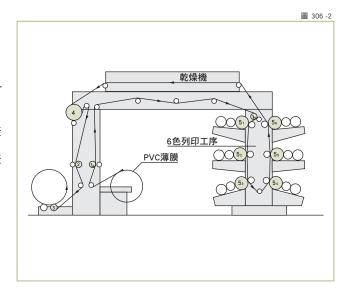
動作概要

滚筒①、②、③會以裁刀的旋轉為基準進行連動動作。②會對已列 印的紙張追加新的列印工序,①會導出紙張。此時會在②調整列印 紙張的位移偏差。

①會進行調整,以便讓在②完成列印的紙張能夠在正確的位置裁切。 ③會進行調整以跟隨①。

若將諧波差動齒輪組裝進上述裝置的①、②、③部分,便能夠在不停止裝置的狀態下,改變各滾筒間的相位。

■印刷機(薄膜狀材料)

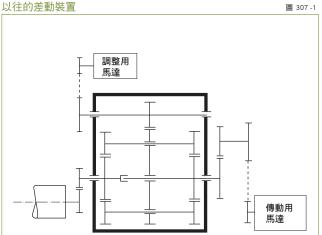

要列印可伸縮性材料時,必須要有以下裝置。

- 1. 可調整因材料伸縮而導致列印位置偏移的裝置。
- 2. 隨時施加張力,以防止薄膜產生皺摺的裝置。

動作概要 -

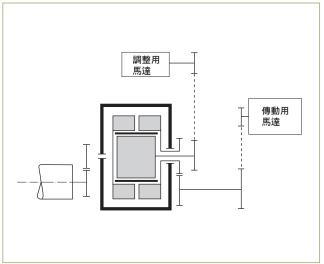
於心導出薄膜材料。

將諧波差動齒輪組裝至上述心到50的各滾筒上。



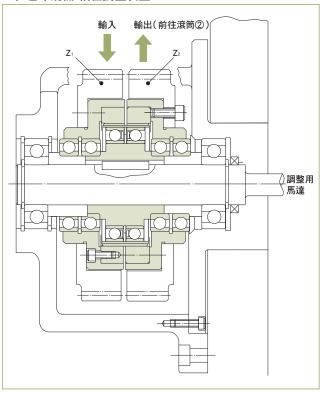
差動齒輪與諧波差動齒輪的相異點

	表 307-1
差動齒輪	諧波差動齒輪
	諧波差動齒輪本身已具備差動機構, 為單一裝置,體積精巧、便於設計,可輕鬆組裝。
若使用行星齒輪將導致背隙相當大, 在位置及時序上難以達到高精度。	背隙極小,在位置等方面可獲得正確精度。
相較於諧波差動齒輪,較難進行微調。	減速比大,可進行極細微的微調。
齒輪聲大。	極度安靜。


右圖是某印刷機製造商所使用的差動裝置,可看出使用諧波差動齒 輪後,便能在設計上實現精巧化。

以往的差動裝置

使用諧波差動齒輪


圖 307 -2

設計例

■多色印刷機 相位調整裝置

圖 308 -1

此圖為將模組型諧波差動齒輪(FD-0)作為多色印刷機的滾筒相位調整裝置,組裝至印刷機內的例子。

在一般運轉中,調整馬達會呈固定狀態,進入 Z_1 的旋轉會以幾乎等於 1:1 的比例傳達至 Z_2 。若只想調整滾柱②的相位,請旋轉調整用馬達,以產生細微旋轉差並藉以進行相位調整。調整結束後,只要停止馬達便可使滾柱②恢復為原本的轉速。

齒輪選擇資料

下列為當 N_1 及 N_2 轉速相同,亦即 $i=\frac{N_2}{N_1}=1$ 時選擇齒輪齒數 $Z_1 \times Z_2 \times Z_3 \times Z_4$ 的參考資料。

 $rac{N_2}{N_1}$ = i = $rac{Z_1}{Z_2}$ • $rac{Z_0}{Z_s}$ • $rac{Z_3}{Z_4}$ · · · · · (i) $rac{ extstyle extstyle (Z_s: eta)$ 性齒輪s的齒輪數 $Z_0: eta$ 附性齒輪s的齒數

此處若設為 $i_0=\frac{Z_0}{Z_s}$ (亦即 $\frac{R}{R+1}$) ,則

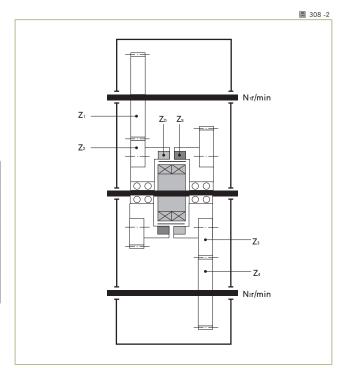

 $\mathbf{i} = \frac{\mathbf{Z}_1}{\mathbf{Z}_2} \cdot \frac{\mathbf{Z}_3}{\mathbf{Z}_4} \cdot \mathbf{j}_D$

表 308 -1

İo	$\frac{Z_1}{Z_2} \cdot \frac{Z_3}{Z_4}$											
<u>80</u> 81	18 · 18 16 · 20	18 · 27 16 · 30	15 · 27 16 · 25	$\frac{18}{20} \cdot \frac{27}{24}$	$\frac{21}{20} \cdot \frac{27}{28}$	27 · 39 26 · 40						
120 121	22 · 22 20 · 24											
<u>128</u> 129	15/43 16·40	33 32·43 40	43 · 63 42 · 64									
160 161	14 · 23 16 · 20	21 · 23 24	23 · <u>77</u> 80	23 · 35 25 · 32								

- (註)1. 上述齒數適用於將 Zo、Zs 如圖示進行配置時。
 - 2. 齒數差為 Z₁-Z₂≤3、Z₃-Z₄≤3。
 - 3. 使用其他齒數時,對 io 進行質數分解會較為方便。

R=79、96、100、131、208、258的 io 無法進行質數分解。

•

 $\overline{\times}$

調整

N₄=120r/min

傳動軸 N₁=500r/min 圖 309 -1

計算例

依據右圖(圖309-1)的使用例,計算各齒輪的齒數、轉速、調整量, 以及調整所需的轉矩。

〔使用條件〕

在圖 309-1 中

滾筒周速

V=60m/min

滾筒周長

 $L_W=500mm$

滾筒轉矩

T_w=7kg-m

傳動軸轉速

 $N_1=500r/min$

滾筒轉速

$$N_4 = \frac{V}{L_W} = \frac{60}{0.5} = 120 \text{r/min}$$

依據上述條件選定為模組型差動齒輪(FD-0)的型號 25 減速比 R=80,並確認齒數、調整轉矩以及本型號是否適合。

■各齒輪的齒數(選擇 Z₁、Z₂、Z₃、Z₄)

整體減速比 i 為
$$i = \frac{N_4}{N_1} = \frac{Z_2}{Z_1} \cdot \frac{C_S}{C_D} \cdot \frac{Z_4}{Z_3}$$
 以此得出
$$\frac{Z_2 \cdot Z_4}{Z_1 \cdot Z_3} = \frac{N_4 \cdot C_D}{N_1 \cdot C_S}$$
 此處
$$\frac{N_4}{N_1} = \frac{120}{500} = \frac{2^3 \times 3 \times 3}{2^2 \times 5^3}$$

$$\frac{C_D}{C_S} = \frac{80}{81} = \frac{2^4 \times 5}{3^4}$$

此處
$$\frac{N_4}{N_1} = \frac{2120}{500} = \frac{2^3 \times 3 \times 3}{2^2 \times 5^3}$$

 $\frac{C_D}{C_S} = \frac{80}{81} = \frac{2^4 \times 5}{3^4}$

$$\frac{Z_2}{Z_1} \times \frac{Z_4}{Z_3} = \frac{2^3 \times 3 \times 3}{2^2 \times 5^3} \times \frac{2^4 \times 5}{3^4} = \frac{2^5}{3^3 \times 5} = \frac{2^3}{3 \times 5} \times \frac{2^2}{3^2} = \frac{8}{15} \times \frac{4}{9} = \frac{16}{30} \times \frac{16}{36}$$

$$Z_1=30 \cdot Z_2=16 \cdot Z_3=36 \cdot Z_4=16$$

■計算轉速

下列為各齒輪的轉速。

 Z_4 : $N_1=500r/min$

$$Z_2$$
: $N_{2} = \frac{C_S}{C_D} \cdot N_{3} = \frac{80}{81} \times 222.2 = 225 \text{r/mir}$

 Z_1 : $N_4=120r/min$

■調整量

將調整用的波產生器旋轉 1 圈 (360°)時,滾筒的位移量(調整量)

$$\triangle \ \theta = \frac{Z_2}{Z_1} \cdot \frac{1}{R} \cdot \ \theta = \frac{16}{30} \times \frac{1}{80} \times 360^{\circ} = 2.4^{\circ}$$

$$\triangle \theta = \frac{2.4^{\circ}}{360^{\circ}} \times 500$$
mm=3.3mm

■調整所需轉矩

調整所需的轉矩T為

$$T = T_W \cdot \frac{Z_2}{Z_1} \cdot \frac{1}{R} \cdot \frac{1}{\eta} = 7 \text{kg-m} \times \frac{16}{30} \times \frac{1}{80} \times \frac{1}{0.6}$$

(η:效率)

技術資料 =

額定表

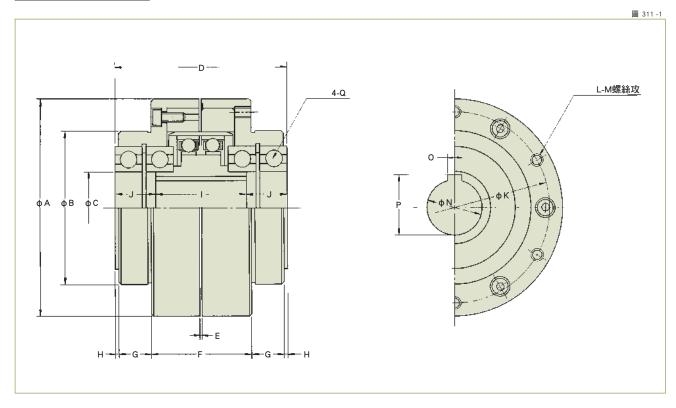
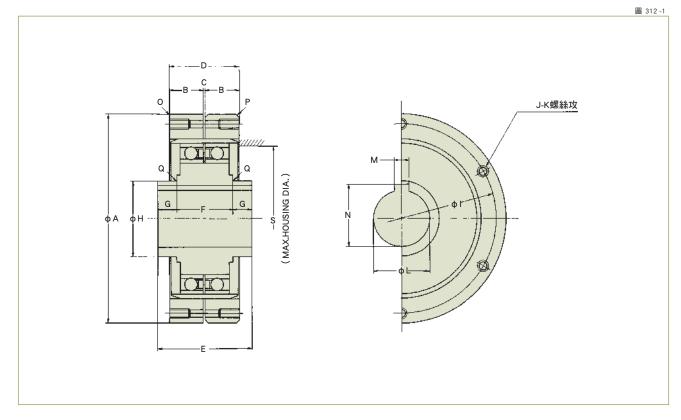

下列為在各轉速下的額定轉矩。

表 310 -1

轉速 r/mir		35	00	28	50	17	50	14	150	11	50	96	60	8	70	7!	750 600		00	51	00
 型號	減速比	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf·m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf⋅m	N·m	kgf
200	80	29	3.0	30	3.1	30	3.1	30	3.1	30	3.1	30	3.1	30	3.1	30	3.1	30	3.1	30	3.
	100	30	3.1	31	3.2	36	3.7	36	3.7	36	3.7	36	3.7	36	3.7	36	3.7	36	3.7	36	3
20	128	31	3.2	34	3.5	42	4.3	43	4.4	43	4.4	43	4.4	43	4.4	43	4.4	43	4.4	43	4.
	160	32	3.3	35	3.6	42	4.3	45	4.6	48	4.9	49	5.0	49	5.0	49	5.0	49	5.0	49	5.
	80	46	4.7	50	5.1	57	5.8	57	5.8	57	5.8	57	5.8	57	5.8	57	5.8	57	5.8	57	5
	100	49	5.0	53	5.4	67	6.8	67	6.8	79	8.1	79	8.1	79	8.1	79	8.1	79	8.1	79	8
25	120	52	5.3	55	5.6	70	7.1	70	7.1	80	8.2	82	8.4	89	9.1	91	9.3	96	9.8	96	9
	160	54	5.5	57	5.8	71	7.2	73	7.4	80	8.2	83	8.5	89	9.1	92	9.4	98	10	108	1
	200	55	5.6	59	6.0	71	7.2	74	7.5	80	8.2	84	8.6	89	9.1	92	9.4	98	10	108	1
	78	98	10	108	11	108	11	108	11	108	11	108	11	108	11	108	11	108	11	108	1
	100	108	11	118	12	137	14	147	15	157	16	157	16	157	16	157	16	157	16	157	1
32	131	108	11	118	12	137	14	157	16	167	17	176	18	176	18	196	20	206	21	206	2
32	157	108	11	118	12	137	14	157	16	167	17	176	18	176	18	196	20	206	21	216	2
	200	108	11	118	12	137	14	157	16	167	17	176	18	176	18	196	20	206	21	216	2
	260	108	11	118	12	137	14	157	16	167	17	176	18	176	18	196	20	206	21	216	2
	80	196	20	196	20	196	20	196	20	196	20	196	20	196	20	196	20	196	20	196	:
	100	235	24	245	25	265	27	265	27	265	27	265	27	265	27	265	27	265	27	265	:
40	128	235	24	245	25	294	30	314	32	343	35	363	37	372	38	372	38	372	38	372	:
40	160	235	24	245	25	294	30	314	32	343	35	363	37	372	38	392	40	421	43	451	L
	200	235	24	245	25	294	30	314	32	343	35	363	37	372	38	392	40	421	43	451	L
	258	235	24	245	25	294	30	314	32	343	35	363	37	372	38	392	40	421	43	451	L
	80	353	36	353	36	353	36	353	36	353	36	353	36	353	36	353	36	353	36	353	L
	100	441	45	470	48	549	56	559	57	559	57	559	57	559	57	559	57	559	57	559	L
50	120	441	45	470	48	549	56	588	60	637	65	666	68	666	68	666	68	666	68	666	L
00	160	441	45	470	48	549	56	588	60	637	65	676	69	696	71	745	76	794	81	843	L
	200	441	45	470	48	549	56	588	60	637	65	676	69	696	71	745	76	794	81	843	1
	242	441	45	470	48	549	56	588	60	637	65	676	69	696	71	745	76	794	81	843	1
	78		_		_	764	78	764	78	764	78	764	78	764	78	764	78	764	78	764	Ľ
	104		_		_	1030	105	1100	112	1180	120	1190	121	1190	121	1190	121	1190	121	1190	1
65	132	_	_		_	1030	105	1100	112	1180	120	1250	128	1290	132	1380	141	1460	149	1570	1
	158	_	_			1030	105	1100	112	1180	120	1250	128	1290	132	1380	141	1460	149	1570	1
	208	_	_		_	1030	105	1100	112	1180	120	1250	128	1290	132	1380	141	1460	149	1570	1
	260	_	_	_	_	1030	105	1100	112	1180	120	1250	128	1290	132	1380	141	1460	149	1570	1
	80		_		_	1370	140	1370	140	1370	140	1370	140	1370	140	1370	140	1370	140	1370	1
	96		_		_	1800	184	1800	184	1800	184	1800	184	1800	184	1800	184	1800	184	1800	1
	128	_	_		_	2040	208	2180	222	2340	239	2490	254	2570	262	2710	277	2710	277	2710	2
80	160			_	_	2040	208	2180	222	2340	239	2490	254	2570	262	2740	280	2950	301	3130	3
	194	_	_			2040	208	2180	222	2340	239	2490	254	2570	262	2740	280	2950	301	3130	3
	258	_	_	_	_	2040	208	2180	222	2340	239	2490	254	2570	262	2740	280	2950	301	3130	3
	320	_	_		_	2040	208	2180	222	2340	239	2490	254	2570	262	2740	280	2950	301	3130	3
	80	_	_		_	2470	252	2470	252	2470	252	2470	252	2470	252	2470	252	2470	252	2470	2
	100		_		_	3720	380	3720	380	3720	380	3720	380	3720	380	3720	380	3720	380	3720	3
100	120			_	_	3720	382	3980	406	4280	437	4560	465	4710	481	4740	484	4740	484	4740	4
100	160				_	3720	382	3980	406	4280	437	4560	465	4710	481	5010	511	5390	550	5720	5
	200		_		_	3720	382	3980	406	4280	437	4560	465	4710	481	5010	511	5390	550	5720	5
	242		_		_	3720	382	3980	406	4280	437	4560	465	4710	481	5010	511	5390	550	5720	5
	320		<u>一</u> 置時,波	_	_	3720	382	3980	406	4280	437	4560	465	4710	481	5010	511	5390	550	5720	5

- - 1. 轉述本,所須用用MXX表重時,/成准工名前時時迄。 係指用作差動裝置時,波產生器與剛性齒輪的相對轉速。 2. 轉速在 500/min 以下時的轉矩和 500/min 時前轉矩相同。 3. 瞬間容許負載轉矩可容許至轉速為 1,450/min 時轉矩的 200%。

模組型(FD-0)外觀圖



模組型(FD-0)尺寸表

表 311 -1 單位:mm

								APR 127 - 111111
型號記號	20	25	32	40	50	65	80	100
φА	85	95	120	145	185	235	290	360
фВь7	52	65	85	100	125	140	180	210
фС	20	30	40	50	60	70	90	110
D	73	81	95	113	132	147	178	212
E	1	1	1	1	1	1	1	1
F	44	45	55	65	80	117	129	155
G	12.5	16	18	20	22	12	21.5	25.5
Н	2	2	2	4	4	3	3	3
I	38	40	50	68	78	87	106	130
J	17.5	20.5	22.5	22.5	27	30	36	41
φК	70	80	105	125	155	195	240	290
L	6	6	6	6	6	6	8	8
М	M4×7	M5×8	M6×9	M8×11	M10×13.5	M12×23	M12×23	M14×27
ф Nн7	12	20	30	35	40	50	65	80
OJs9	4	6	8	10	12	14	18	22
Р	13.8	22.8	33.3	38.3	43.3	53.8	69.4	85.4
Q	#6004	#6006	#6008	#6010	#6012	#6014	#6018	#6022
質量 (kg)	2.0	2.6	5.0	8.3	17	34	59	118

元件型(FD-2)外觀圖

元件型(FD-2)尺寸表

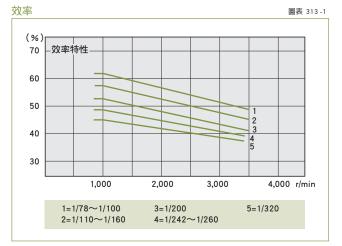
表 312 -1 單位:mm

型號記號	20	25	32	40	50	65	80	100
фА _{д7}	70	85	110	135	170	215	265	330
В	12	14	18	21	26	35	41	50
С	1	1	1	1	1	1	1	1
D	25	29	37	43	53	71	83	101
E	38	40	50	68	78	87	106	130
F	21.5	25	30	44	54	59	74	92
G	8.25	7.5	10	12	12	14	16	19
фНл6	20	30	40	50	60	70	90	110
φΙ	60	75	100	120	150	195	240	290
J	6	6	6	6	6	6	8	8
K	M3×6	M4×8	M5×10	M6×12	M8×16	M10×20	M10×20	M12×24
ф Lн7	12	20	30	35	40	50	65	80
M _{Js9}	4	6	8	10	12	14	18	22
N	13.8	22.8	33.3	38.3	43.3	53.8	69	85.4
Oc	0.2	0.2	0.2	0.4	0.4	0.4	0.4	0.4
Pc	1	1.5	1.5	1.5	1.5	1.5	2	2
QR	0.5	1	1	1	2	1	1.5	2
S	42	53	69	84	105	138	169	211
質量 (kg)	0.6	1.0	2.0	3.6	7.2	14	26	48

效率特性

模組型差動齒輪(FD-0)的效率,會因傳動路徑而異。

1. 當旋轉從剛性齒輪 S (或 D) 進入,並傳達至剛性齒輪 D (或 S) 時的效率


潤滑油時:約90% 潤滑脂時:約80%

2. 圖表 313-1 為要計算在相位調整時的波產生器所需輸入轉矩時, 或用作減速裝置使用時的效率。

表 313 -1

負載轉矩	額定表所示的額定轉矩
潤滑條件	潤滑油(油溫約 40℃)

(註)以潤滑脂潤滑時,效率會比此再低約 10%。

慣性力矩

表 313-2 為各零件的 GD² 數值。

表 313-2 單位 (×10⁻⁴kg·m²)

型號	20	25	32	40	50	65	80	100
波產生器 「 (軸承的外環除外)	1.44	3.63	12.9	37.0	112	366	1020	3050
剛性齒輪 S、D 波產生器軸承的外輪	13.7	33.8	125	326	1020	3440	9270	27000
+	15.2	37.5	138	363	1140	3810	10300	30100
Ⅳ 支撐軸承(4個)	2.91	8.98	23.4	451	104	205	646	1590
V 護殼(左、右護殼合計)	52.6	69.0	204	484	1660	6220	15700	43200

容許最大轉速

此處所指容許最大轉速

- 1. 係指用作減速裝置時,波產生器的轉速。
- 2. 係指用作差動裝置時,波產生器與剛性齒輪的相對轉速。

(1) 潤滑油時 -

表 313 -3 單位 r/min

型號	20	25	32	40	50	65	80	100
容許最大轉速	6000	5000	4500	4000	3500	3000	2500	2000

(2)潤滑脂時

表 313 -4 單位 r/min

型號	20	25	32	40	50	65	80	100
容許最大轉速	3600	3600	3600	3300	3000	2200	2000	1700

無效運動與彈簧常數

關於無效運動與彈簧常數的定義,請參閱 120 頁內容。差動型的無效運動與彈簧常數,係指將波產生器與剛性齒輪單邊固定,並對另一邊的剛性齒輪施加轉矩時的數值。

表 314 -1

型號	無效	運動	彈簧常數		
空加	± 負載(kg·m)	無效運動(arc-min)	負載(kg·m)	彈簧常數(kgf·m/arc-min)	
20	0.12	40	3.69	0.9	
25	0.23	37	7.20	2.1	
32	0.46	35	15.78	4.4	
40	0.92	33	29.50	7.8	
50	1.73	29	57.60	16	
65	3.9	27	126.7	27	
80	7.4	26	236.2	52	
100	14.4	24	460.8	100	

設計指南 ===

使用注意事項

將元件型(FD-2)用作差動裝置時的護殼及軸承等項目,準用模組型(FD-0)的說明。

組裝注意事項

Harmonic Drive®可能因組裝時的不良,產生振動或異音。 組裝注意事項請以 FB 系列(第 109 頁圖 109-2)為基準。

潤 滑

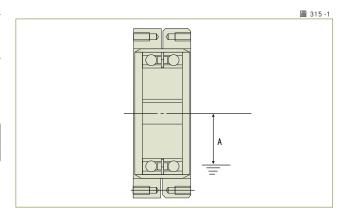
潤滑方式有潤滑油及潤滑脂等 2 種。

一般使用潤滑油,根據其他使用條件亦可使用潤滑脂。

■潤滑油

1. 潤滑油的種類 -

潤滑劑的詳情,請參閱 018 頁。


2.油量-

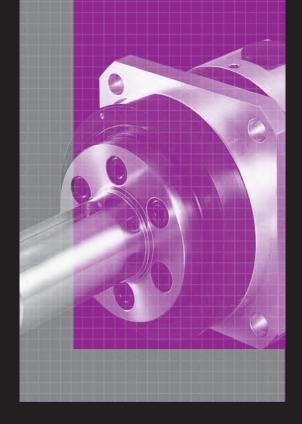
油面位置請如表 315-1 所示數值。

油面位置

表 315 -1

型號	20	25	32	40	50	65	80	100
А	12	15	31	38	44	62	75	94

■潤滑脂

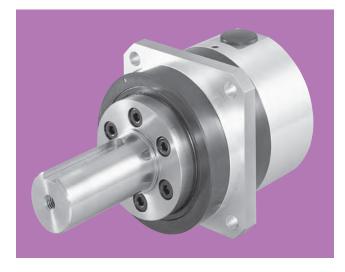

不同於潤滑油,潤滑脂不具有冷卻效果,僅可使用於較短的運轉時間。

- ●使用條件:ED%…10%以內、連續運轉 10 分鐘以內、輸入轉速低 於表 313-4 的轉速。
- ●建議潤滑脂:「Harmonic 潤滑脂®SK-1A」
- (註)超過 ED% 或容許最大轉速使用時,潤滑脂將會劣化,無法發揮潤滑功能,導致減速機提早損傷。

請注意。

另外,模組型 (FD-0) 也有已預先填入潤滑脂的產品 (Nippeco MP No.2 : 日本礦油),若有需求請在訂購時特別備註。

MEMO

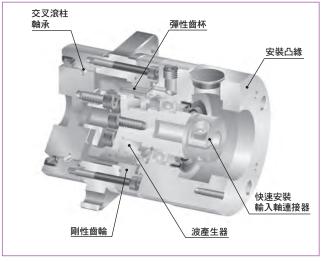

CSG-GH/CSF-GH系列

Gear Head Type CSG-GH/CSF-GH

特徴與結構 …………………318

關於詳細內容,請參閱伺服馬達用高性能減速機系列型錄。

特徵與結構:



關於詳細內容,請參閱「伺服馬達用高性能減速機系列」型錄。

CSG-GH/CSF-GH 系列模組型的結構

圖 318 -1

■CSG-GH/CSF-GH 系列

本系列是將 Harmonic Drive® 的優秀性能發揮至極限的伺服馬達專用減速機型。

即使是不習慣操作 Harmonic Drive® 的使用者也能輕鬆操作,實現高精度致動器。

CSG-GH/CSF-GH 系列的特徵

■備有高轉矩或標準等 2 機種可供選擇 備有高轉矩型 CSG 系列及標準型 CSF 系列。相較於 CSF 系列, CSG 系列的轉矩提高了 30%,可提升產品壽命。

■輕鬆安裝各公司的伺服馬達

標準配備適用各公司伺服馬達的安裝凸緣及快速安裝輸入軸連接器,可輕鬆安裝馬達。亦備有安川電機、三菱電機、Panasonic等日本國內伺服馬達的匹配表。只要一個代碼便可立即訂購。

■產品種類豐富

備有附輸出軸型及凸緣型等 2 種規格。

型 號: 14、20、32、45、65 減速比: 50、80、100、120、160 輸出規格: 凸緣、軸、軸(附鍵&螺絲攻) 馬達容量: 對應小容量~中容量伺服 30W ~ 5000W。

■無背隙

在 Harmonic Drive® 獨創的動作原理之下,不會產生因齒輪嚙合所 導致的背隙。

■高力矩容量

採用高剛性交叉滾柱軸承作為主軸承,除具有高力矩容量外,亦可提高輸出端的面偏差精度。

■交叉滾柱軸承

為高剛性的交叉滾柱軸承。用於輸出端軸承,因此可直接支撐負載,並提高面偏差等機械精度。

■快速安裝輸入軸連接器

僅需插入伺服馬達的輸出軸並鎖上螺栓,便可完成連接步驟。備 有可適用各公司伺服馬達的輸入軸連接器。

■安裝凸緣

標準配備可適用各公司伺服馬達的凸緣,不需再另行購買。

MEMO

保固:

以下為 Harmonic Drive® 的保固期及保固範圍。

■保固期

以使用型錄所記載的正確組裝狀態及潤滑狀態為保固條件,在交貨後 1 年內或該產品之運轉時間達到 2000 小時之其中較早達到之一方為保固期。

■保固範圍

在上述保固期內,因本公司之製造瑕疵而導致故障時,由本公司負責修理、更換該項產品。

但以下情形不在本保固對象範圍內:

- ①因客戶的不適當處理或不適當使用所造成。
- ②非透過本公司人員進行改裝或修理所造成。
- ③故障原因非該產品所造成。
- ④其他因天災等不得歸責於本公司之因素。
- 另外,此處所稱之保固,係指保證該產品之意義。

因該產品之故障所導致之其他損害,以及與拆除及安裝有關之工時、費用等項目,恕不在本公司之負擔範圍內。

註冊商標

「Harmonic Drive」為表示本公司產品之註冊商標。一般或學術上稱為「諧波齒輪傳動機構」。

HarmonicDrive® 精密控制用減速裝置

HarmonicDrive® 元件&模組 使用安全注意事項

表示如錯誤使用,可能會造成死亡或重傷。

表示如錯誤使用,可能會造成人員受傷或物品損壞。

用涂限制:本產品不得使用於下列用途。

*核能設備 * 航太設備 *飛機設備 *一般家用設備、器具 *真空設備 *汽車設備 *遊戲設備 *直接作用於人體的設備

欲使用於上述用途時,請事先與本公司諮詢。

*以輸送人為目的的設備

欲將本產品使用在攸關人命之設備及預期可能會產生重大損失的設備上時,請在本產品上安裝安全裝置,以避免本產品損壞 而陷入無法控制輸出的狀況時引發事故。

*特殊環境設備

使用注意事項 運轉時請務必閱讀型錄。 請小心處理本產品及零件。 ● 請勿以鐵鎚等物品對各零件及模組施加強烈衝擊。此外,亦請

避免因掉落等原因造成機身產生損傷、凹陷。可能會造成設備 ● 在受損狀態下使用時,可能無法發揮正常性能。此外,亦可能

使用時請勿超過容許轉矩。

- 請勿施加高於瞬間容許最大轉矩的轉矩。否則可能會造成連接 部的螺栓產生鬆動、機身晃動、損壞設備等異常。
- 將機械臂等直接連接在輸出軸上時,輸出軸可能會因為和機械 臂碰撞而被破壞,從而陷入無法控制的狀況。

請勿變更零件內容。 ●本產品中之零件皆為成套製作。 若混合使用便無法發揮正常性能。 注意

浩成指壞設備等。

請勿拆解模組型產品。

■請勿拆解、重新組裝模組型產品。否則將無法重現原本性能。

注意

注意

請防鏽。

■關於表面處理措施,請參閱交貨規格圖內容。

漏油注意事項

● 雖然輸出軸採用了高可靠性的油封,但並不保證完全不洩漏。 請客戶依用途進行潤滑及上油防護處理。

請以規定精度安裝。 ● 設計、組裝各零件時,請達到型錄所標註的建議安裝精度。

● 長期保存品建議先確認性能及防鏽狀況。

● 若精度不足,可能會造成振動、降低壽命、降低精度、損壞等 異常。

請在規定環境下使用。

● 使用 Harmonic Drive® 時,請遵守下列條件。 環境溫度:0~40℃ 未沾有水、油 無腐蝕性、爆炸性氣體

無金屬粉等異物

注意

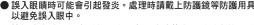
安裝時,請依規定方式安裝。

- 組裝時,請依據型錄的說明順序正確組裝。
- 連接方法(使用的螺栓等)請依據本公司的建議方式。
- 若機械在運轉時未正確組裝,可能會造成振動、降低壽命、降 低精度、損壞等異常。

請使用規定的潤滑劑。

- ◆未使用本公司建議的潤滑劑時,產品壽命可能會降低。 此外,亦請在到達規定條件時更換潤滑劑。
- 模組型產品內已事先填入潤滑脂。請勿混入其他潤滑脂。

保存注意事項


警告

請保存於常溫、常濕的室內以及不結露的環境。出貨時產品雖已塗佈防鏽油,但並非是為了長時間防鏽。長期保存產品時,請定期確認生鏽等 情況,視必要實施防鏽處理。防鏽方法請洽詢本公司。

● 本公司之產品雖已施予部分黑色表面處理,但並不保證防鏽。

潤滑劑使用注意事項

使用注意事項

- 誤入眼睛時可能會引起發炎。處理時請戴上防護鏡等防護用具,
- ●接觸皮膚時可能會引起發炎。處理時請戴上防護手套等防護用 具,以避免接觸皮膚
- 請勿食用(食用後會腹瀉、嘔吐)。
- 打開容器時,可能會切到手。請穿戴防護手套。
- ●請放置於孩童伸手不及之處。

注意

- 急救措施 ● 誤入眼睛時,請以清水清洗 15 分鐘,並接受醫師診治。
- 接觸皮膚時,請以水及肥皂充分清洗。
- 吞入時,請勿勉強催吐,應立即接受醫師診治。

廢油、廢容器之處理

- 關於處理方式,法令上已課以規定義務。請依據法令妥善處理。 若不清楚時,請先洽詢經銷商後再行處理。
- 請勿對空容器施加壓力。若施加壓力可能會造成破裂。
- 請勿焊接、切斷本容器,或在本容器上開孔,或讓本容器處於 過熱狀態。否則可能會因火花而造成內部殘留物起火。

保存方式

● 為避免異物、水份跑入機械內部,使用後請密封。 請保存於避免陽光直射的陰暗處。

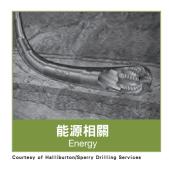
廢棄注意事項

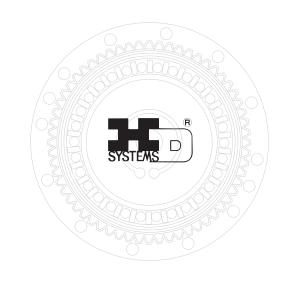
警告

請作為工業廢棄物處理。

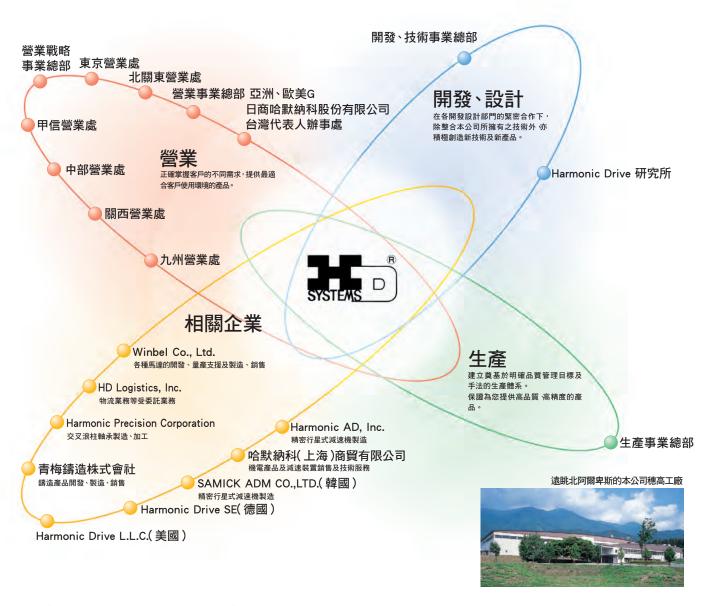
● 廢棄時,請作為工業廢棄物處理。

主要採用市場









精密控制領域的專家。

將開發、設計、生產、營業緊密結合, 製造合乎客戶需求的專業產品。

本公司於1995年取得品質管理與保證國際規格「ISO 9001」,並於1998年取得德國認證機構TUV產品服務的環境管理系統國際規格「ISO 14001」。證明本公司之品質保證體制及環境管理系統已受到世界認可。

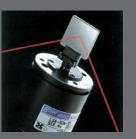
OTHER PRODUCTS

Harmonic Drive(註冊商標)

僅由3件基本零件所組成的Harmonic Drive (註冊商標)減速機,可透過獨特的機械架 構來達成精密的運動控制。

HarmonicPlanetary(註冊商標)

將Harmonic Drive (註冊商標) 所累積的精密加工技術運用在低減速比領域上後所誕生的,便是高精度、高剛性的行星式減速機HarmonicPlanetary (註冊商標)。具有獨特的消除背隙機構,可達到高旋轉精度。


HarmonicLinear(註冊商標)

將精密螺絲及Harmonic Drive(註冊商標)組合 而成的精巧型線性致動器。具有超精密定位 用、高推力用等豐富產品陣容。

Beam Servo(註冊商標)

以本公司獨自開發的小型馬達及光學感測器技術為基礎所研發的光學伺服。可藉由高回應、 高精度的掃描儀,進行更順暢的光學掃描。

HarmonicDrive BarmonicPlanetary HarmonicGrease HarmonicGrease BarmonicGrease Barm

Registered Trademark in Japan

取得ISO 14001/ISO 9001認證 (TÜV Management Service GmbH)

https://www.hds.co.jp/

總 公 司/東京都品川區南大井6-25-3 lchigo大森大樓 〒140-0013 TEL.+81-(0)3-5471-7800(總機) FAX.+81-(0)3-5471-7811
穂 高 工 廠 / 長野縣安曇野市穂高牧1856-1 〒399-8305 TEL.+81-(0)263-83-6800(總機) FAX.+81-(0)263-83-6901
海外營業事業總部 / 長野縣安曇野市穂高有明5103-1 〒399-8301 TEL.+81-(0)263-81-5950(總機) FAX.+81-(0)263-50-5010
日商哈默納科股份有限公司 10351台北市大同區市民大道一段209號11樓 G219室台灣代表人辦事處 / TEL. +886-(0)2-2181-1640(總機) FAX. +886-(0)2-2181-1641

[「]Harmonic Drive」為表示本公司產品之註冊商標。一般或學術上稱為「諧波齒輪傳動機構」。

